1
|
Thielen B, Meng E. Characterization of thin film Parylene C device curvature and the formation of helices via thermoforming. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2023; 33:095007. [PMID: 37520061 PMCID: PMC10373221 DOI: 10.1088/1361-6439/acdc33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023]
Abstract
In microfabricated biomedical devices, flexible, polymer substrates are becoming increasingly preferred over rigid, silicon substrates because of their ability to conform to biological tissue. Such devices, however, are fabricated in a planar configuration, which results in planar devices that do not closely match the shape of most tissues. Thermoforming, a process which can reshape thermoplastic polymers, can be used to transform flat, thin film, polymer devices with patterned metal features into complex three-dimensional (3D) geometries. This process extends the use of planar microfabrication to achieve 3D shapes which can more closely interface with the body. Common shapes include spheres, which can conform to the shape of the retina; cones, which can be used as a sheath to interface with an insertion stylet; and helices, which can be wrapped around nerves, blood vessels, muscle fibers, or be used as strain relief feature. This work characterizes the curvature of thin film Parylene C devices with patterned metal features built with varying Parylene thicknesses and processing conditions. Device curvature is caused by film stress in each Parylene and metal layer, which is characterized experimentally and by a mathematical model which estimates the effects of device geometry and processing on curvature. Using this characterization, an optimized process to thermoform thin film Parylene C devices with patterned metal features into 0.25 mm diameter helices while preventing cracking in the polymer and metal was developed.
Collapse
Affiliation(s)
- Brianna Thielen
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
2
|
Lecomte A, Descamps E, Bergaud C. A review on mechanical considerations for chronically-implanted neural probes. J Neural Eng 2018; 15:031001. [DOI: 10.1088/1741-2552/aa8b4f] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Lebedev MA, Nicolelis MAL. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol Rev 2017; 97:767-837. [PMID: 28275048 DOI: 10.1152/physrev.00027.2016] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Brain-machine interfaces (BMIs) combine methods, approaches, and concepts derived from neurophysiology, computer science, and engineering in an effort to establish real-time bidirectional links between living brains and artificial actuators. Although theoretical propositions and some proof of concept experiments on directly linking the brains with machines date back to the early 1960s, BMI research only took off in earnest at the end of the 1990s, when this approach became intimately linked to new neurophysiological methods for sampling large-scale brain activity. The classic goals of BMIs are 1) to unveil and utilize principles of operation and plastic properties of the distributed and dynamic circuits of the brain and 2) to create new therapies to restore mobility and sensations to severely disabled patients. Over the past decade, a wide range of BMI applications have emerged, which considerably expanded these original goals. BMI studies have shown neural control over the movements of robotic and virtual actuators that enact both upper and lower limb functions. Furthermore, BMIs have also incorporated ways to deliver sensory feedback, generated from external actuators, back to the brain. BMI research has been at the forefront of many neurophysiological discoveries, including the demonstration that, through continuous use, artificial tools can be assimilated by the primate brain's body schema. Work on BMIs has also led to the introduction of novel neurorehabilitation strategies. As a result of these efforts, long-term continuous BMI use has been recently implicated with the induction of partial neurological recovery in spinal cord injury patients.
Collapse
|
4
|
Etemadi L, Mohammed M, Thorbergsson PT, Ekstrand J, Friberg A, Granmo M, Pettersson LME, Schouenborg J. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers. PLoS One 2016; 11:e0155109. [PMID: 27159159 PMCID: PMC4861347 DOI: 10.1371/journal.pone.0155109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/25/2016] [Indexed: 01/03/2023] Open
Abstract
Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved.
Collapse
Affiliation(s)
- Leila Etemadi
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mohsin Mohammed
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| | - Palmi Thor Thorbergsson
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joakim Ekstrand
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Annika Friberg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcus Granmo
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lina M. E. Pettersson
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail: (MM); (JS); (LP)
| |
Collapse
|
5
|
Aryan NP, Kaim H, Rothermel A. Electrode Materials: State-of-the-Art and Experiments. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-10052-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Fernández E, Greger B, House PA, Aranda I, Botella C, Albisua J, Soto-Sánchez C, Alfaro A, Normann RA. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. FRONTIERS IN NEUROENGINEERING 2014; 7:24. [PMID: 25100989 PMCID: PMC4104831 DOI: 10.3389/fneng.2014.00024] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022]
Abstract
The emerging field of neuroprosthetics is focused on the development of new therapeutic interventions that will be able to restore some lost neural function by selective electrical stimulation or by harnessing activity recorded from populations of neurons. As more and more patients benefit from these approaches, the interest in neural interfaces has grown significantly and a new generation of penetrating microelectrode arrays are providing unprecedented access to the neurons of the central nervous system (CNS). These microelectrodes have active tip dimensions that are similar in size to neurons and because they penetrate the nervous system, they provide selective access to these cells (within a few microns). However, the very long-term viability of chronically implanted microelectrodes and the capability of recording the same spiking activity over long time periods still remain to be established and confirmed in human studies. Here we review the main responses to acute implantation of microelectrode arrays, and emphasize that it will become essential to control the neural tissue damage induced by these intracortical microelectrodes in order to achieve the high clinical potentials accompanying this technology.
Collapse
Affiliation(s)
- Eduardo Fernández
- Bioengineering Institute, Miguel Hernández University of Elche Elche, Spain ; CIBER-BBN Zaragoza, Spain
| | - Bradley Greger
- School of Biological and Health Systems Engineering, Arizona State University Tempe, AZ, USA
| | - Paul A House
- Department of Neurosurgery, University of Utah Salt Lake City, UT, USA
| | - Ignacio Aranda
- Department of Pathology, Hospital General Universitario Alicante, Spain
| | - Carlos Botella
- Department of Neurosurgery, Hospital La Fe Valencia, Spain
| | - Julio Albisua
- Department of Neurosurgery, Fundación Jimenez Díaz and Hospital Rey Juan Carlos Madrid, Spain
| | - Cristina Soto-Sánchez
- Bioengineering Institute, Miguel Hernández University of Elche Elche, Spain ; CIBER-BBN Zaragoza, Spain
| | - Arantxa Alfaro
- Bioengineering Institute, Miguel Hernández University of Elche Elche, Spain ; CIBER-BBN Zaragoza, Spain
| | - Richard A Normann
- Department of Bioengineering, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
7
|
Sohal HS, Jackson A, Jackson R, Clowry GJ, Vassilevski K, O'Neill A, Baker SN. The sinusoidal probe: a new approach to improve electrode longevity. FRONTIERS IN NEUROENGINEERING 2014; 7:10. [PMID: 24808859 PMCID: PMC4010751 DOI: 10.3389/fneng.2014.00010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/07/2014] [Indexed: 11/13/2022]
Abstract
Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive brain-machine interfaces. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We have designed a sinusoidal probe in order to reduce movement of the recording tip relative to the surrounding neural tissue. The probe was microfabricated from flexible materials and incorporated a sinusoidal shaft to minimize tethering forces and a 3D spheroid tip to anchor the recording site within the brain. Compared to standard microwire electrodes, the signal-to-noise ratio and local field potential power of sinusoidal probe recordings from rabbits was more stable across recording periods up to 678 days. Histological quantification of microglia and astrocytes showed reduced neuronal tissue damage especially for the tip region between 6 and 24 months post-implantation. We suggest that the micromotion-reducing measures incorporated into our design, at least partially, decreased the magnitude of gliosis, resulting in enhanced longevity of recording.
Collapse
Affiliation(s)
- Harbaljit S Sohal
- Newcastle Movement Lab, Institute of Neuroscience, Newcastle University Newcastle Upon Tyne, UK ; School of Electrical and Electronic Engineering, Newcastle University Newcastle Upon Tyne, UK
| | - Andrew Jackson
- Newcastle Movement Lab, Institute of Neuroscience, Newcastle University Newcastle Upon Tyne, UK
| | - Richard Jackson
- School of Electrical and Electronic Engineering, Newcastle University Newcastle Upon Tyne, UK
| | - Gavin J Clowry
- Newcastle Movement Lab, Institute of Neuroscience, Newcastle University Newcastle Upon Tyne, UK
| | - Konstantin Vassilevski
- School of Electrical and Electronic Engineering, Newcastle University Newcastle Upon Tyne, UK
| | - Anthony O'Neill
- School of Electrical and Electronic Engineering, Newcastle University Newcastle Upon Tyne, UK
| | - Stuart N Baker
- Newcastle Movement Lab, Institute of Neuroscience, Newcastle University Newcastle Upon Tyne, UK
| |
Collapse
|