1
|
Stout J, Anderson RJ, Mahzarnia A, Han ZY, Beck K, Browndyke J, Johnson K, O'Brien RJ, Badea A. Mapping the impact of age and APOE risk factors for late onset Alzheimer's disease on long range brain connections through multiscale bundle analysis. Brain Struct Funct 2025; 230:45. [PMID: 40108015 DOI: 10.1007/s00429-025-02905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease currently has no cure and is usually detected too late for interventions to be effective. In this study we have focused on cognitively normal subjects to study the impact of risk factors on their long-range brain connections. To detect vulnerable connections, we devised a multiscale, hierarchical method for spatial clustering of the whole brain tractogram and examined the impact of age and APOE allelic variation on cognitive abilities and bundle properties including texture e.g., mean fractional anisotropy, variability, and geometric properties including streamline length, volume, shape, as well as asymmetry. We found that the third level subdivision in the bundle hierarchy provided the most sensitive ability to detect age and genotype differences associated with risk factors. Our results indicate that frontal bundles were a major age predictor, while the occipital cortex and cerebellar connections were important risk predictors that were heavily genotype dependent, and showed accelerated decline in fractional anisotropy, shape similarity, and increased asymmetry. Cognitive metrics related to olfactory memory were mapped to bundles, providing possible early markers of neurodegeneration. In addition, physiological metrics associated with cardiovascular disease risk were associated with changes in white matter tracts. Our novel method for a data driven analysis of sensitive changes in tractography may differentiate populations at risk for AD and isolate specific vulnerable networks.
Collapse
Affiliation(s)
- Jacques Stout
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J Anderson
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zay Yar Han
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kate Beck
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kim Johnson
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard J O'Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alexandra Badea
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Stout J, Anderson RJ, Mahzarnia A, Han Z, Beck K, Browndyke J, Johnson K, O’Brien RJ, Badea A. Mapping the impact of age and APOE risk factors for late onset Alzheimer's disease on long range brain connections through multiscale bundle analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599407. [PMID: 38979335 PMCID: PMC11230216 DOI: 10.1101/2024.06.24.599407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease currently has no cure and is usually detected too late for interventions to be effective. In this study we have focused on cognitively normal subjects to study the impact of risk factors on their long-range brain connections. To detect vulnerable connections, we devised a multiscale, hierarchical method for spatial clustering of the whole brain tractogram and examined the impact of age and APOE allelic variation on cognitive abilities and bundle properties including texture e.g., mean fractional anisotropy, variability, and geometric properties including streamline length, volume, and shape, as well as asymmetry. We found that the third level subdivision in the bundle hierarchy provided the most sensitive ability to detect age and genotype differences associated with risk factors. Our results indicate that frontal bundles were a major age predictor, while the occipital cortex and cerebellar connections were important risk predictors that were heavily genotype dependent, and showed accelerated decline in fractional anisotropy, shape similarity, and increased asymmetry. Cognitive metrics related to olfactory memory were mapped to bundles, providing possible early markers of neurodegeneration. In addition, physiological metrics such as diastolic blood pressure were associated with changes in white matter tracts. Our novel method for a data driven analysis of sensitive changes in tractography may differentiate populations at risk for AD and isolate specific vulnerable networks.
Collapse
Affiliation(s)
- Jacques Stout
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J Anderson
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Zay Han
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Kate Beck
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Jeffrey Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Kim Johnson
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Richard J O’Brien
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Alexandra Badea
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| |
Collapse
|
3
|
Alshehri A, Koussis N, Al-Iedani O, Khormi I, Lea R, Ramadan S, Lechner-Scott J. Improvement of the thalamocortical white matter network in people with stable treated relapsing-remitting multiple sclerosis over time. NMR IN BIOMEDICINE 2024; 37:e5119. [PMID: 38383137 DOI: 10.1002/nbm.5119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/28/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Advanced imaging techniques (tractography) enable the mapping of white matter (WM) pathways and the understanding of brain connectivity patterns. We combined tractography with a network-based approach to examine WM microstructure on a network level in people with relapsing-remitting multiple sclerosis (pw-RRMS) and healthy controls (HCs) over 2 years. Seventy-six pw-RRMS matched with 43 HCs underwent clinical assessments and 3T MRI scans at baseline (BL) and 2-year follow-up (2-YFU). Probabilistic tractography was performed, accounting for the effect of lesions, producing connectomes of 25 million streamlines. Network differences in fibre density across pw-RRMS and HCs at BL and 2-YFU were quantified using network-based statistics (NBS). Longitudinal network differences in fibre density were quantified using NBS in pw-RRMS, and were tested for correlations with disability, cognition and fatigue scores. Widespread network reductions in fibre density were found in pw-RRMS compared with HCs at BL in cortical regions, with more reductions detected at 2-YFU. Pw-RRMS had reduced fibre density at BL in the thalamocortical network compared to 2-YFU. This effect appeared after correction for age, was robust across different thresholds, and did not correlate with lesion volume or disease duration. Pw-RRMS demonstrated a robust and long-distance improvement in the thalamocortical WM network, regardless of age, disease burden, duration or therapy, suggesting a potential locus of neuroplasticity in MS. This network's role over the disease's lifespan and its potential implications in prognosis and treatment warrants further investigation.
Collapse
Affiliation(s)
- Abdulaziz Alshehri
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Radiology, King Fahd University Hospital, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nikitas Koussis
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Psychological Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Oun Al-Iedani
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ibrahim Khormi
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- College of Applied Medical Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Rodney Lea
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, Tripathy SJ. Genetic architecture of the structural connectome. Nat Commun 2024; 15:1962. [PMID: 38438384 PMCID: PMC10912129 DOI: 10.1038/s41467-024-46023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Salim Mansour
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabel Kerrebijn
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Medaglia JD, Erickson BA, Pustina D, Kelkar AS, DeMarco AT, Dickens JV, Turkeltaub PE. Simulated Attack Reveals How Lesions Affect Network Properties in Poststroke Aphasia. J Neurosci 2022; 42:4913-4926. [PMID: 35545436 PMCID: PMC9188386 DOI: 10.1523/jneurosci.1163-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aphasia is a prevalent cognitive syndrome caused by stroke. The rarity of premorbid imaging and heterogeneity of lesion obscures the links between the local effects of the lesion, global anatomic network organization, and aphasia symptoms. We applied a simulated attack approach in humans to examine the effects of 39 stroke lesions (16 females) on anatomic network topology by simulating their effects in a control sample of 36 healthy (15 females) brain networks. We focused on measures of global network organization thought to support overall brain function and resilience in the whole brain and within the left hemisphere. After removing lesion volume from the network topology measures and behavioral scores [the Western Aphasia Battery Aphasia Quotient (WAB-AQ), four behavioral factor scores obtained from a neuropsychological battery, and a factor sum], we compared the behavioral variance accounted for by simulated poststroke connectomes to that observed in the randomly permuted data. Global measures of anatomic network topology in the whole brain and left hemisphere accounted for 10% variance or more of the WAB-AQ and the lexical factor score beyond lesion volume and null permutations. Streamline networks provided more reliable point estimates than FA networks. Edge weights and network efficiency were weighted most highly in predicting the WAB-AQ for FA networks. Overall, our results suggest that global network measures provide modest statistical value beyond lesion volume when predicting overall aphasia severity, but less value in predicting specific behaviors. Variability in estimates could be induced by premorbid ability, deafferentation and diaschisis, and neuroplasticity following stroke.SIGNIFICANCE STATEMENT Poststroke, the remaining neuroanatomy maintains cognition and supports recovery. However, studies often use small, cross-sectional samples that cannot fully model the interactions between lesions and other variables that affect networks in stroke. Alternate methods are required to account for these effects. "Simulated attack" models are computational approaches that apply virtual damage to the brain and measure their putative consequences. Using a simulated attack model, we estimated how simulated damage to anatomic networks could account for language performance. Overall, our results reveal that global network measures can provide modest statistical value predicting overall aphasia severity, but less value in predicting specific behaviors. These findings suggest that more theoretically precise network models could be necessary to robustly predict individual outcomes in aphasia.
Collapse
Affiliation(s)
- John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania 19104
- Department of Neurology, Drexel University, Philadelphia, Pennsylvania 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brian A Erickson
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Dorian Pustina
- Cure Huntingdon's Disease Initiative (CHDI) Foundation, Princeton, New Jersey 08540
| | - Apoorva S Kelkar
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University, Washington, DC 20007
| | - J Vivian Dickens
- Department of Neurology, Georgetown University, Washington, DC 20007
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University, Washington, DC 20007
- MedStar National Rehabilitation Hospital, Washington, DC 20007
| |
Collapse
|
6
|
Dong N, Fu C, Li R, Zhang W, Liu M, Xiao W, Taylor HM, Nicholas PJ, Tanglay O, Young IM, Osipowicz KZ, Sughrue ME, Doyen SP, Li Y. Machine Learning Decomposition of the Anatomy of Neuropsychological Deficit in Alzheimer’s Disease and Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:854733. [PMID: 35592700 PMCID: PMC9110794 DOI: 10.3389/fnagi.2022.854733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Alzheimer’s Disease (AD) is a progressive condition characterized by cognitive decline. AD is often preceded by mild cognitive impairment (MCI), though the diagnosis of both conditions remains a challenge. Early diagnosis of AD, and prediction of MCI progression require data-driven approaches to improve patient selection for treatment. We used a machine learning tool to predict performance in neuropsychological tests in AD and MCI based on functional connectivity using a whole-brain connectome, in an attempt to identify network substrates of cognitive deficits in AD. Methods Neuropsychological tests, baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI, and diffusion weighted imaging scans were obtained from 149 MCI, and 85 AD patients; and 140 cognitively unimpaired geriatric participants. A novel machine learning tool, Hollow Tree Super (HoTS) was utilized to extract feature importance from each machine learning model to identify brain regions that were associated with deficit and absence of deficit for 11 neuropsychological tests. Results 11 models attained an area under the receiver operating curve (AUC-ROC) greater than 0.65, while five models had an AUC-ROC ≥ 0.7. 20 parcels of the Human Connectome Project Multimodal Parcelation Atlas matched to poor performance in at least two neuropsychological tests, while 14 parcels were associated with good performance in at least two tests. At a network level, most parcels predictive of both presence and absence of deficit were affiliated with the Central Executive Network, Default Mode Network, and the Sensorimotor Networks. Segregating predictors by the cognitive domain associated with each test revealed areas of coherent overlap between cognitive domains, with the parcels providing possible markers to screen for cognitive impairment. Conclusion Approaches such as ours which incorporate whole-brain functional connectivity and harness feature importance in machine learning models may aid in identifying diagnostic and therapeutic targets in AD.
Collapse
Affiliation(s)
- Ningxin Dong
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changyong Fu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renren Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weixin Xiao
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, NSW, Australia
| | | | | | - Michael E. Sughrue
- Omniscient Neurotechnology, Sydney, NSW, Australia
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi’an, China
| | | | - Yunxia Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Yunxia Li,
| |
Collapse
|
7
|
Bigham B, Zamanpour SA, Zare H. Features of the superficial white matter as biomarkers for the detection of Alzheimer's disease and mild cognitive impairment: A diffusion tensor imaging study. Heliyon 2022; 8:e08725. [PMID: 35071808 PMCID: PMC8761704 DOI: 10.1016/j.heliyon.2022.e08725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/02/2021] [Accepted: 01/05/2022] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND With the development of medical imaging and processing tools, accurate diagnosis of diseases has been made possible by intelligent systems. Owing to the remarkable ability of support vector machines (SVMs) for diseases diagnosis, extensive research has been conducted using the SVM algorithm for the classification of Alzheimer's disease (AD) and mild cognitive impairment (MCI). OBJECTIVES In this study, we applied an automated method to classify patients with AD and MCI and healthy control (HC) subjects based on the diffusion tensor imaging (DTI) features in the superficial white matter (SWM). PARTICIPANTS For this purpose, DTI data were downloaded from the Alzheimer's Disease Neuroimaging Initiative (ADNI). This method employed DTI data from 72 subjects: 24 subjects as HC, 24 subjects with MCI, and 24 subjects with AD. MEASURE ments: DTI processing was performed using DSI Studio software and all machine learning analyses were performed using MATLAB software. RESULTS The linear kernel of SVM was the best classifier, with an accuracy of 95.8% between the AD and HC groups, followed by the quadratic kernel of SVM with an accuracy of 83.3% between the MCI and HC groups and the Gaussian kernel of SVM with an accuracy of 83.3% between the AD and MCI groups. CONCLUSIONS Given the importance of diagnosing AD and MCI as well as the role of superficial white matter in the diagnosis of neurodegenerative diseases, in this study, the features of different DTI methods of the SWM are discussed, which could be a useful tool to assist in the diagnosis of AD and MCI.
Collapse
Affiliation(s)
- Bahare Bigham
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Zamanpour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Zare
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
8
|
Choi SH, Jeong G, Hwang YE, Kim YB, Lee H, Cho ZH. Track-Density Ratio Mapping With Fiber Types in the Cerebral Cortex Using Diffusion-Weighted MRI. Front Neuroanat 2021; 15:715571. [PMID: 34539354 PMCID: PMC8441551 DOI: 10.3389/fnana.2021.715571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
The nerve fibers are divided into three categories: projection, commissural, and association fibers. This study demonstrated a novel cortical mapping method based on these three fiber categories using MR tractography data. The MR fiber-track data were extracted using the diffusion-weighted 3T-MRI data from 19 individuals’ Human Connectome Project dataset. Anatomical MR images in each dataset were parcellated using FreeSurfer software and Brainnetome atlas. The 5 million extracted tracks per subject by MRtrix software were classified based on the basic cortical structure (cortical area in the left and right hemisphere, subcortical area), after the tracks validation procedure. The number of terminals for each categorized track per unit-sized cortical area (1 mm3) was defined as the track-density in that cortical area. Track-density ratio mapping with fiber types was achieved by mapping the density-dependent color intensity for each categorized tracks with a different primary color. The mapping results showed a highly localized, unique density ratio map determined by fiber types. Furthermore, the quantitative group data analysis based on the parcellation information revealed that the majority of nerve fibers in the brain are association fibers, particularly in temporal, inferior parietal, and occipital lobes, while the projection and commissural fibers were mainly located in the superior part of the brain. Hemispheric asymmetries in the fiber density were also observed, such as long association fiber in the Broca’s and Wernicke’s areas. We believe this new dimensional brain mapping information allows us to further understand brain anatomy, function.
Collapse
Affiliation(s)
- Sang-Han Choi
- Neuroscience Convergence Center, Korea University, Seoul, South Korea
| | | | - Young-Eun Hwang
- Neuroscience Convergence Center, Korea University, Seoul, South Korea
| | - Yong-Bo Kim
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Haigun Lee
- Green Manufacturing Research Center, Korea University, Seoul, South Korea
| | - Zang-Hee Cho
- Neuroscience Convergence Center, Korea University, Seoul, South Korea.,AICT, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Elsheikh SSM, Chimusa ER, Mulder NJ, Crimi A. Genome-Wide Association Study of Brain Connectivity Changes for Alzheimer's Disease. Sci Rep 2020; 10:1433. [PMID: 31996736 PMCID: PMC6989662 DOI: 10.1038/s41598-020-58291-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023] Open
Abstract
Variations in the human genome have been found to be an essential factor that affects susceptibility to Alzheimer's disease. Genome-wide association studies (GWAS) have identified genetic loci that significantly contribute to the risk of Alzheimers. The availability of genetic data, coupled with brain imaging technologies have opened the door for further discoveries, by using data integration methodologies and new study designs. Although methods have been proposed for integrating image characteristics and genetic information for studying Alzheimers, the measurement of disease is often taken at a single time point, therefore, not allowing the disease progression to be taken into consideration. In longitudinal settings, we analyzed neuroimaging and single nucleotide polymorphism datasets obtained from the Alzheimer's Disease Neuroimaging Initiative for three clinical stages of the disease, including healthy control, early mild cognitive impairment and Alzheimer's disease subjects. We conducted a GWAS regressing the absolute change of global connectivity metrics on the genetic variants, and used the GWAS summary statistics to compute the gene and pathway scores. We observed significant associations between the change in structural brain connectivity defined by tractography and genes, which have previously been reported to biologically manipulate the risk and progression of certain neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Samar S M Elsheikh
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Nicola J Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Alessandro Crimi
- University Hospital of Zürich, Zürich, 8091, Switzerland
- African Institute for Mathematical Sciences, Biriwa, Ghana
| |
Collapse
|
10
|
|
11
|
Zavaliangos-Petropulu A, Nir TM, Thomopoulos SI, Reid RI, Bernstein MA, Borowski B, Jack CR, Weiner MW, Jahanshad N, Thompson PM. Diffusion MRI Indices and Their Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3. Front Neuroinform 2019; 13:2. [PMID: 30837858 PMCID: PMC6390411 DOI: 10.3389/fninf.2019.00002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/21/2019] [Indexed: 12/14/2022] Open
Abstract
Brain imaging with diffusion-weighted MRI (dMRI) is sensitive to microstructural white matter (WM) changes associated with brain aging and neurodegeneration. In its third phase, the Alzheimer's Disease Neuroimaging Initiative (ADNI3) is collecting data across multiple sites and scanners using different dMRI acquisition protocols, to better understand disease effects. It is vital to understand when data can be pooled across scanners, and how the choice of dMRI protocol affects the sensitivity of extracted measures to differences in clinical impairment. Here, we analyzed ADNI3 data from 317 participants (mean age: 75.4 ± 7.9 years; 143 men/174 women), who were each scanned at one of 47 sites with one of six dMRI protocols using scanners from three different manufacturers. We computed four standard diffusion tensor imaging (DTI) indices including fractional anisotropy (FADTI) and mean, radial, and axial diffusivity, and one FA index based on the tensor distribution function (FATDF), in 24 bilaterally averaged WM regions of interest. We found that protocol differences significantly affected dMRI indices, in particular FADTI. We ranked the diffusion indices for their strength of association with four clinical assessments. In addition to diagnosis, we evaluated cognitive impairment as indexed by three commonly used screening tools for detecting dementia and AD: the AD Assessment Scale (ADAS-cog), the Mini-Mental State Examination (MMSE), and the Clinical Dementia Rating scale sum-of-boxes (CDR-sob). Using a nested random-effects regression model to account for protocol and site, we found that across all dMRI indices and clinical measures, the hippocampal-cingulum and fornix (crus)/stria terminalis regions most consistently showed strong associations with clinical impairment. Overall, the greatest effect sizes were detected in the hippocampal-cingulum (CGH) and uncinate fasciculus (UNC) for associations between axial or mean diffusivity and CDR-sob. FATDF detected robust widespread associations with clinical measures, while FADTI was the weakest of the five indices for detecting associations. Ultimately, we were able to successfully pool dMRI data from multiple acquisition protocols from ADNI3 and detect consistent and robust associations with clinical impairment and age.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M Nir
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic and Foundation, Rochester, MN, United States
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Bret Borowski
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Michael W Weiner
- Department of Radiology, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| |
Collapse
|
12
|
Jack CR, Barnes J, Bernstein MA, Borowski BJ, Brewer J, Clegg S, Dale AM, Carmichael O, Ching C, DeCarli C, Desikan RS, Fennema-Notestine C, Fjell AM, Fletcher E, Fox NC, Gunter J, Gutman BA, Holland D, Hua X, Insel P, Kantarci K, Killiany RJ, Krueger G, Leung KK, Mackin S, Maillard P, Malone IB, Mattsson N, McEvoy L, Modat M, Mueller S, Nosheny R, Ourselin S, Schuff N, Senjem ML, Simonson A, Thompson PM, Rettmann D, Vemuri P, Walhovd K, Zhao Y, Zuk S, Weiner M. Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimers Dement 2016; 11:740-56. [PMID: 26194310 DOI: 10.1016/j.jalz.2015.05.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders. METHODS We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3. RESULTS Contributions of the MRI core include creating standardized acquisition protocols and quality control methods; examining the effect of technical features of image acquisition and analysis on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in multicenter clinical trials. DISCUSSION Over the past decade the MRI core of ADNI has fulfilled its mandate of improving methods for clinical trials in AD and will continue to do so in the future.
Collapse
Affiliation(s)
| | - Josephine Barnes
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | | | | | - James Brewer
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Shona Clegg
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Anders M Dale
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Owen Carmichael
- Department of Neurology, University of California at Davis, Davis, CA, USA
| | - Christopher Ching
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Rahul S Desikan
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA
| | - Christine Fennema-Notestine
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Anders M Fjell
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Evan Fletcher
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Jeff Gunter
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Boris A Gutman
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Dominic Holland
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Xue Hua
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Philip Insel
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ron J Killiany
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Kelvin K Leung
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Scott Mackin
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Pauline Maillard
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Ian B Malone
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Linda McEvoy
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA
| | - Marc Modat
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Susanne Mueller
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | - Rachel Nosheny
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | - Sebastien Ourselin
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Norbert Schuff
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Alix Simonson
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Paul M Thompson
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Dan Rettmann
- MR Applications and Workflow, GE Healthcare, Rochester, MN, USA
| | | | | | | | - Samantha Zuk
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Weiner
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA; Department of Medicine, University of California at San Francisco, San Francisco, CA, USA; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Soman S, Prasad G, Hitchner E, Massaband P, Moseley ME, Zhou W, Rosen AC. Brain structural connectivity distinguishes patients at risk for cognitive decline after carotid interventions. Hum Brain Mapp 2016; 37:2185-94. [PMID: 27028955 DOI: 10.1002/hbm.23166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/12/2022] Open
Abstract
While brain connectivity analyses have been demonstrated to identify ill patients for a number of diseases, their ability to predict cognitive impairment after brain injury is not well established. Traditional post brain injury models, such as stroke, are limited for this evaluation because pre-injury brain connectivity patterns are infrequently available. Patients with severe carotid stenosis, in contrast, often undergo non-emergent revascularization surgery, allowing the collection of pre and post-operative imaging, may experience brain insult due to perioperative thrombotic/embolic infarcts or hypoperfusion, and can suffer post-operative cognitive decline. We hypothesized that a distributed function such as memory would be more resilient in patients with brains demonstrating higher degrees of modularity. To test this hypothesis, we analyzed preoperative structural connectivity graphs (using T1 and DWI MRI) for 34 patients that underwent carotid intervention, and evaluated differences in graph metrics using the Brain Connectivity Toolbox. We found that patients with lower binary component number, binary community number and weighted community number prior to surgery were at greater risk for developing cognitive decline. These findings highlight the promise of brain connectivity analyses to predict cognitive decline following brain injury and serve as a clinical decision support tool. Hum Brain Mapp 37:2185-2194, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Salil Soman
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Massachusetts
| | - Gautam Prasad
- Laboratory of Neuro Imaging (LONI), Imaging Genetics Center (IGC), Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Elizabeth Hitchner
- Department of Vascular Surgery, Stanford University/Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Payam Massaband
- Department of Radiology, Stanford University/Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Michael E Moseley
- Department of Radiology, Stanford University/Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Wei Zhou
- Department of Vascular Surgery, Stanford University/Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Allyson C Rosen
- Department of Psychiatry and Behavioral Sciences, Stanford University/Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
14
|
Daianu M, Jahanshad N, Nir TM, Jack CR, Weiner MW, Bernstein MA, Thompson PM. Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network. Hum Brain Mapp 2015; 36:3087-103. [PMID: 26037224 PMCID: PMC4504816 DOI: 10.1002/hbm.22830] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/04/2015] [Accepted: 04/21/2015] [Indexed: 11/11/2022] Open
Abstract
Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative-50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the "rich club" - a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length, and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline.
Collapse
Affiliation(s)
- Madelaine Daianu
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, California
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, California
| | - Talia M Nir
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, California
| | | | - Michael W Weiner
- Department of Radiology, Medicine, and Psychiatry, University of California San Francisco, California
- Department of Veterans Affairs Medical Center, San Francisco, California
| | | | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, California
- Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics, and Ophthalmology, University of Southern California, Los Angeles, California
| |
Collapse
|
15
|
Nir TM, Jahanshad N, Toga AW, Bernstein MA, Jack CR, Weiner MW, Thompson PM. Connectivity network measures predict volumetric atrophy in mild cognitive impairment. Neurobiol Aging 2015; 36 Suppl 1:S113-20. [PMID: 25444606 PMCID: PMC4276308 DOI: 10.1016/j.neurobiolaging.2014.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 01/13/2014] [Accepted: 04/17/2014] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is characterized by cortical atrophy and disrupted anatomic connectivity, and leads to abnormal interactions between neural systems. Diffusion-weighted imaging (DWI) and graph theory can be used to evaluate major brain networks and detect signs of a breakdown in network connectivity. In a longitudinal study using both DWI and standard magnetic resonance imaging (MRI), we assessed baseline white-matter connectivity patterns in 30 subjects with mild cognitive impairment (MCI, mean age 71.8 ± 7.5 years, 18 males and 12 females) from the Alzheimer's Disease Neuroimaging Initiative. Using both standard MRI-based cortical parcellations and whole-brain tractography, we computed baseline connectivity maps from which we calculated global "small-world" architecture measures, including mean clustering coefficient and characteristic path length. We evaluated whether these baseline network measures predicted future volumetric brain atrophy in MCI subjects, who are at risk for developing AD, as determined by 3-dimensional Jacobian "expansion factor maps" between baseline and 6-month follow-up anatomic scans. This study suggests that DWI-based network measures may be a novel predictor of AD progression.
Collapse
Affiliation(s)
- Talia M Nir
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA; Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Arthur W Toga
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Michael W Weiner
- Department of Radiology and Biomedical Imaging, University of California-San Francisco School of Medicine, San Francisco, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA; Department of Neurology, University of Southern California, Los Angeles, CA, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA, USA; Department of Radiology, University of Southern California, Los Angeles, CA, USA; Department of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Pediatrics, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psychiatry 2015; 6:21. [PMID: 25762941 PMCID: PMC4332161 DOI: 10.3389/fpsyt.2015.00021] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/31/2015] [Indexed: 01/10/2023] Open
Abstract
Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.
Collapse
Affiliation(s)
- Matthew D Sacchet
- Neurosciences Program, Stanford University , Stanford, CA , USA ; Department of Psychology, Stanford University , Stanford, CA , USA
| | - Gautam Prasad
- Department of Psychology, Stanford University , Stanford, CA , USA ; Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California , Los Angeles, CA , USA
| | | | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of the University of Southern California , Los Angeles, CA , USA
| | - Ian H Gotlib
- Neurosciences Program, Stanford University , Stanford, CA , USA ; Department of Psychology, Stanford University , Stanford, CA , USA
| |
Collapse
|
17
|
Jahanshad N, Nir TM, Toga AW, Jack CR, Bernstein MA, Weiner MW, Thompson PM. Seemingly unrelated regression empowers detection of network failure in dementia. Neurobiol Aging 2015; 36 Suppl 1:S103-12. [PMID: 25257986 PMCID: PMC4276318 DOI: 10.1016/j.neurobiolaging.2014.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/19/2013] [Accepted: 02/27/2014] [Indexed: 10/24/2022]
Abstract
Brain connectivity is progressively disrupted in Alzheimer's disease (AD). Here, we used a seemingly unrelated regression (SUR) model to enhance the power to identify structural connections related to cognitive scores. We simultaneously solved regression equations with different predictors and used correlated errors among the equations to boost power for associations with brain networks. Connectivity maps were computed to represent the brain's fiber networks from diffusion-weighted magnetic resonance imaging scans of 200 subjects from the Alzheimer's Disease Neuroimaging Initiative. We first identified a pattern of brain connections related to clinical decline using standard regressions powered by this large sample size. As AD studies with a large number of diffusion tensor imaging scans are rare, it is important to detect effects in smaller samples using simultaneous regression modeling like SUR. Diagnosis of mild cognitive impairment or AD is well known to be associated with ApoE genotype and educational level. In a subsample with no apparent associations using the general linear model, power was boosted with our SUR model-combining genotype, educational level, and clinical diagnosis.
Collapse
Affiliation(s)
- Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA, USA
| | - Talia M Nir
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Arthur W Toga
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | | | - Matt A Bernstein
- Department of Radiology, University of California San Francisco, CA, USA
| | - Michael W Weiner
- Department of Radiology, University of California San Francisco, CA, USA; Department of Medicine, University of California San Francisco, CA, USA; Department of Psychiatry, University of California San Francisco, CA, USA; Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA; Department of Neurology, University of Southern California, Los Angeles, CA, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA, USA; Department of Radiology, University of Southern California, Los Angeles, CA, USA; Department of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Pediatrics, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Nir TM, Villalon-Reina JE, Prasad G, Jahanshad N, Joshi SH, Toga AW, Bernstein MA, Jack CR, Weiner MW, Thompson PM. Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease. Neurobiol Aging 2015; 36 Suppl 1:S132-40. [PMID: 25444597 PMCID: PMC4283487 DOI: 10.1016/j.neurobiolaging.2014.05.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 10/24/2022]
Abstract
Characterizing brain changes in Alzheimer's disease (AD) is important for patient prognosis and for assessing brain deterioration in clinical trials. In this diffusion weighted imaging study, we used a new fiber-tract modeling method to investigate white matter integrity in 50 elderly controls (CTL), 113 people with mild cognitive impairment, and 37 AD patients. After clustering tractography using a region-of-interest atlas, we used a shortest path graph search through each bundle's fiber density map to derive maximum density paths (MDPs), which we registered across subjects. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) along all MDPs and found significant MD and FA differences between AD patients and CTL subjects, as well as MD differences between CTL and late mild cognitive impairment subjects. MD and FA were also associated with widely used clinical scores. As an MDP is a compact low-dimensional representation of white matter organization, we tested the utility of diffusion tensor imaging measures along these MDPs as features for support vector machine based classification of AD.
Collapse
Affiliation(s)
- Talia M Nir
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Gautam Prasad
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Shantanu H Joshi
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Arthur W Toga
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | - Michael W Weiner
- Department of Radiology and Biomedical Imaging, UCSF School of Medicine, San Francisco, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Department of Neurology, University of Southern California, Los Angeles, CA, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA, USA; Department of Radiology, University of Southern California, Los Angeles, CA, USA; Department of Engineering, University of Southern California, Los Angeles, CA, USA; Department of Pediatrics, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Prasad G, Joshi SH, Nir TM, Toga AW, Thompson PM. Brain connectivity and novel network measures for Alzheimer's disease classification. Neurobiol Aging 2015; 36 Suppl 1:S121-31. [PMID: 25264345 PMCID: PMC4276322 DOI: 10.1016/j.neurobiolaging.2014.04.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 11/19/2022]
Abstract
We compare a variety of different anatomic connectivity measures, including several novel ones, that may help in distinguishing Alzheimer's disease (AD) patients from controls. We studied diffusion-weighted magnetic resonance imaging from 200 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative. We first evaluated measures derived from connectivity matrices based on whole-brain tractography; next, we studied additional network measures based on a novel flow-based measure of brain connectivity, computed on a dense 3-dimensional lattice. Based on these 2 kinds of connectivity matrices, we computed a variety of network measures. We evaluated the measures' ability to discriminate disease with a repeated, stratified 10-fold cross-validated classifier, using support vector machines, a supervised learning algorithm. We tested the relative importance of different combinations of features based on the accuracy, sensitivity, specificity, and feature ranking of the classification of 200 people into normal healthy controls and people with early or late mild cognitive impairment or AD.
Collapse
Affiliation(s)
- Gautam Prasad
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Shantanu H Joshi
- Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Talia M Nir
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Sacchet MD, Prasad G, Foland-Ross LC, Joshi SH, Hamilton JP, Thompson PM, Gotlib IH. Structural abnormality of the corticospinal tract in major depressive disorder. BIOLOGY OF MOOD & ANXIETY DISORDERS 2014; 4:8. [PMID: 25295159 PMCID: PMC4187017 DOI: 10.1186/2045-5380-4-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/26/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Scientists are beginning to document abnormalities in white matter connectivity in major depressive disorder (MDD). Recent developments in diffusion-weighted image analyses, including tractography clustering methods, may yield improved characterization of these white matter abnormalities in MDD. In this study, we acquired diffusion-weighted imaging data from MDD participants and matched healthy controls. We analyzed these data using two tractography clustering methods: automated fiber quantification (AFQ) and the maximum density path (MDP) procedure. We used AFQ to compare fractional anisotropy (FA; an index of water diffusion) in these two groups across major white matter tracts. Subsequently, we used the MDP procedure to compare FA differences in fiber paths related to the abnormalities in major fiber tracts that were identified using AFQ. RESULTS FA was higher in the bilateral corticospinal tracts (CSTs) in MDD (p's < 0.002). Secondary analyses using the MDP procedure detected primarily increases in FA in the CST-related fiber paths of the bilateral posterior limbs of the internal capsule, right superior corona radiata, and the left external capsule. CONCLUSIONS This is the first study to implicate the CST and several related fiber pathways in MDD. These findings suggest important new hypotheses regarding the role of CST abnormalities in MDD, including in relation to explicating CST-related abnormalities to depressive symptoms and RDoC domains and constructs.
Collapse
Affiliation(s)
- Matthew D Sacchet
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Jordan Hall, Building 01-420, 450 Serra Mall, Stanford, CA 94305, USA
| | - Gautam Prasad
- Department of Psychology, Stanford University, Jordan Hall, Building 01-420, 450 Serra Mall, Stanford, CA 94305, USA
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lara C Foland-Ross
- Department of Psychology, Stanford University, Jordan Hall, Building 01-420, 450 Serra Mall, Stanford, CA 94305, USA
| | - Shantanu H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Ian H Gotlib
- Neurosciences Program, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Jordan Hall, Building 01-420, 450 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Prasad G, Joshi SH, Thompson PM. OPTIMIZING BRAIN CONNECTIVITY NETWORKS FOR DISEASE CLASSIFICATION USING EPIC. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2014; 2014:834-837. [PMID: 25405000 PMCID: PMC4232940 DOI: 10.1109/isbi.2014.6868000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We propose a method to adaptively select an optimal cortical segmentation for brain connectivity analysis that maximizes feature-based disease classification performance. In standard structural connectivity analysis, the cortex is typically subdivided (parcellated) into N anatomical regions. White matter fiber pathways from tractography are used to compute an N × N matrix, which represents the pairwise connectivity between those regions. We optimize this representation by sampling over the space of possible region combinations and represent each configuration as a set partition of the N anatomical regions. Each partition is assigned a score using accuracy from a support vector machine (SVM) classifier of connectivity matrices in a group of patients and controls. We then define a high-dimensional optimization problem using simulated annealing to identify an optimal partition for maximum classification accuracy. We evaluate the results separately on test data using cross-validation. Specifically, we demonstrate results on the ADNI-2 dataset, where we optimally parcellate the cortex to yield an 85% classification accuracy using connectivity information alone. We refer to our method as evolving partitions to improve connectomics (EPIC).
Collapse
Affiliation(s)
- Gautam Prasad
- Imaging Genetics Center, Inst. for Neuroimaging and Informatics, Keck Sch. of Med. of USC, Los Angeles, CA, USA
| | - Shantanu H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Inst. for Neuroimaging and Informatics, Keck Sch. of Med. of USC, Los Angeles, CA, USA
| |
Collapse
|
22
|
Prasad G, Joshi SH, Jahanshad N, Villalon-Reina J, Aganj I, Lenglet C, Sapiro G, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Toga AW, Thompson PM. Automatic clustering and population analysis of white matter tracts using maximum density paths. Neuroimage 2014; 97:284-95. [PMID: 24747738 DOI: 10.1016/j.neuroimage.2014.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022] Open
Abstract
We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum density path; MDP); and registration of these paths together using geodesic curve matching to find local correspondences across a population. We demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals important parts of the white matter structure and considerably reduces the dimensionality over comparable fiber matching approaches.
Collapse
Affiliation(s)
- Gautam Prasad
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Shantanu H Joshi
- Department of Neurology, University of California Los Angeles, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Julio Villalon-Reina
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA
| | - Iman Aganj
- Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Guillermo Sapiro
- Dept. of Electrical and Computer Engineering, Computer Science, Duke University, NC, USA; Dept. of Biomedical Engineering, Duke University, NC, USA
| | - Katie L McMahon
- Center for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | | | - Margaret J Wright
- School of Psychology, University of Queensland, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Arthur W Toga
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Dept. of Neurology, Psychiatry, Engineering, Radiology, University of Southern California, Los Angeles, CA, USA; Dept. of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Laboratory of Neuro Imaging, Institute for Neuroimaging & Informatics, University of Southern California, Los Angeles, CA, USA; Department of Neurology, University of California Los Angeles, CA, USA; Dept. of Neurology, Psychiatry, Engineering, Radiology, University of Southern California, Los Angeles, CA, USA; Dept. of Ophthalmology, University of Southern California, Los Angeles, CA, USA; Department of Pediatrics, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Sacchet MD, Prasad G, Foland-Ross LC, Joshi SH, Hamilton JP, Thompson PM, Gotlib IH. CHARACTERIZING WHITE MATTER CONNECTIVITY IN MAJOR DEPRESSIVE DISORDER: AUTOMATED FIBER QUANTIFICATION AND MAXIMUM DENSITY PATHS. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2014; 11:592-595. [PMID: 25540677 DOI: 10.1109/isbi.2014.6867940] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Diffusion-weighted imaging allows for in vivo assessment of white matter structure, which can be used to assess aberrations associated with disease. Several new methods permit the automated assessment of important white matter characteristics. In the current study we used Automated Fiber Quantification (AFQ) to assess differences between depressed and nondepressed individuals in 18 major white matter tracts. We then used the Maximum Density Path (MDP) method to further characterize group differences identified with AFQ. The results of the AFQ analyses indicated that fractional anisotropy (FA; an index of white matter integrity) along bilateral corticospinal tracts (CST) was higher in depressed than in nondepressed individuals. MDP analyses revealed that white matter anomalies were restricted to four subregions that included the corona radiata and the internal and external capsules. These results provide further evidence that MDD is associated with abnormalities in cortical-to-subcortical connectivity.
Collapse
Affiliation(s)
- Matthew D Sacchet
- Neurosciences Program, Stanford University, Stanford, CA, USA ; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Gautam Prasad
- Department of Psychology, Stanford University, Stanford, CA, USA ; Imaging Genetics Center, Inst. for Neuroimaging and Informatics, Keck Sch. of Med. of USC, Los Angeles, CA, USA
| | | | - Shantanu H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | - Paul M Thompson
- Imaging Genetics Center, Inst. for Neuroimaging and Informatics, Keck Sch. of Med. of USC, Los Angeles, CA, USA
| | - Ian H Gotlib
- Neurosciences Program, Stanford University, Stanford, CA, USA ; Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Sacchet MD, Prasad G, Foland-Ross LC, Thompson PM, Gotlib IH. ELUCIDATING BRAIN CONNECTIVITY NETWORKS IN MAJOR DEPRESSIVE DISORDER USING CLASSIFICATION-BASED SCORING. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2014; 2014:246-249. [PMID: 25580184 DOI: 10.1109/isbi.2014.6867855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Graph theory is increasingly used in the field of neuroscience to understand the large-scale network structure of the human brain. There is also considerable interest in applying machine learning techniques in clinical settings, for example, to make diagnoses or predict treatment outcomes. Here we used support-vector machines (SVMs), in conjunction with whole-brain tractography, to identify graph metrics that best differentiate individuals with Major Depressive Disorder (MDD) from nondepressed controls. To do this, we applied a novel feature-scoring procedure that incorporates iterative classifier performance to assess feature robustness. We found that small-worldness, a measure of the balance between global integration and local specialization, most reliably differentiated MDD from nondepressed individuals. Post-hoc regional analyses suggested that heightened connectivity of the subcallosal cingulate gyrus (SCG) in MDDs contributes to these differences. The current study provides a novel way to assess the robustness of classification features and reveals anomalies in large-scale neural networks in MDD.
Collapse
Affiliation(s)
- Matthew D Sacchet
- Neurosciences Program, Stanford University, Stanford, CA, USA ; Department of Psychology, Stanford University, Stanford, CA, USA
| | - Gautam Prasad
- Department of Psychology, Stanford University, Stanford, CA, USA ; Imaging Genetics Center, Inst. for Neuroimaging and Informatics, Keck Sch. of Med. of USC, Los Angeles, CA, USA
| | | | - Paul M Thompson
- Imaging Genetics Center, Inst. for Neuroimaging and Informatics, Keck Sch. of Med. of USC, Los Angeles, CA, USA
| | - Ian H Gotlib
- Neurosciences Program, Stanford University, Stanford, CA, USA ; Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Nir TM, Jahanshad N, Villalon-Reina JE, Toga AW, Jack CR, Weiner MW, Thompson PM. Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging. Neuroimage Clin 2013; 3:180-95. [PMID: 24179862 PMCID: PMC3792746 DOI: 10.1016/j.nicl.2013.07.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/03/2013] [Accepted: 07/21/2013] [Indexed: 01/08/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) recently added diffusion tensor imaging (DTI), among several other new imaging modalities, in an effort to identify sensitive biomarkers of Alzheimer's disease (AD). While anatomical MRI is the main structural neuroimaging method used in most AD studies and clinical trials, DTI is sensitive to microscopic white matter (WM) changes not detectable with standard MRI, offering additional markers of neurodegeneration. Prior DTI studies of AD report lower fractional anisotropy (FA), and increased mean, axial, and radial diffusivity (MD, AxD, RD) throughout WM. Here we assessed which DTI measures may best identify differences among AD, mild cognitive impairment (MCI), and cognitively healthy elderly control (NC) groups, in region of interest (ROI) and voxel-based analyses of 155 ADNI participants (mean age: 73.5 ± 7.4; 90 M/65 F; 44 NC, 88 MCI, 23 AD). Both VBA and ROI analyses revealed widespread group differences in FA and all diffusivity measures. DTI maps were strongly correlated with widely-used clinical ratings (MMSE, CDR-sob, and ADAS-cog). When effect sizes were ranked, FA analyses were least sensitive for picking up group differences. Diffusivity measures could detect more subtle MCI differences, where FA could not. ROIs showing strongest group differentiation (lowest p-values) included tracts that pass through the temporal lobe, and posterior brain regions. The left hippocampal component of the cingulum showed consistently high effect sizes for distinguishing groups, across all diffusivity and anisotropy measures, and in correlations with cognitive scores.
Collapse
Affiliation(s)
- Talia M. Nir
- Imaging Genetics Center, Laboratory of Neuro Imaging,
Department of Neurology, UCLA School of Medicine, Los Angeles, CA,
USA
| | - Neda Jahanshad
- Imaging Genetics Center, Laboratory of Neuro Imaging,
Department of Neurology, UCLA School of Medicine, Los Angeles, CA,
USA
| | - Julio E. Villalon-Reina
- Imaging Genetics Center, Laboratory of Neuro Imaging,
Department of Neurology, UCLA School of Medicine, Los Angeles, CA,
USA
| | - Arthur W. Toga
- Imaging Genetics Center, Laboratory of Neuro Imaging,
Department of Neurology, UCLA School of Medicine, Los Angeles, CA,
USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic and Foundation,
Rochester, MN, USA
| | - Michael W. Weiner
- Department of Radiology and Biomedical Imaging, UCSF School
of Medicine, San Francisco, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging,
Department of Neurology, UCLA School of Medicine, Los Angeles, CA,
USA
- Deptartment of Psychiatry, Semel Institute, UCLA School of
Medicine, Los Angeles, CA, USA
| | | |
Collapse
|