1
|
Deng M, Lin Y, Yan L, Chen C, Fei Z, Ding J. A bibliometric analysis of nasopharyngeal carcinoma radiomics: trends and insights. Front Oncol 2025; 15:1506778. [PMID: 40201350 PMCID: PMC11975905 DOI: 10.3389/fonc.2025.1506778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a malignant tumor characterized by distinct geographic and pathological features. Enhancing diagnostic accuracy and timeliness in NPC is crucial for clinical implications. Radiomics has demonstrated significant potential in the clinical management of NPC. Nonetheless, a paucity of bibliometric studies has systematically examined the existing literature in th is domain. The objective of this study was to assess the current landscape and project future trends in NPC research. Methods This study conducted a search on English-language literature concerning the application of radiomics within the field of nasopharyngeal carcinoma (NPC) research from January 2015 to July 1, 2024, utilizing the Web of Science Core Collection (WoSCC) database. Bibliometric and visual analyses were performed using VOSviewer and CiteSpace software on publications related to countries/regions, authors, journals, references, and keywords. Results A total of 311 documents were retrieved, yielding 229 eligible documents after screening, comprising 209 articles and 20 reviews. Annual publications showed an upward trend, while citations revealed a generally declining trend. Notably, China contributed the most publications (n=175). Tian Jie and Dong Di each published 13 papers, and Zhang B was the most frequently co-cited author. Frontiers in Oncology published the most articles (n=25), and the International Journal of Radiation Oncology Biology Physics had the highest citation count (n=331). Sun Yat-sen University led institutional publications (n=39). The radiomics research in NPC focuses on survival prediction, texture analysis, and distant metastasis, and may guide future research directions. Conclusion The application of radiomics in NRC is growing annually, as indicated by bibliometric analysis. Radiomics has enhanced the precision of preoperative diagnosis, prediction, and prognosis in NRC. Bibliometric findings offer insights into radiomics research trends. However, creating extensive NPC datasets and bridging the research-to-clinical gap pose significant challenges. Future research should focus on these areas to advance the development.
Collapse
Affiliation(s)
| | | | | | | | - Zhaodong Fei
- Department of Radiation Oncology, School of Oncology Clinical Medicine, Fujian Medical
University, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Jianming Ding
- Department of Radiation Oncology, School of Oncology Clinical Medicine, Fujian Medical
University, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Gou X, Feng A, Feng C, Cheng J, Hong N. Imaging genomics of cancer: a bibliometric analysis and review. Cancer Imaging 2025; 25:24. [PMID: 40038813 DOI: 10.1186/s40644-025-00841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Imaging genomics is a burgeoning field that seeks to connections between medical imaging and genomic features. It has been widely applied to explore heterogeneity and predict responsiveness and disease progression in cancer. This review aims to assess current applications and advancements of imaging genomics in cancer. METHODS Literature on imaging genomics in cancer was retrieved and selected from PubMed, Web of Science, and Embase before July 2024. Detail information of articles, such as systems and imaging features, were extracted and analyzed. Citation information was extracted from Web of Science and Scopus. Additionally, a bibliometric analysis of the included studies was conducted using the Bibliometrix R package and VOSviewer. RESULTS A total of 370 articles were included in the study. The annual growth rate of articles on imaging genomics in cancer is 24.88%. China (133) and the USA (107) were the most productive countries. The top 2 keywords plus were "survival" and "classification". The current research mainly focuses on the central nervous system (121) and the genitourinary system (110, including 44 breast cancer articles). Despite different systems utilizing different imaging modalities, more than half of the studies in each system employed radiomics features. CONCLUSIONS Publication databases provide data support for imaging genomics research. The development of artificial intelligence algorithms, especially in feature extraction and model construction, has significantly advanced this field. It is conducive to enhancing the related-models' interpretability. Nonetheless, challenges such as the sample size and the standardization of feature extraction and model construction must overcome. And the research trends revealed in this study will guide the development of imaging genomics in the future and contribute to more accurate cancer diagnosis and treatment in the clinic.
Collapse
Affiliation(s)
- Xinyi Gou
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Aobo Feng
- College of Computer and Information, Inner Mongolia Medical University, Inner Mongolia, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Jin Cheng
- Department of Radiology, Peking University People's Hospital, Beijing, China.
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
3
|
Bajinka O, Ouedraogo SY, Li N, Zhan X. Big data for neuroscience in the context of predictive, preventive, and personalized medicine. EPMA J 2025; 16:17-35. [PMID: 39991094 PMCID: PMC11842698 DOI: 10.1007/s13167-024-00393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 02/25/2025]
Abstract
Accurate and precise diagnosis made the medicine the hallmark of evidence-based medicine. While attaining absolute patient satisfaction may seem impossible in the aspect of disease recurrent, personalized their mecidal conditions to their responsive treatment approach may save the day. The last generation approaches in medicine require advanced technologies that will lead to evidence-based medicine. One of the trending fields in this is the use of big data in predictive, preventive, and personalized medicine (3PM). This review dwelled through the practical examples in which big data tools harness neuroscience to add more individualized apporahes to the medical conditions in a bid to confer a more personalized treatment strategies. Moreover, the known breakthroughs of big data in 3PM, big data and 3PM in neuroscience, AI and neuroscience, limitations of big data with 3PM in neuroscience, and the challenges are thoroughly discussed. Finally, the prospects of incorporating big data in 3PM are as well discussed. The review could point out that the implications of big data in 3PM are still in their infancy and will require a holistic approach. While there is a need to carefully sensitize the community, convincing them will come under interdisciplinary and, to some extent, inter-professional collaborations, capacity building for professionals, and optimal coordination of the joint systems.
Collapse
Affiliation(s)
- Ousman Bajinka
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
4
|
Okunlola FO, Adetuyi TG, Olajide PA, Okunlola AR, Adetuyi BO, Adeyemo-Eleyode VO, Akomolafe AA, Yunana N, Baba F, Nwachukwu KC, Oyewole OA, Adetunji CO, Shittu OB, Ginikanwa EG. Biomedical image characterization and radio genomics using machine learning techniques. MINING BIOMEDICAL TEXT, IMAGES AND VISUAL FEATURES FOR INFORMATION RETRIEVAL 2025:397-421. [DOI: 10.1016/b978-0-443-15452-2.00019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Liu D, Lu N, Zang F, Lu M, Zhang J, Zhao Y, Wan H, Wang M, Li QQ, Wang F, Luo S, Ma M, Shi F, Wu H, Tu J, Zhang Y. Magnetic Resonance Imaging-Based Radiogenomic Analysis Reveals Genomic Determinants for Nanoparticle Delivery into Tumors. ACS NANO 2024; 18:34615-34629. [PMID: 39663893 DOI: 10.1021/acsnano.4c09387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Even though the enhanced permeability and retention (EPR) effect is applicable for the passive targeting of solid tumors, many nanodrugs have failed to achieve meaningful clinical outcomes due to the heterogeneity of EPR effect. Therefore, understanding the mechanism of the EPR effect is crucial to overcome the obstacles nanomedicines face in clinical translation. The aim of this study was to establish a reliable method to increase awareness of the critical influencing factors of nanoparticle (NP) transport into tumors based on the EPR effect using a combined radiogenomics and clinical magnetic resonance imaging (MRI) technique and gene set pathway enrichment analysis. Employing poly(lactic-co-glycolic acid) (PLGA)-coated Fe3O4 NPs as the contrast agent, the monolayer and multilayer distribution of the NPs were observed and quantitatively analyzed by MRI, improving the accuracy of evaluating vascular permeability by MRI. By performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes and pathways, we identified a variety of genes affecting vascular permeability, such as Cldn1, Dlg2, Bves, Prkag3, Cldn10, and Cldn8, which are related to tight junctions and control the permeability of blood vessels in tumors. The method presented here provides an MRI-supported approach to increase the breadth of data collected from genetic screens, reveals genetic evidence of the presence of NPs in tumors and lays a foundation for clinical patient stratification and personalized treatment.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Na Lu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Fengchao Zang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, Nanjing 210096, P. R. China
| | - Mingze Lu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Jingyue Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Hao Wan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Mengjun Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Qian-Qian Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Fei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Shouhua Luo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210096, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China
| |
Collapse
|
6
|
Byeon H, Gc P, Hannan SA, Alghayadh FY, Soomar AM, Soni M, Bhatt MW. Deep neural network model for enhancing disease prediction using auto encoder based broad learning. SLAS Technol 2024; 29:100145. [PMID: 38750819 DOI: 10.1016/j.slast.2024.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Bioinformatics and Healthcare Integration Disease prediction models have been revolutionized by Big Data. These models, which make use of extensive medical data, predict illnesses before symptoms appear. Deep neural networks are well-known for their ability to increase accuracy by extending the network's depth and modifying weights through gradient descent. Traditional approaches, however, are hindered by issues such as gradient instability and delayed training. As a substitute, the Broad Learning (BL) system is introduced, which avoids gradient descent in favor of quick reconstruction by incremental learning. However, BL has trouble extracting complicated features from medical data, which makes it perform poorly in cases involving complex healthcare. We suggest ABL, which combines the effectiveness of BL with the noise reduction of Denoising Auto Encoder (AE), to address this. Robust feature extraction is an area in which the hybrid model shines, especially in intricate medical environments. Accuracy of up to 98.50 % is achieved by remarkable results from validation using a variety of datasets. The ability of ABL to quickly adapt through incremental learning suggests that it may be used to forecast diseases in complicated healthcare contexts with agility and accuracy.
Collapse
Affiliation(s)
- Haewon Byeon
- Department of AI and Software, Inje University, Gimhae 50834, Republic of Korea; Inje University Medical Big Data Research Center, Gimhae 50834, Republic of Korea
| | - Prashant Gc
- Department of Computer Science, Texas Tech University, Lubbock 79409, USA
| | - Shaikh Abdul Hannan
- Department of Computer Science and Information Technology, Albaha University, Albaha, Kingdom of Saudi Arabia
| | - Faisal Yousef Alghayadh
- Computer Science and Information Systems Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Arsalan Muhammad Soomar
- Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Mukesh Soni
- Dr. D. Y. Patil Vidyapeeth, Pune, Dr. D. Y. Patil School of Science & Technology, Tathawade, Pune, India
| | | |
Collapse
|
7
|
Kulkarni C, Quraishi A, Raparthi M, Shabaz M, Khan MA, Varma RA, Keshta I, Soni M, Byeon H. Hybrid disease prediction approach leveraging digital twin and metaverse technologies for health consumer. BMC Med Inform Decis Mak 2024; 24:92. [PMID: 38575951 PMCID: PMC10996111 DOI: 10.1186/s12911-024-02495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
Emerging from the convergence of digital twin technology and the metaverse, consumer health (MCH) is witnessing a transformative shift. The amalgamation of bioinformatics with healthcare Big Data has ushered in a new era of disease prediction models that harness comprehensive medical data, enabling the anticipation of illnesses even before the onset of symptoms. In this model, deep neural networks stand out because they improve accuracy remarkably by increasing network depth and making weight changes using gradient descent. Nonetheless, traditional methods face their own set of challenges, including the issues of gradient instability and slow training. In this case, the Broad Learning System (BLS) stands out as a good alternative. It gets around the problems with gradient descent and lets you quickly rebuild a model through incremental learning. One problem with BLS is that it has trouble extracting complex features from complex medical data. This makes it less useful in a wide range of healthcare situations. In response to these challenges, we introduce DAE-BLS, a novel hybrid model that marries Denoising AutoEncoder (DAE) noise reduction with the efficiency of BLS. This hybrid approach excels in robust feature extraction, particularly within the intricate and multifaceted world of medical data. Validation using diverse datasets yields impressive results, with accuracies reaching as high as 98.50%. DAE-BLS's ability to rapidly adapt through incremental learning holds great promise for accurate and agile disease prediction, especially within the complex and dynamic healthcare scenarios of today.
Collapse
Affiliation(s)
- Chaitanya Kulkarni
- Department of Computer Engineering, Vidya Pratishthan's Kamalnayan Bajaj Institute of Engineering and Technology, Baramati, Pune, 413133, Maharashtra, India
| | - Aadam Quraishi
- M.D. Research, Intervention Treatment Institute, Houston, TX, USA
| | - Mohan Raparthi
- Software Engineer, Alphabet Life Science, Dallas, TX, 75063, USA
| | - Mohammad Shabaz
- Model Institute of Engineering and Technology, Jammu, J&K, India.
| | - Muhammad Attique Khan
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Raj A Varma
- Symbiosis Law School (SLS), Symbiosis International (Deemed University) (SIU), Vimannagar, Pune, Maharashtra, India
| | - Ismail Keshta
- Computer Science and Information Systems Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mukesh Soni
- Dr D Y Patil Vidyapeeth, Dr. D. Y. Patil School of Science and Technology, Pune, 411033, India
| | - Haewon Byeon
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae, Republic of Korea, 50834
| |
Collapse
|
8
|
Tong L, Shi W, Isgut M, Zhong Y, Lais P, Gloster L, Sun J, Swain A, Giuste F, Wang MD. Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence. IEEE Rev Biomed Eng 2024; 17:80-97. [PMID: 37824325 DOI: 10.1109/rbme.2023.3324264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
With the recent advancement of novel biomedical technologies such as high-throughput sequencing and wearable devices, multi-modal biomedical data ranging from multi-omics molecular data to real-time continuous bio-signals are generated at an unprecedented speed and scale every day. For the first time, these multi-modal biomedical data are able to make precision medicine close to a reality. However, due to data volume and the complexity, making good use of these multi-modal biomedical data requires major effort. Researchers and clinicians are actively developing artificial intelligence (AI) approaches for data-driven knowledge discovery and causal inference using a variety of biomedical data modalities. These AI-based approaches have demonstrated promising results in various biomedical and healthcare applications. In this review paper, we summarize the state-of-the-art AI models for integrating multi-omics data and electronic health records (EHRs) for precision medicine. We discuss the challenges and opportunities in integrating multi-omics data with EHRs and future directions. We hope this review can inspire future research and developing in integrating multi-omics data with EHRs for precision medicine.
Collapse
|
9
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
10
|
Fan M, Wang K, Zhang Y, Ge Y, Lü Z, Li L. Radiogenomic analysis of cellular tumor-stroma heterogeneity as a prognostic predictor in breast cancer. J Transl Med 2023; 21:851. [PMID: 38007511 PMCID: PMC10675940 DOI: 10.1186/s12967-023-04748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The tumor microenvironment and intercellular communication between solid tumors and the surrounding stroma play crucial roles in cancer initiation, progression, and prognosis. Radiomics provides clinically relevant information from radiological images; however, its biological implications in uncovering tumor pathophysiology driven by cellular heterogeneity between the tumor and stroma are largely unknown. We aimed to identify radiogenomic signatures of cellular tumor-stroma heterogeneity (TSH) to improve breast cancer management and prognosis analysis. METHODS This retrospective multicohort study included five datasets. Cell subpopulations were estimated using bulk gene expression data, and the relative difference in cell subpopulations between the tumor and stroma was used as a biomarker to categorize patients into good- and poor-survival groups. A radiogenomic signature-based model utilizing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was developed to target TSH, and its clinical significance in relation to survival outcomes was independently validated. RESULTS The final cohorts of 1330 women were included for cellular TSH biomarker identification (n = 112, mean age, 57.3 years ± 14.6) and validation (n = 886, mean age, 58.9 years ± 13.1), radiogenomic signature of TSH identification (n = 91, mean age, 55.5 years ± 11.4), and prognostic (n = 241) assessments. The cytotoxic lymphocyte biomarker differentiated patients into good- and poor-survival groups (p < 0.0001) and was independently validated (p = 0.014). The good survival group exhibited denser cell interconnections. The radiogenomic signature of TSH was identified and showed a positive association with overall survival (p = 0.038) and recurrence-free survival (p = 3 × 10-4). CONCLUSION Radiogenomic signatures provide insights into prognostic factors that reflect the imbalanced tumor-stroma environment, thereby presenting breast cancer-specific biological implications and prognostic significance.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kailang Wang
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - You Zhang
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuanyuan Ge
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zhong Lü
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - Lihua Li
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
11
|
Liao S, Zhou M, Wang Y, Lu C, Yin B, Zhang Y, Liu H, Yin X, Song G. Emerging biomedical imaging-based companion diagnostics for precision medicine. iScience 2023; 26:107277. [PMID: 37520706 PMCID: PMC10371849 DOI: 10.1016/j.isci.2023.107277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The tumor heterogeneity, which leads to individual variations in tumor microenvironments, causes poor prognoses and limits therapeutic response. Emerging technology such as companion diagnostics (CDx) detects biomarkers and monitors therapeutic responses, allowing identification of patients who would benefit most from treatment. However, currently, most US Food and Drug Administration-approved CDx tests are designed to detect biomarkers in vitro and ex vivo, making it difficult to dynamically report variations of targets in vivo. Various medical imaging techniques offer dynamic measurement of tumor heterogeneity and treatment response, complementing CDx tests. Imaging-based companion diagnostics allow for patient stratification for targeted medicines and identification of patient populations benefiting from alternative therapeutic methods. This review summarizes recent developments in molecular imaging for predicting and assessing responses to cancer therapies, as well as the various biomarkers used in imaging-based CDx tests. We hope this review provides informative insights into imaging-based companion diagnostics and advances precision medicine.
Collapse
Affiliation(s)
- Shiyi Liao
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Mengjie Zhou
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Baoli Yin
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Ying Zhang
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Huiyi Liu
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Xia Yin
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo, Biosensing and Chemometrics, College of Chemistry and Chemical, Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
McCague C, Ramlee S, Reinius M, Selby I, Hulse D, Piyatissa P, Bura V, Crispin-Ortuzar M, Sala E, Woitek R. Introduction to radiomics for a clinical audience. Clin Radiol 2023; 78:83-98. [PMID: 36639175 DOI: 10.1016/j.crad.2022.08.149] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Radiomics is a rapidly developing field of research focused on the extraction of quantitative features from medical images, thus converting these digital images into minable, high-dimensional data, which offer unique biological information that can enhance our understanding of disease processes and provide clinical decision support. To date, most radiomics research has been focused on oncological applications; however, it is increasingly being used in a raft of other diseases. This review gives an overview of radiomics for a clinical audience, including the radiomics pipeline and the common pitfalls associated with each stage. Key studies in oncology are presented with a focus on both those that use radiomics analysis alone and those that integrate its use with other multimodal data streams. Importantly, clinical applications outside oncology are also presented. Finally, we conclude by offering a vision for radiomics research in the future, including how it might impact our practice as radiologists.
Collapse
Affiliation(s)
- C McCague
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S Ramlee
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - M Reinius
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - I Selby
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D Hulse
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - P Piyatissa
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - V Bura
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Radiology and Medical Imaging, County Clinical Emergency Hospital, Cluj-Napoca, Romania
| | - M Crispin-Ortuzar
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK
| | - E Sala
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - R Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Research Centre for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
13
|
Gomes MAS, Kovaleski JL, Pagani RN, da Silva VL, Pasquini TCDS. Transforming healthcare with big data analytics: technologies, techniques and prospects. J Med Eng Technol 2023; 47:1-11. [PMID: 35852400 DOI: 10.1080/03091902.2022.2096133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In different studies in the field of healthcare, big data analytics technology has been shown to be effective in observing the behaviour of data, of which analysed to allow the discovery of relevant insights for strategy and decision making. The objective of this study is to present the results of a systematic review of the literature on big data analytics in healthcare, focussing in technologies, main areas and purposes of adoption. To reach its objective, the study conducts an exploratory research, through a systematic review of the literature, using the Methodi Ordinatio protocol supported by content analysis. The results reveal that the use of tools implies work performance at the clinical and managerial level, improving the cost-benefit ratio and reducing the time factor in the practice of the workforce in health services. Thus, this study hopes to contribute to the technological advancement of computational intelligence applied to healthcare.
Collapse
Affiliation(s)
- Myller Augusto Santos Gomes
- Production Engineering, Federal University of Technology of Paraná, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - João Luiz Kovaleski
- Production Engineering, Federal University of Technology of Paraná, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Regina Negri Pagani
- Production Engineering, Federal University of Technology of Paraná, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Vander Luiz da Silva
- Production Engineering, Federal University of Technology of Paraná, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | |
Collapse
|
14
|
Khanna NN, Maindarkar MA, Viswanathan V, Fernandes JFE, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Singh IM, Laird JR, Fatemi M, Alizad A, Saba L, Agarwal V, Sharma A, Teji JS, Al-Maini M, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Mohanty L, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Kitas GD, Fouda MM, Chaturvedi S, Kalra MK, Suri JS. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare (Basel) 2022; 10:2493. [PMID: 36554017 PMCID: PMC9777836 DOI: 10.3390/healthcare10122493] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Motivation: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Objective: Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. Methodology: PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. Conclusions: The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | | | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - Lopamudra Mohanty
- Department of Computer Science, ABES Engineering College, Ghaziabad 201009, India
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
15
|
Yu Z, Wang K, Wan Z, Xie S, Lv Z. Popular deep learning algorithms for disease prediction: a review. CLUSTER COMPUTING 2022; 26:1231-1251. [PMID: 36120180 PMCID: PMC9469816 DOI: 10.1007/s10586-022-03707-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Due to its automatic feature learning ability and high performance, deep learning has gradually become the mainstream of artificial intelligence in recent years, playing a role in many fields. Especially in the medical field, the accuracy rate of deep learning even exceeds that of doctors. This paper introduces several deep learning algorithms: Artificial Neural Network (NN), FM-Deep Learning, Convolutional NN and Recurrent NN, and expounds their theory, development history and applications in disease prediction; we analyze the defects in the current disease prediction field and give some current solutions; our paper expounds the two major trends in the future disease prediction and medical field-integrating Digital Twins and promoting precision medicine. This study can better inspire relevant researchers, so that they can use this article to understand related disease prediction algorithms and then make better related research.
Collapse
Affiliation(s)
- Zengchen Yu
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Ke Wang
- Psychiatric Department, Qingdao Municipal Hospital, Zhuhai Road, Qingdao, 266071 China
| | - Zhibo Wan
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Shuxuan Xie
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Zhihan Lv
- Department of Game Design, Faculty of Arts, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
16
|
Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:57-100. [PMID: 36008002 DOI: 10.1016/bs.pmbts.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integration of artificial intelligence in precision medicine has revolutionized healthcare delivery. Precision medicine identifies the phenotype of particular patients with less-common responses to treatment. Recent studies have demonstrated that translational research exploring the convergence between artificial intelligence and precision medicine will help solve the most difficult challenges facing precision medicine. Here, we discuss different aspects of artificial intelligence in precision medicine that improve healthcare delivery. First, we discuss how artificial intelligence changes the landscape of precision medicine and the evolution of artificial intelligence in precision medicine. Second, we highlight the synergies between artificial intelligence and precision medicine and promises of artificial intelligence and precision medicine in healthcare delivery. Third, we briefly explain the promise of big data analytics and the integration of nanomaterials in precision medicine. Last, we highlight the challenges and opportunities of artificial intelligence in precision medicine.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Delhi, India.
| |
Collapse
|
17
|
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14122860. [PMID: 35740526 PMCID: PMC9220825 DOI: 10.3390/cancers14122860] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, radiogenomics has played a significant role and offered a new understanding of cancer’s biology and behavior in response to standard therapy. It also provides a more precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelligence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements, opportunities, and limitations in the current clinical practices. Abstract Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
Collapse
|
18
|
MRI radiomic features-based machine learning approach to classify ischemic stroke onset time. J Neurol 2022; 269:350-360. [PMID: 34218292 DOI: 10.1007/s00415-021-10638-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE We aimed to investigate the ability of MRI radiomics features-based machine learning (ML) models to classify the time since stroke onset (TSS), which could aid in stroke assessment and treatment options. METHODS This study involved 84 patients with acute ischemic stroke due to anterior circulation artery occlusion (51 in the training cohort and 33 in the independent test cohort). Region of infarct segmentation was manually outlined by 3D-slicer software. Image processing including registration, normalization and radiomics features calculation were done in R (version 3.6.1). A total of 4312 radiomic features from each image sequence were captured and used in six ML models to estimate stroke onset time for binary classification (≤ 4.5 h). Receiver-operating characteristic curve (ROC) and other parameters were calculated to evaluate the performance of the models in both training and test cohorts. RESULTS Twelve radiomics and six clinic features were selected to construct the ML models for TSS classification. The deep learning model-based DWI/ADC radiomic features performed the best for binary TSS classification in the independent test cohort, with an AUC of 0.754, accuracy of 0.788, sensitivity of 0.952, specificity of 0.500, positive predictive value of 0.769, and negative predictive value of 0.857, respectively. Furthermore, adding clinical information did not improve the performance of the DWI/ADC-based deep learning model. The TSS prediction models can be visited at: http://123.57.65.199:3838/deeptss/ . CONCLUSIONS A unique deep learning model based on DWI/ADC radiomic features was constructed for TSS classification, which could aid in decision making for thrombolysis in patients with unknown stroke onset.
Collapse
|
19
|
Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics (Basel) 2021; 11:1523. [PMID: 34573865 PMCID: PMC8465998 DOI: 10.3390/diagnostics11091523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck, and improving the efficiency of its diagnosis and treatment strategies is an important goal. With the development of the combination of artificial intelligence (AI) technology and medical imaging in recent years, an increasing number of studies have been conducted on image analysis of NPC using AI tools, especially radiomics and artificial neural network methods. In this review, we present a comprehensive overview of NPC imaging research based on radiomics and deep learning. These studies depict a promising prospect for the diagnosis and treatment of NPC. The deficiencies of the current studies and the potential of radiomics and deep learning for NPC imaging are discussed. We conclude that future research should establish a large-scale labelled dataset of NPC images and that studies focused on screening for NPC using AI are necessary.
Collapse
Affiliation(s)
- Song Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Zhi-Ling Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong-Li Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| |
Collapse
|
20
|
Lu P, Colliot O. Multilevel Survival Modeling with Structured Penalties for Disease Prediction from Imaging Genetics data. IEEE J Biomed Health Inform 2021; 26:798-808. [PMID: 34329174 DOI: 10.1109/jbhi.2021.3100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper introduces a framework for disease prediction from multimodal genetic and imaging data. We propose a multilevel survival model which allows predicting the time of occurrence of a future disease state in patients initially exhibiting mild symptoms. This new multilevel setting allows modeling the interactions between genetic and imaging variables. This is in contrast with classical additive models which treat all modalities in the same manner and can result in undesirable elimination of specific modalities when their contributions are unbalanced. Moreover, the use of a survival model allows overcoming the limitations of previous approaches based on classification which consider a fixed time frame. Furthermore, we introduce specific penalties taking into account the structure of the different types of data, such as a group lasso penalty over the genetic modality and a L2-penalty over the imaging modality. Finally, we propose a fast optimization algorithm, based on a proximal gradient method. The approach was applied to the prediction of Alzheimer's disease (AD) among patients with mild cognitive impairment (MCI) based on genetic (single nucleotide polymorphisms - SNP) and imaging (anatomical MRI measures) data from the ADNI database. The experiments demonstrate the effectiveness of the method for predicting the time of conversion to AD. It revealed how genetic variants and brain imaging alterations interact in the prediction of future disease status. The approach is generic and could potentially be useful for the prediction of other diseases.
Collapse
|
21
|
Yang YS, Qiu YJ, Zheng GH, Gong HP, Ge YQ, Zhang YF, Feng F, Wang YT. High resolution MRI-based radiomic nomogram in predicting perineural invasion in rectal cancer. Cancer Imaging 2021; 21:40. [PMID: 34039436 PMCID: PMC8157664 DOI: 10.1186/s40644-021-00408-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To establish and validate a high-resolution magnetic resonance imaging (HRMRI)-based radiomic nomogram for prediction of preoperative perineural invasion (PNI) of rectal cancer (RC). METHODS Our retrospective study included 140 subjects with RC (99 in the training cohort and 41 in the validation cohort) who underwent a preoperative HRMRI scan between December 2016 and December 2019. All subjects underwent radical surgery, and then PNI status was evaluated by a qualified pathologist. A total of 396 radiomic features were extracted from oblique axial T2 weighted images, and optimal features were selected to construct a radiomic signature. A combined nomogram was established by incorporating the radiomic signature, HRMRI findings, and clinical risk factors selected by using multivariable logistic regression. RESULTS The predictive nomogram of PNI included a radiomic signature, and MRI-reported tumor stage (mT-stage). Clinical risk factors failed to increase the predictive value. Favorable discrimination was achieved between PNI-positive and PNI-negative groups using the radiomic nomogram. The area under the curve (AUC) was 0.81 (95% confidence interval [CI], 0.71-0.91) in the training cohort and 0.75 (95% CI, 0.58-0.92) in the validation cohort. Moreover, our result highlighted that the radiomic nomogram was clinically beneficial, as evidenced by a decision curve analysis. CONCLUSIONS HRMRI-based radiomic nomogram could be helpful in the prediction of preoperative PNI in RC patients.
Collapse
Affiliation(s)
- Yan-Song Yang
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.,Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu Province, China
| | - Yong-Juan Qiu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu Province, China
| | - Gui-Hua Zheng
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hai-Peng Gong
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu Province, China
| | | | - Yi-Fei Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu Province, China
| | - Feng Feng
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Yue-Tao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, No.185, Juqian Street, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
22
|
Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, Zhu H, Shui P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front Oncol 2021; 10:570465. [PMID: 33575207 PMCID: PMC7870863 DOI: 10.3389/fonc.2020.570465] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of new technologies, including artificial intelligence and genome sequencing, radiogenomics has emerged as a state-of-the-art science in the field of individualized medicine. Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes. Recent studies of various types of tumors demonstrate the predictive value of radiogenomics. And some of the issues in the radiogenomic analysis and the solutions from prior works are presented. Although the workflow criteria and international agreed guidelines for statistical methods need to be confirmed, radiogenomics represents a repeatable and cost-effective approach for the detection of continuous changes and is a promising surrogate for invasive interventions. Therefore, radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the prognosis in patients with tumors in the routine clinical setting. Here, we summarize the integrated process of radiogenomics and introduce the crucial strategies and statistical algorithms involved in current studies.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Ren
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ziwei Chen
- Department of Nephrology, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Liu Z, Wu K, Wu B, Tang X, Yuan H, Pang H, Huang Y, Zhu X, Luo H, Qi Y. Imaging genomics for accurate diagnosis and treatment of tumors: A cutting edge overview. Biomed Pharmacother 2020; 135:111173. [PMID: 33383370 DOI: 10.1016/j.biopha.2020.111173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging genomics refers to the establishment of the connection between invasive gene expression features and non-invasive imaging features. Tumor imaging genomics can not only understand the macroscopic phenotype of tumor, but also can deeply analyze the cellular and molecular characteristics of tumor tissue. In recent years, tumor imaging genomics has been a key in the field of medicine. The incidence of cancer in China has increased significantly, which is the main reason of disease death of urban residents. With the rapid development of imaging medicine, depending on imaging genomics, many experts have made remarkable achievements in tumor screening and diagnosis, prognosis evaluation, new treatment targets and understanding of tumor biological mechanism. This review analyzes the relationship between tumor radiology and gene expression, which provides a favorable direction for clinical staging, prognosis evaluation and accurate treatment of tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Kefeng Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiaoning Tang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Huiqing Yuan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Hao Pang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Hui Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Yi Qi
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| |
Collapse
|
24
|
Wang Y, Wang Y, Guo C, Xie X, Liang S, Zhang R, Pang W, Huang L. Cancer genotypes prediction and associations analysis from imaging phenotypes: a survey on radiogenomics. Biomark Med 2020; 14:1151-1164. [PMID: 32969248 DOI: 10.2217/bmm-2020-0248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this paper, we present a survey on the progress of radiogenomics research, which predicts cancer genotypes from imaging phenotypes and investigates the associations between them. First, we present an overview of the popular technology modalities for obtaining diagnostic medical images. Second, we summarize recently used methodologies for radiogenomics analysis, including statistical analysis, radiomics and deep learning. And then, we give a survey on the recent research based on several types of cancers. Finally, we discuss these studies and propose possible future research directions. In conclusion, we have identified strong correlations between cancer genotypes and imaging phenotypes. In addition, with the rapid growth of medical data, deep learning models show great application potential for radiogenomics.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China
| | - Yan Wang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China.,School of Artificial Intelligence, Jilin University, Changchun 130012, PR China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Changchun 130012, PR China
| | - Xuping Xie
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China
| | - Sen Liang
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, PR China
| | - Ruochi Zhang
- School of Artificial Intelligence, Jilin University, Changchun 130012, PR China
| | - Wei Pang
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Lan Huang
- Key Laboratory of Symbol Computation & Knowledge Engineering, Ministry of Education, College of Computer Science & Technology, Jilin University, Changchun, 130012, PR China.,Zhuhai Laboratory of Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Department of Computer Science & Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
| |
Collapse
|
25
|
Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J Biomed Health Inform 2020; 24:1837-1857. [PMID: 32609615 PMCID: PMC8580417 DOI: 10.1109/jbhi.2020.2991043] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.
Collapse
|
26
|
Castaldo R, Pane K, Nicolai E, Salvatore M, Franzese M. The Impact of Normalization Approaches to Automatically Detect Radiogenomic Phenotypes Characterizing Breast Cancer Receptors Status. Cancers (Basel) 2020; 12:E518. [PMID: 32102334 PMCID: PMC7072389 DOI: 10.3390/cancers12020518] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
In breast cancer studies, combining quantitative radiomic with genomic signatures can help identifying and characterizing radiogenomic phenotypes, in function of molecular receptor status. Biomedical imaging processing lacks standards in radiomic feature normalization methods and neglecting feature normalization can highly bias the overall analysis. This study evaluates the effect of several normalization techniques to predict four clinical phenotypes such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and triple negative (TN) status, by quantitative features. The Cancer Imaging Archive (TCIA) radiomic features from 91 T1-weighted Dynamic Contrast Enhancement MRI of invasive breast cancers were investigated in association with breast invasive carcinoma miRNA expression profiling from the Cancer Genome Atlas (TCGA). Three advanced machine learning techniques (Support Vector Machine, Random Forest, and Naïve Bayesian) were investigated to distinguish between molecular prognostic indicators and achieved an area under the ROC curve (AUC) values of 86%, 93%, 91%, and 91% for the prediction of ER+ versus ER-, PR+ versus PR-, HER2+ versus HER2-, and triple-negative, respectively. In conclusion, radiomic features enable to discriminate major breast cancer molecular subtypes and may yield a potential imaging biomarker for advancing precision medicine.
Collapse
Affiliation(s)
| | - Katia Pane
- IRCCS SDN, Via E. Gianturco, 113, 80143 Naples, Italy; (R.C.); (E.N.); (M.S.); (M.F.)
| | | | | | | |
Collapse
|
27
|
Hoshino I, Yokota H, Ishige F, Iwatate Y, Takeshita N, Nagase H, Uno T, Matsubara H. Radiogenomics predicts the expression of microRNA-1246 in the serum of esophageal cancer patients. Sci Rep 2020; 10:2532. [PMID: 32054931 PMCID: PMC7018689 DOI: 10.1038/s41598-020-59500-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Radiogenomics is a new field that provides clinically useful prognostic predictions by linking molecular characteristics such as the genetic aberrations of malignant tumors with medical images. The abnormal expression of serum microRNA-1246 (miR-1246) has been reported as a prognostic factor of esophageal squamous cell carcinoma (ESCC). To evaluate the power of the miR-1246 level predicted with radiogenomics techniques as a predictor of the prognosis of ESCC patients. The real miR-1246 expression (miR-1246real) was measured in 92 ESCC patients. Forty-five image features (IFs) were extracted from tumor regions on contrast-enhanced computed tomography. A prediction model for miR-1246real was constructed using linear regression with selected features identified in a correlation analysis of miR-1246real and each IF. A threshold to divide the patients into two groups was defined according to a receiver operating characteristic analysis for miR-1246real. Survival analyses were performed between two groups. Six IFs were correlated with miR-1246real and were included in the prediction model. The survival curves of high and low groups of miR-1246real and miR-1246pred showed significant differences (p = 0.001 and 0.016). Both miR-1246real and miR-1246pred were independent predictors of overall survival (p = 0.030 and 0.035). miR-1246pred produced by radiogenomics had similar power to miR-1246real for predicting the prognosis of ESCC.
Collapse
Affiliation(s)
- Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba, Japan.
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumitaka Ishige
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Yosuke Iwatate
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Nobuyoshi Takeshita
- Division of Surgical Technology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
Hustinx R. Physician centred imaging interpretation is dying out - why should I be a nuclear medicine physician? Eur J Nucl Med Mol Imaging 2019; 46:2708-2714. [PMID: 31175395 DOI: 10.1007/s00259-019-04371-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Radiomics, machine learning, and, more generally, artificial intelligence (AI) provide unique tools to improve the performances of nuclear medicine in all aspects. They may help rationalise the operational organisation of imaging departments, optimise resource allocations, and improve image quality while decreasing radiation exposure and maintaining qualitative accuracy. There is already convincing data that show AI detection, and interpretation algorithms can perform with equal or higher diagnostic accuracy in various specific indications than experts in the field. Preliminary data strongly suggest that AI will be able to process imaging data and information well beyond what is visible to the human eye, and it will be able to integrate features to provide signatures that may further drive personalised medicine. As exciting as these prospects are, they currently remain essentially projects with a long way to go before full validation and routine clinical implementation. AI uses a language that is totally unfamiliar to nuclear medicine physicians, who have not been trained to manage the highly complex concepts that rely primarily on mathematics, computer sciences, and engineering. Nuclear medicine physicians are mostly familiar with biology, pharmacology, and physics, yet, considering the disruptive nature of AI in medicine, we need to start acquiring the knowledge that will keep us in the position of being actors and not merely witnesses of the wonders developed by other stakeholders in front of our incredulous eyes. This will allow us to remain a useful and valid interface between the image, the data, and the patients and free us to pursue other, one might say nobler tasks, such as treating, caring and communicating with our patients or conducting research and development.
Collapse
Affiliation(s)
- Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium. .,GIGA-CRC in vivo Imaging, University of Liège, Sart Tilman, B35, 4000, Liège, Belgium.
| |
Collapse
|