1
|
Guo C, Zhuang W, He J. Development of Precision Controllable Magnetic Field-Assisted Platform for Micro Electrical Machining. MICROMACHINES 2024; 15:1002. [PMID: 39203653 PMCID: PMC11356375 DOI: 10.3390/mi15081002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024]
Abstract
In order to introduce the magnetic field into micro electrical machining technology to explore the influence of magnetic field on micro electrical machining, the development of a precision controllable magnetic field-assisted platform is particularly important. This platform needs to precisely control the spatial magnetic field. This study first completes the hardware design and construction of the magnetic field generation device, using electromagnetic coils with soft iron cores as the sources of the magnetic field. Mathematical models of the magnetic field are established and calibrated. Since the magnetic dipole model cannot effectively describe the magnetic field generated by the electromagnetic coil, this study adopts a more precise description method: the spherical harmonic function expansion model and the magnetic multipole superposition model. The calibration of the magnetic field model is based on actual excitation magnetic field data, so a magnetic field sampling device is designed to obtain the excitation magnetic field of the workspace. The model is calibrated based on a combination of the theoretical model and magnetic field data, and the performance of the constructed setup is analyzed. Finally, a magnetic field-assisted platform has been developed which can generate magnetic fields in any direction within the workspace with intensities ranging from 0 to 0.2 T. Its magnetic field model arrives at an error percentage of 2.986%, a variance of 0.9977, and a root mean square error (RMSE) of 0.71 mT, achieving precise control of the magnetic field in the workspace.
Collapse
Affiliation(s)
- Cheng Guo
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (W.Z.); (J.H.)
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weizhen Zhuang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (W.Z.); (J.H.)
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingwen He
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China; (W.Z.); (J.H.)
- Shenzhen Key Laboratory of High Performance Nontraditional Manufacturing, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Cao Q, Deng R, Pan Y, Liu R, Chen Y, Gong G, Zou J, Yang H, Han D. Robotic wireless capsule endoscopy: recent advances and upcoming technologies. Nat Commun 2024; 15:4597. [PMID: 38816464 PMCID: PMC11139981 DOI: 10.1038/s41467-024-49019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Wireless capsule endoscopy (WCE) offers a non-invasive evaluation of the digestive system, eliminating the need for sedation and the risks associated with conventional endoscopic procedures. Its significance lies in diagnosing gastrointestinal tissue irregularities, especially in the small intestine. However, existing commercial WCE devices face limitations, such as the absence of autonomous lesion detection and treatment capabilities. Recent advancements in micro-electromechanical fabrication and computational methods have led to extensive research in sophisticated technology integration into commercial capsule endoscopes, intending to supersede wired endoscopes. This Review discusses the future requirements for intelligent capsule robots, providing a comparative evaluation of various methods' merits and disadvantages, and highlighting recent developments in six technologies relevant to WCE. These include near-field wireless power transmission, magnetic field active drive, ultra-wideband/intrabody communication, hybrid localization, AI-based autonomous lesion detection, and magnetic-controlled diagnosis and treatment. Moreover, we explore the feasibility for future "capsule surgeons".
Collapse
Affiliation(s)
- Qing Cao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Runyi Deng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Pan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruijie Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yicheng Chen
- Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Guofang Gong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
3
|
Campisano F, Caló S, Remirez AA, Chandler JH, Obstein KL, Webster RJ, Valdastri P. Closed-loop control of soft continuum manipulators under tip follower actuation. Int J Rob Res 2021; 40:923-938. [PMID: 34334877 DOI: 10.1177/0278364921997167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Continuum manipulators, inspired by nature, have drawn significant interest within the robotics community. They can facilitate motion within complex environments where traditional rigid robots may be ineffective, while maintaining a reasonable degree of precision. Soft continuum manipulators have emerged as a growing subfield of continuum robotics, with promise for applications requiring high compliance, including certain medical procedures. This has driven demand for new control schemes designed to precisely control these highly flexible manipulators, whose kinematics may be sensitive to external loads, such as gravity. This article presents one such approach, utilizing a rapidly computed kinematic model based on Cosserat rod theory, coupled with sensor feedback to facilitate closed-loop control, for a soft continuum manipulator under tip follower actuation and external loading. This approach is suited to soft manipulators undergoing quasi-static deployment, where actuators apply a follower wrench (i.e., one that is in a constant body frame direction regardless of robot configuration) anywhere along the continuum structure, as can be done in water-jet propulsion. In this article we apply the framework specifically to a tip actuated soft continuum manipulator. The proposed control scheme employs both actuator feedback and pose feedback. The actuator feedback is utilized to both regulate the follower load and to compensate for non-linearities of the actuation system that can introduce kinematic model error. Pose feedback is required to maintain accurate path following. Experimental results demonstrate successful path following with the closed-loop control scheme, with significant performance improvements gained through the use of sensor feedback when compared with the open-loop case.
Collapse
Affiliation(s)
- Federico Campisano
- Science and Technology of Robotics in Medicine (STORM) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Simone Caló
- Science and Technology of Robotics in Medicine (STORM) Laboratory UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Andria A Remirez
- Medical Engineering and Discovery (MED) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - James H Chandler
- Science and Technology of Robotics in Medicine (STORM) Laboratory UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Keith L Obstein
- Science and Technology of Robotics in Medicine (STORM) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Webster
- Medical Engineering and Discovery (MED) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Pietro Valdastri
- Science and Technology of Robotics in Medicine (STORM) Laboratory UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Martin JW, Scaglioni B, Norton JC, Subramanian V, Arezzo A, Obstein KL, Valdastri P. Enabling the future of colonoscopy with intelligent and autonomous magnetic manipulation. NAT MACH INTELL 2020; 2:595-606. [PMID: 33089071 PMCID: PMC7571595 DOI: 10.1038/s42256-020-00231-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Early diagnosis of colorectal cancer significantly improves survival. However, over half of cases are diagnosed late due to demand exceeding the capacity for colonoscopy - the "gold standard" for screening. Colonoscopy is limited by the outdated design of conventional endoscopes, associated with high complexity of use, cost and pain. Magnetic endoscopes represent a promising alternative, overcoming drawbacks of pain and cost, but struggle to reach the translational stage as magnetic manipulation is complex and unintuitive. In this work, we use machine vision to develop intelligent and autonomous control of a magnetic endoscope, for the first time enabling non-expert users to effectively perform magnetic colonoscopy in-vivo. We combine the use of robotics, computer vision and advanced control to offer an intuitive and effective endoscopic system. Moreover, we define the characteristics required to achieve autonomy in robotic endoscopy. The paradigm described here can be adopted in a variety of applications where navigation in unstructured environments is required, such as catheters, pancreatic endoscopy, bronchoscopy, and gastroscopy. This work brings alternative endoscopic technologies closer to the translational stage, increasing availability of early-stage cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Arezzo
- Department of Surgical Science, University of Torino, Corso Dogliotti, Turin, Italy
| | - Keith L. Obstein
- STORM Lab USA, Vanderbilt University, Nashville, USA
- Vanderbilt University Medical Centre, Nashville, TN, USA
| | | |
Collapse
|
5
|
Barducci L, Pittiglio G, Norton JC, Obstein KL, Valdastri P. Adaptive Dynamic Control for Magnetically Actuated Medical Robots. IEEE Robot Autom Lett 2019; 4:3633-3640. [PMID: 31406915 PMCID: PMC6690374 DOI: 10.1109/lra.2019.2928761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the present work we discuss a novel dynamic control approach for magnetically actuated robots, by proposing an adaptive control technique, robust towards parametric uncertainties and unknown bounded disturbances. The former generally arise due to partial knowledge of the robots' dynamic parameters, such as inertial factors, the latter are the outcome of unpredictable interaction with unstructured environments. In order to show the application of the proposed approach, we consider controlling the Magnetic Flexible Endoscope (MFE) which is composed of a soft-tethered Internal Permanent Magnet (IPM), actuated with a single External Permanent Magnet (EPM). We provide with experimental analysis to show the possibility of levitating the MFE - one of the most difficult tasks with this platform - in case of partial knowledge of the IPM's dynamics and no knowledge of the tether's behaviour. Experiments in an acrylic tube show a reduction of contact of the 32% compared to non-levitating techniques and 1.75 times faster task completion with respect to previously proposed levitating techniques. More realistic experiments, performed in a colon phantom, show that levitating the capsule achieves faster and smoother exploration and that the minimum time for completing the task is attained by the proposed approach.
Collapse
Affiliation(s)
- Lavinia Barducci
- STORM Lab UK, Institute of Robotics, Autonomous Systems and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Giovanni Pittiglio
- STORM Lab UK, Institute of Robotics, Autonomous Systems and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Joseph C Norton
- STORM Lab UK, Institute of Robotics, Autonomous Systems and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Keith L Obstein
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA, and with the STORM Lab, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Pietro Valdastri
- STORM Lab UK, Institute of Robotics, Autonomous Systems and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Norton JC, Slawinski PR, Lay HS, Martin JW, Cox BF, Cummins G, Desmulliez MP, Clutton RE, Obstein KL, Cochran S, Valdastri P. Intelligent magnetic manipulation for gastrointestinal ultrasound. Sci Robot 2019; 4:eaav7725. [PMID: 31380501 PMCID: PMC6677276 DOI: 10.1126/scirobotics.aav7725] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diagnostic endoscopy in the gastrointestinal tract has remained largely unchanged for decades and is limited to the visualization of the tissue surface, the collection of biopsy samples for diagnoses, and minor interventions such as clipping or tissue removal. In this work, we present the autonomous servoing of a magnetic capsule robot for in-situ, subsurface diagnostics of microanatomy. We investigated and showed the feasibility of closed-loop magnetic control using digitized microultrasound (μUS) feedback; this is crucial for obtaining robust imaging in an unknown and unconstrained environment. We demonstrated the functionality of an autonomous servoing algorithm that uses μUS feedback, both on benchtop trials as well as in-vivo in a porcine model. We have validated this magnetic-μUS servoing in instances of autonomous linear probe motion and were able to locate markers in an agar phantom with 1.0 ± 0.9 mm position accuracy using a fusion of robot localization and μUS image information. This work demonstrates the feasibility of closed-loop robotic μUS imaging in the bowel without the need for either a rigid physical link between the transducer and extracorporeal tools or complex manual manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Keith L. Obstein
- STORM Lab USA, Vanderbilt University, Nashville, USA
- Vanderbilt University Medical Center, Nashville, USA
| | - Sandy Cochran
- University of Glasgow, School of Mechanical Engineering, Glasgow, UK
| | | |
Collapse
|
7
|
Slawinski PR, Simaan N, Taddese AZ, Obstein KL, Valdastri P. Sensitivity Ellipsoids for Force Control of Magnetic Robots with Localization Uncertainty. IEEE T ROBOT 2019; 35:1123-1135. [PMID: 31607833 DOI: 10.1109/tro.2019.2917817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The navigation of magnetic medical robots typically relies on localizing an actuated, intracorporeal, ferromagnetic body and back-computing a necessary field and gradient that would result in a desired wrench on the device. Uncertainty in this localization degrades the precision of force transmission. Reducing applied force uncertainty may enhance tasks such as in-vivo navigation of miniature robots, actuation of magnetically guided catheters, tissue palpation, as well as simply ensuring a bound on forces applied on sensitive tissue. In this paper, we analyzed the effects of localization noise on force uncertainty by using sensitivity ellipsoids of the magnetic force Jacobian and introduced an algorithm for uncertainty reduction. We validated the algorithm in both a simulation study and in a physical experiment. In simulation, we observed reductions in estimated force uncertainty by factors of up to 2.8 and 3.1 when using one and two actuating magnets, respectively. On a physical platform, we demonstrated a force uncertainty reduction by a factor of up to 2.5 as measured using an external sensor. Being the first consideration of force uncertainty resulting from noisy localization, this work provides a strategy for investigators to minimize uncertainty in magnetic force transmission.
Collapse
Affiliation(s)
- Piotr R Slawinski
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nabil Simaan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Addisu Z Taddese
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Keith L Obstein
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.,Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pietro Valdastri
- Institute of Robotics, Autonomous Systems and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Scaglioni B, Previtera L, Martin J, Norton J, Obstein KL, Valdastri P. Explicit Model Predictive Control of a Magnetic Flexible Endoscope. IEEE Robot Autom Lett 2019; 4:716-723. [PMID: 30931392 PMCID: PMC6435294 DOI: 10.1109/lra.2019.2893418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, explicit model predictive control is applied in conjunction with nonlinear optimisation to a magnetically actuated flexible endoscope for the first time. The approach is aimed at computing the motion of the external permanent magnet, given the desired forces and torques. The strategy described here takes advantage of the nonlinear nature of the magnetic actuation and explicitly considers the workspace boundaries, as well as the actuation constraints. Initially, a simplified dynamic model of the tethered capsule, based on the Euler-Lagrange equations is developed. Subsequently, the explicit model predictive control is described and a novel approach for the external magnet positioning, based on a single step, nonlinear optimisation routine, is proposed. Finally, the strategy is implemented on the experimental platform, where bench-top trials are performed on a realistic colon phantom, showing the effectiveness of the technique. The work presented here constitutes an initial exploration for model-based control techniques applied to magnetically manipulated payloads, the techniques described here may be applied to a wide range of devices, including flexible endoscopes and wireless capsules. To our knowledge, this is the first example of advanced closed loop control of magnetic capsules.
Collapse
Affiliation(s)
- Bruno Scaglioni
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| | | | - James Martin
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| | - Joseph Norton
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| | - Keith L Obstein
- Division of Gastroenterology, Vanderbilt University, Nashville TN, USA, keith.obstein[at]vumc.org
| | - Pietro Valdastri
- Storm Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK,{b.scaglioni,j.norton,p.valdastri}[at]leeds.ac.uk
| |
Collapse
|
9
|
Pittiglio G, Barducci L, Martin JW, Norton JC, Avizzano CA, Obstein KL, Valdastri P. Magnetic Levitation for Soft-Tethered Capsule Colonoscopy Actuated With a Single Permanent Magnet: A Dynamic Control Approach. IEEE Robot Autom Lett 2019; 4:1224-1231. [PMID: 31304240 DOI: 10.1109/lra.2019.2894907] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present letter investigates a novel control approach for magnetically driven soft-tethered capsules for colonoscopy-a potentially painless approach for colon inspection. The focus of this work is on a class of devices composed of a magnetic capsule endoscope actuated by a single external permanent magnet. Actuation is achieved by manipulating the external magnet with a serial manipulator, which in turn produces forces and torques on the internal magnetic capsule. We propose a control strategy which, counteracting gravity, achieves levitation of the capsule. This technique, based on a nonlinear backstepping approach, is able to limit contact with the colon walls, reducing friction, avoiding contact with internal folds, and facilitating the inspection of nonplanar cavities. The approach is validated on an experimental setup, which embodies a general scenario faced in colonoscopy. The experiments show that we can attain 19.5% of contact with the colon wall, compared to the almost 100% of previously proposed approaches. Moreover, we show that the control can be used to navigate the capsule through a more realistic environment-a colon phantom-with reasonable completion time.
Collapse
Affiliation(s)
- Giovanni Pittiglio
- STORM Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Lavinia Barducci
- STORM Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - James W Martin
- STORM Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Joseph C Norton
- STORM Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Carlo A Avizzano
- Perceptual Robotics Laboratory, Scuola Superiore SantAnna, Pisa 56100, Italy
| | - Keith L Obstein
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232 USA; STORM Lab, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Pietro Valdastri
- STORM Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
10
|
Taddese AZ, Slawinski PR, Pirotta M, De Momi E, Obstein KL, Valdastri P. Enhanced Real-Time Pose Estimation for Closed-Loop Robotic Manipulation of Magnetically Actuated Capsule Endoscopes. Int J Rob Res 2018; 37:890-911. [PMID: 30150847 PMCID: PMC6108552 DOI: 10.1177/0278364918779132] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pose estimation methods for robotically guided magnetic actuation of capsule endoscopes have recently enabled trajectory following and automation of repetitive endoscopic maneuvers. However, these methods face significant challenges in their path to clinical adoption including the presence of regions of magnetic field singularity, where the accuracy of the system degrades, and the need for accurate initialization of the capsule's pose. In particular, the singularity problem exists for any pose estimation method that utilizes a single source of magnetic field if the method does not rely on the motion of the magnet to obtain multiple measurements from different vantage points. We analyze the workspace of such pose estimation methods with the use of the point-dipole magnetic field model and show that singular regions exist in areas where the capsule is nominally located during magnetic actuation. Since the dipole model can approximate most magnetic field sources, the problem discussed herein pertains to a wider set of pose estimation techniques. We then propose a novel hybrid approach employing static and time-varying magnetic field sources and show that this system has no regions of singularity. The proposed system was experimentally validated for accuracy, workspace size, update rate and performance in regions of magnetic singularity. The system performed as well or better than prior pose estimation methods without requiring accurate initialization and was robust to magnetic singularity. Experimental demonstration of closed-loop control of a tethered magnetic device utilizing the developed pose estimation technique is provided to ascertain its suitability for robotically guided capsule endoscopy. Hence, advances in closed-loop control and intelligent automation of magnetically actuated capsule endoscopes can be further pursued toward clinical realization by employing this pose estimation system.
Collapse
Affiliation(s)
- Addisu Z. Taddese
- Science and Technology of Robotics in Medicine (STORM) Laboratory USA, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Piotr R. Slawinski
- Science and Technology of Robotics in Medicine (STORM) Laboratory USA, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Marco Pirotta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Keith L. Obstein
- Science and Technology of Robotics in Medicine (STORM) Laboratory USA, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pietro Valdastri
- Science and Technology of Robotics in Medicine (STORM) Laboratory UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
Zhang P, Li J, Hao Y, Bianchi F, Ciuti G, Arai T, Huang Q, Dario P. The role of computed tomography data in the design of a robotic magnetically-guided endoscopic platform. Adv Robot 2018. [DOI: 10.1080/01691864.2018.1451776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peisen Zhang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jing Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Yang Hao
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Federico Bianchi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Gastone Ciuti
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Tatsuo Arai
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- Global Alliance Laboratory, The University of Electro-Communications, Tokyo, Japan
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Paolo Dario
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
12
|
Slawinski PR, Taddese AZ, Musto KB, Obstein KL, Valdastri P. Autonomous Retroflexion of a Magnetic Flexible Endoscope. IEEE Robot Autom Lett 2017; 2:1352-1359. [PMID: 28289703 DOI: 10.1109/lra.2017.2668459] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retroflexion during colonoscopy is typically only practiced in the wider proximal and distal ends of the large intestine owing to the stiff nature of the colonoscope. This inability to examine the proximal side of the majority of colon folds contributes to today's suboptimal colorectal cancer detection rates. We have developed an algorithm for autonomous retroflexion of a flexible endoscope that is actuated magnetically from the tip. The magnetic wrench applied on the tip of the endoscope is optimized in real-time with data from pose detection to compute motions of the actuating magnet. This is the first example of a completely autonomous maneuver by a magnetic endoscope for exploration of the gastrointestinal tract. The proposed approach was validated in plastic tubes of various diameters with a success rate of 98.8% for separation distances up to 50 mm. Additionally, a set of trials was conducted in an excised porcine colon observing a success rate of 100% with a mean time of 19.7 s. In terms of clinical safety, the maximum stress that is applied on the colon wall with our methodology is an order of magnitude below what would damage tissue.
Collapse
Affiliation(s)
- Piotr R Slawinski
- The Science and Technology of Robotics in Medicine (STORM) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Addisu Z Taddese
- The Science and Technology of Robotics in Medicine (STORM) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kyle B Musto
- The Science and Technology of Robotics in Medicine (STORM) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Keith L Obstein
- The Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; The Science and Technology of Robotics in Medicine (STORM) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Pietro Valdastri
- The Institute of Robotics, Autonomous Systems and Sensing, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK; The Science and Technology of Robotics in Medicine (STORM) Laboratory, Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|