1
|
Peng D, Sun L, Zhou Q, Zhang Y. AI-driven approaches for automatic detection of sleep apnea/hypopnea based on human physiological signals: a review. Health Inf Sci Syst 2025; 13:7. [PMID: 39712669 PMCID: PMC11659556 DOI: 10.1007/s13755-024-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Sleep apnea/hypopnea is a sleep disorder characterized by repeated pauses in breathing which could induce a series of health problems such as cardiovascular disease (CVD) and even sudden death. Polysomnography (PSG) is the most common way to diagnose sleep apnea/hypopnea. Considering that PSG data acquisition is complex and the diagnosis of sleep apnea/hypopnea requires manual scoring, it is very time-consuming and highly professional. With the development of wearable devices and AI techniques, more and more works have been focused on building machine and deep learning models that use single or multi-modal physiological signals to achieve automated detection of sleep apnea/hypopnea. This paper provides a comprehensive review of automatic sleep apnea/hypopnea detection methods based on AI-based techniques in recent years. We summarize the general process used by existing works with a flow chart, which mainly includes data acquisition, raw signal pre-processing, model construction, event classification, and evaluation, since few papers consider these. Additionally, the commonly used public database and pre-processing methods are also reviewed in this paper. After that, we separately summarize the existing methods related to different modal physiological signals including nasal airflow, pulse oxygen saturation (SpO2), electrocardiogram (ECG), electroencephalogram (EEG) and snoring sound. Furthermore, specific signal pre-processing methods based on the characteristics of different physiological signals are also covered. Finally, challenges need to be addressed, such as limited data availability, imbalanced data problem, multi-center study necessity etc., and future research directions related to AI are discussed.
Collapse
Affiliation(s)
- Dandan Peng
- The Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Le Sun
- The Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Qian Zhou
- The School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yanchun Zhang
- School of Computer Science, Zhejiang Normal University, Jinhua, 321000 China
- The Department of New Networks, Peng Cheng Laboratory, Shenzhen, 695571 China
| |
Collapse
|
2
|
Garcia-Vicente C, Gutierrez-Tobal GC, Vaquerizo-Villar F, Martin-Montero A, Gozal D, Hornero R. SleepECG-Net: Explainable Deep Learning Approach With ECG for Pediatric Sleep Apnea Diagnosis. IEEE J Biomed Health Inform 2025; 29:1021-1034. [PMID: 39527413 DOI: 10.1109/jbhi.2024.3495975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Obstructive sleep apnea (OSA) in children is a prevalent and serious respiratory condition linked to cardiovascular morbidity. Polysomnography, the standard diagnostic approach, faces challenges in accessibility and complexity, leading to underdiagnosis. To simplify OSA diagnosis, deep learning (DL) algorithms have been developed using cardiac signals, but they often lack interpretability. Our study introduces a novel interpretable DL approach (SleepECG-Net) for directly estimating OSA severity in at-risk children. A combination of convolutional and recurrent neural networks (CNN-RNN) was trained on overnight electrocardiogram (ECG) signals. Gradient-weighted Class Activation Mapping (Grad-CAM), an eXplainable Artificial Intelligence (XAI) algorithm, was applied to explain model decisions and extract ECG patterns relevant to pediatric OSA. Accordingly, ECG signals from the semi-public Childhood Adenotonsillectomy Trial (CHAT, n = 1610) and Cleveland Family Study (CFS,n = 64), and the private University of Chicago (UofC, n = 981) databases were used. OSA diagnostic performance reached 4-class Cohen's Kappa of 0.410, 0.335, and 0.249 in CHAT, UofC, and CFS, respectively. The proposal demonstrated improved performance with increased severity along with heightened cardiovascular risk. XAI findings highlighted the detection of established ECG features linked to OSA, such as bradycardia-tachycardia events and delayed ECG patterns during apnea/hypopnea occurrences, focusing on clusters of events. Furthermore, Grad-CAM heatmaps identified potential ECG patterns indicating cardiovascular risk, such as P, T, and U waves, QT intervals, and QRS complex variations. Hence, SleepECG-Net approach may improve pediatric OSA diagnosis by also offering cardiac risk factor information, thereby increasing clinician confidence in automated systems, and promoting their effective adoption in clinical practice.
Collapse
|
3
|
Ohn M, Maddison KJ, Walsh JH, von Ungern-Sternberg BS. The future of paediatric obstructive sleep apnoea assessment: Integrating artificial intelligence, biomarkers, and more. Paediatr Respir Rev 2025:S1526-0542(25)00006-5. [PMID: 39893075 DOI: 10.1016/j.prrv.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Assessing obstructive sleep apnoea (OSA) in children involves various methodologies, including sleep studies, nocturnal oximetry, and clinical evaluations. Previous literature has extensively discussed these traditional methods. Despite this, there is no consensus on the optimal screening method for childhood OSA, further complicated by the complexity and limited availability of diagnostic polysomnography (PSG). Recent advancements, such as the integration of artificial intelligence, biomarkers, 3D facial photography, and wearable technology, offer promising alternatives for early detection and more accurate diagnosis of OSA in children. This article provides a comprehensive review of these innovative techniques, highlighting their potential to enhance diagnostic accuracy and overcome the limitations of current methods. With an emphasis on cutting-edge technologies and emerging biomarkers, we discuss the future directions for paediatric OSA assessments and their potential to revolutionise clinical practice.
Collapse
Affiliation(s)
- Mon Ohn
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital Nedlands WA Australia; Division of Paediatrics, Medical School, The University of Western Australia, Crawley WA Australia; Perioperative Medicine Team, The Kids Research Institute Australia Nedlands WA Australia; Institute for Paediatric Perioperative Excellence, The University of Western Australia, Crawley WA Australia.
| | - Kathleen J Maddison
- Institute for Paediatric Perioperative Excellence, The University of Western Australia, Crawley WA Australia; Centre for Sleep Science, School of Human Sciences, The University of Western Australia, Crawley WA Australia; West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology & Sleep Medicine, Sir Charles Gairdner Hospital Nedlands WA Australia
| | - Jennifer H Walsh
- Institute for Paediatric Perioperative Excellence, The University of Western Australia, Crawley WA Australia; Centre for Sleep Science, School of Human Sciences, The University of Western Australia, Crawley WA Australia; West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology & Sleep Medicine, Sir Charles Gairdner Hospital Nedlands WA Australia. https://twitter.com/jenforsleep
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine Team, The Kids Research Institute Australia Nedlands WA Australia; Institute for Paediatric Perioperative Excellence, The University of Western Australia, Crawley WA Australia; Division of Emergency Medicine, Anaesthesia and Pain Medicine, Medical School, The University of Western Australia, Crawley WA Australia; Department of Anaesthesia and Pain Medicine, Perth Children's Hospital Nedlands WA Australia. https://twitter.com/britta_sleepydr
| |
Collapse
|
4
|
Mortazavi E, Tarvirdizadeh B, Alipour K, Ghamari M. Deep learning approaches for assessing pediatric sleep apnea severity through SpO2 signals. Sci Rep 2024; 14:22696. [PMID: 39353980 PMCID: PMC11445237 DOI: 10.1038/s41598-024-67729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/15/2024] [Indexed: 10/03/2024] Open
Abstract
Pediatric Sleep Apnea-Hypopnea (SAH) presents a significant health challenge, particularly in diagnostic contexts, where conventional Polysomnography (PSG) testing, although effective, can be distressing for children. Addressing this, our research proposes a less invasive method to assess pediatric SAH severity by analyzing blood oxygen saturation (SpO2) signals. We adopted two advanced deep learning architectures, namely ResNet-based and attention-augmented hybrid CNN-BiGRU models, to process SpO2 signals in a one-dimensional (1D) format for Apnea-Hypopnea Index (AHI) estimation in pediatric subjects. Employing the CHAT dataset, which includes 844 SpO2 signals, the data was partitioned into training (60%), testing (30%), and validation (10%) sets. A predefined validation subset was randomly selected to ensure the models' robustness via a threefold cross-validation approach. Comparative analysis revealed that while the ResNet model attained an average accuracy of 72.9% across four SAH severity categories with a kappa score of 0.57, the CNN-BiGRU-Attention model demonstrated superior performance, achieving an average accuracy of 75.95% and a kappa score of 0.63. This distinction underscores our method's efficacy in both estimating AHI and categorizing SAH severity levels with notable precision. Further, to evaluate diagnostic capabilities, the models were benchmarked against common AHI thresholds (1, 5, and 10 events/hour) in each test fold, affirming their effectiveness in identifying pediatric SAH. This study marks a significant advance in the field, offering a non-invasive, child-friendly alternative for pediatric SAH diagnosis. Although challenges persist in accurately estimating AHI, particularly in severe cases, our findings represent a critical stride towards improving diagnostic processes in pediatric SAH.
Collapse
Affiliation(s)
- Erfan Mortazavi
- Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, School of Intelligent Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Bahram Tarvirdizadeh
- Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, School of Intelligent Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Khalil Alipour
- Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, School of Intelligent Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Ghamari
- Department of Electrical Eng., California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| |
Collapse
|
5
|
Raisa RA, Rodela AS, Yousuf MA, Azad A, Alyami SA, Liò P, Islam MZ, Pogrebna G, Moni MA. Deep and Shallow Learning Model-Based Sleep Apnea Diagnosis Systems: A Comprehensive Study. IEEE ACCESS 2024; 12:122959-122987. [DOI: 10.1109/access.2024.3426928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Affiliation(s)
- Roksana Akter Raisa
- Department of Information and Communication Technology, Bangladesh University of Professionals, Mirpur, Dhaka, Bangladesh
| | - Ayesha Siddika Rodela
- Department of Information and Communication Technology, Bangladesh University of Professionals, Mirpur, Dhaka, Bangladesh
| | - Mohammad Abu Yousuf
- Institute of Information Technology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Akm Azad
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Salem A. Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, U.K
| | - Md Zahidul Islam
- School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW, Australia
| | - Ganna Pogrebna
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW, Australia
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|
6
|
García-Vicente C, Gutiérrez-Tobal GC, Jiménez-García J, Martín-Montero A, Gozal D, Hornero R. ECG-based convolutional neural network in pediatric obstructive sleep apnea diagnosis. Comput Biol Med 2023; 167:107628. [PMID: 37918264 PMCID: PMC11556022 DOI: 10.1016/j.compbiomed.2023.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice.
Collapse
Affiliation(s)
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Jorge Jiménez-García
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Adrián Martín-Montero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - David Gozal
- Office of The Dean, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Dr, Huntington, WV, 25701, USA
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
7
|
Barroso-García V, Fernández-Poyatos M, Sahelices B, Álvarez D, Gozal D, Hornero R, Gutiérrez-Tobal GC. Prediction of the Sleep Apnea Severity Using 2D-Convolutional Neural Networks and Respiratory Effort Signals. Diagnostics (Basel) 2023; 13:3187. [PMID: 37892008 PMCID: PMC10605440 DOI: 10.3390/diagnostics13203187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The high prevalence of sleep apnea and the limitations of polysomnography have prompted the investigation of strategies aimed at automated diagnosis using a restricted number of physiological measures. This study aimed to demonstrate that thoracic (THO) and abdominal (ABD) movement signals are useful for accurately estimating the severity of sleep apnea, even if central respiratory events are present. Thus, we developed 2D-convolutional neural networks (CNNs) jointly using THO and ABD to automatically estimate sleep apnea severity and evaluate the central event contribution. Our proposal achieved an intraclass correlation coefficient (ICC) = 0.75 and a root mean square error (RMSE) = 10.33 events/h when estimating the apnea-hypopnea index, and ICC = 0.83 and RMSE = 0.95 events/h when estimating the central apnea index. The CNN obtained accuracies of 94.98%, 79.82%, and 81.60% for 5, 15, and 30 events/h when evaluating the complete apnea hypopnea index. The model improved when the nature of the events was central: 98.72% and 99.74% accuracy for 5 and 15 events/h. Hence, the information extracted from these signals using CNNs could be a powerful tool to diagnose sleep apnea, especially in subjects with a high density of central apnea events.
Collapse
Affiliation(s)
- Verónica Barroso-García
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (M.F.-P.); (D.Á.); (R.H.); (G.C.G.-T.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
| | - Marta Fernández-Poyatos
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (M.F.-P.); (D.Á.); (R.H.); (G.C.G.-T.)
| | - Benjamín Sahelices
- Electronic Devices and Materials Characterization Group, Department of Computer Science, University of Valladolid, 47011 Valladolid, Spain;
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (M.F.-P.); (D.Á.); (R.H.); (G.C.G.-T.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
| | - David Gozal
- Office of The Dean, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA;
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (M.F.-P.); (D.Á.); (R.H.); (G.C.G.-T.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
| | - Gonzalo C. Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (M.F.-P.); (D.Á.); (R.H.); (G.C.G.-T.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
| |
Collapse
|
8
|
Almarshad MA, Al-Ahmadi S, Islam MS, BaHammam AS, Soudani A. Adoption of Transformer Neural Network to Improve the Diagnostic Performance of Oximetry for Obstructive Sleep Apnea. SENSORS (BASEL, SWITZERLAND) 2023; 23:7924. [PMID: 37765980 PMCID: PMC10536445 DOI: 10.3390/s23187924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Scoring polysomnography for obstructive sleep apnea diagnosis is a laborious, long, and costly process. Machine learning approaches, such as deep neural networks, can reduce scoring time and costs. However, most methods require prior filtering and preprocessing of the raw signal. Our work presents a novel method for diagnosing obstructive sleep apnea using a transformer neural network with learnable positional encoding, which outperforms existing state-of-the-art solutions. This approach has the potential to improve the diagnostic performance of oximetry for obstructive sleep apnea and reduce the time and costs associated with traditional polysomnography. Contrary to existing approaches, our approach performs annotations at one-second granularity. Allowing physicians to interpret the model's outcome. In addition, we tested different positional encoding designs as the first layer of the model, and the best results were achieved using a learnable positional encoding based on an autoencoder with structural novelty. In addition, we tried different temporal resolutions with various granularity levels from 1 to 360 s. All experiments were carried out on an independent test set from the public OSASUD dataset and showed that our approach outperforms current state-of-the-art solutions with a satisfactory AUC of 0.89, accuracy of 0.80, and F1-score of 0.79.
Collapse
Affiliation(s)
- Malak Abdullah Almarshad
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia (M.S.I.)
- Computer Science Department, College of Computer and Information Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Saad Al-Ahmadi
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia (M.S.I.)
| | - Md Saiful Islam
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia (M.S.I.)
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia
- Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, Riyadh 11324, Saudi Arabia
| | - Adel Soudani
- Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia (M.S.I.)
| |
Collapse
|
9
|
Crowson MG, Gipson KS, Katz Kadosh O, Hartnick E, Grealish E, Keamy DG, Kinane TB, Hartnick CJ. Paediatric sleep apnea event prediction using nasal air pressure and machine learning. J Sleep Res 2023; 32:e13851. [PMID: 36807952 PMCID: PMC10363180 DOI: 10.1111/jsr.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
Sleep-disordered breathing is an important health issue for children. The objective of this study was to develop a machine learning classifier model for the identification of sleep apnea events taken exclusively from nasal air pressure measurements acquired during overnight polysomnography for paediatric patients. A secondary objective of this study was to differentiate site of obstruction exclusively from hypopnea event data using the model. Computer vision classifiers were developed via transfer learning to either normal breathing while asleep, obstructive hypopnea, obstructive apnea or central apnea. A separate model was trained to identify site of obstruction as either adeno-tonsillar or tongue base. In addition, a survey of board-certified and board-eligible sleep physicians was completed to compare clinician versus model classification performance of sleep events, and indicated very good performance of our model relative to human raters. The nasal air pressure sample database available for modelling comprised 417 normal, 266 obstructive hypopnea, 122 obstructive apnea and 131 central apnea events derived from 28 paediatric patients. The four-way classifier achieved a mean prediction accuracy of 70.0% (95% confidence interval [67.1-72.9]). Clinician raters correctly identified sleep events from nasal air pressure tracings 53.8% of the time, whereas the local model was 77.5% accurate. The site of obstruction classifier achieved a mean prediction accuracy of 75.0% (95% confidence interval [68.7-81.3]). Machine learning applied to nasal air pressure tracings is feasible and may exceed the diagnostic performance of expert clinicians. Nasal air pressure tracings of obstructive hypopneas may "encode" information regarding the site of obstruction, which may only be discernable by machine learning.
Collapse
Affiliation(s)
- Matthew G. Crowson
- Department of Otolaryngology-Head & Neck Surgery, Mass Eye & Ear, Boston, Massachusetts
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Kevin S. Gipson
- Department of Pediatric Pulmonary Medicine, MassGeneral Hospital for Children, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Orna Katz Kadosh
- Department of Otolaryngology-Head & Neck Surgery, Mass Eye & Ear, Boston, Massachusetts
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | | | | | - Donald G. Keamy
- Department of Otolaryngology-Head & Neck Surgery, Mass Eye & Ear, Boston, Massachusetts
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Thomas Bernard Kinane
- Department of Pediatric Pulmonary Medicine, MassGeneral Hospital for Children, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts
| | - Christopher J. Hartnick
- Department of Otolaryngology-Head & Neck Surgery, Mass Eye & Ear, Boston, Massachusetts
- Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Rossi M, Sala D, Bovio D, Salito C, Alessandrelli G, Lombardi C, Mainardi L, Cerveri P. SLEEP-SEE-THROUGH: Explainable Deep Learning for Sleep Event Detection and Quantification From Wearable Somnography. IEEE J Biomed Health Inform 2023; 27:3129-3140. [PMID: 37058373 DOI: 10.1109/jbhi.2023.3267087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Evidence is rapidly accumulating that multifactorial nocturnal monitoring, through the coupling of wearable devices and deep learning, may be disruptive for early diagnosis and assessment of sleep disorders. In this work, optical, differential air-pressure and acceleration signals, acquired by a chest-worn sensor, are elaborated into five somnographic-like signals, which are then used to feed a deep network. This addresses a three-fold classification problem to predict the overall signal quality (normal, corrupted), three breathing-related patterns (normal, apnea, irregular) and three sleep-related patterns (normal, snoring, noise). In order to promote explainability, the developed architecture generates additional information in the form of qualitative (saliency maps) and quantitative (confidence indices) data, which helps to improve the interpretation of the predictions. Twenty healthy subjects enrolled in this study were monitored overnight for approximately ten hours during sleep. Somnographic-like signals were manually labeled according to the three class sets to build the training dataset. Both record- and subject-wise analyses were performed to evaluate the prediction performance and the coherence of the results. The network was accurate (0.96) in distinguishing normal from corrupted signals. Breathing patterns were predicted with higher accuracy (0.93) than sleep patterns (0.76). The prediction of irregular breathing was less accurate (0.88) than that of apnea (0.97). In the sleep pattern set, the distinction between snoring (0.73) and noise events (0.61) was less effective. The confidence index associated with the prediction allowed us to elucidate ambiguous predictions better. The saliency map analysis provided useful insights to relate predictions to the input signal content. While preliminary, this work supported the recent perspective on the use of deep learning to detect particular sleep events in multiple somnographic signals, thus representing a step towards bringing the use of AI-based tools for sleep disorder detection incrementally closer to clinical translation.
Collapse
|
11
|
Martín-Montero A, Armañac-Julián P, Gil E, Kheirandish-Gozal L, Álvarez D, Lázaro J, Bailón R, Gozal D, Laguna P, Hornero R, Gutiérrez-Tobal GC. Pediatric sleep apnea: Characterization of apneic events and sleep stages using heart rate variability. Comput Biol Med 2023; 154:106549. [PMID: 36706566 DOI: 10.1016/j.compbiomed.2023.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/16/2023]
Abstract
Heart rate variability (HRV) is modulated by sleep stages and apneic events. Previous studies in children compared classical HRV parameters during sleep stages between obstructive sleep apnea (OSA) and controls. However, HRV-based characterization incorporating both sleep stages and apneic events has not been conducted. Furthermore, recently proposed novel HRV OSA-specific parameters have not been evaluated. Therefore, the aim of this study was to characterize and compare classic and pediatric OSA-specific HRV parameters while including both sleep stages and apneic events. A total of 1610 electrocardiograms from the Childhood Adenotonsillectomy Trial (CHAT) database were split into 10-min segments to extract HRV parameters. Segments were characterized and grouped by sleep stage (wake, W; non-rapid eye movement, NREMS; and REMS) and presence of apneic events (under 1 apneic event per segment, e/s; 1-5 e/s; 5-10 e/s; and over 10 e/s). NREMS showed significant changes in HRV parameters as apneic event frequency increased, which were less marked in REMS. In both NREMS and REMS, power in BW2, a pediatric OSA-specific frequency domain, allowed for the optimal differentiation among segments. Moreover, in the absence of apneic events, another defined band, BWRes, resulted in best differentiation between sleep stages. The clinical usefulness of segment-based HRV characterization was then confirmed by two ensemble-learning models aimed at estimating apnea-hypopnea index and classifying sleep stages, respectively. We surmise that basal sympathetic activity during REMS may mask apneic events-induced sympathetic excitation, thus highlighting the importance of incorporating sleep stages as well as apneic events when evaluating HRV in pediatric OSA.
Collapse
Affiliation(s)
- Adrián Martín-Montero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain.
| | - Pablo Armañac-Julián
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain; Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Eduardo Gil
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain; Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Jesús Lázaro
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain; Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Raquel Bailón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain; Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Pablo Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain; Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
12
|
Sharma M, Kumar K, Kumar P, Tan RS, Rajendra Acharya U. Pulse oximetry SpO2signal for automated identification of sleep apnea: a review and future trends. Physiol Meas 2022; 43. [PMID: 36215979 DOI: 10.1088/1361-6579/ac98f0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
Sleep apnea (SA) is characterized by intermittent episodes of apnea or hypopnea paused or reduced breathing, respectively each lasting at least ten seconds that occur during sleep. SA has an estimated global prevalence of 200 million and is associated with medical comorbidity, and sufferers are also more likely to sustain traffic- and work-related injury due to daytime somnolence. SA is amenable to treatment if detected early. Polysomnography (PSG) involving multi-channel signal acquisition is the reference standard for diagnosing SA but is onerous and costly. For home-based detection of SA, single-channelSpO2signal acquisition using portable pulse oximeters is feasible. Machine (ML) and deep learning (DL) models have been developed for automated classification of SA versus no SA usingSpO2signals alone. In this work, we review studies published between 2012 and 2022 on the use of ML and DL forSpO2signal-based diagnosis of SA. A literature search based on PRISMA recommendations yielded 297 publications, of which 31 were selected after considering the inclusion and exclusion criteria. There were 20 ML and 11 DL models; their methods, differences, results, merits, and limitations were discussed. Many studies reported encouraging performance, which indicates the utility ofSpO2signals in wearable devices for home-based SA detection.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Kamlesh Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Prince Kumar
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.,Department of Biomedical Engineering, School of Science and Technology, Singapore 639798, Singapore
| |
Collapse
|
13
|
Moridian P, Shoeibi A, Khodatars M, Jafari M, Pachori RB, Khadem A, Alizadehsani R, Ling SH. Automatic diagnosis of sleep apnea from biomedical signals using artificial intelligence techniques: Methods, challenges, and future works. WIRES DATA MINING AND KNOWLEDGE DISCOVERY 2022; 12. [DOI: 10.1002/widm.1478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/09/2022] [Indexed: 01/03/2025]
Abstract
AbstractApnea is a sleep disorder that stops or reduces airflow for a short time during sleep. Sleep apnea may last for a few seconds and happen for many while sleeping. This reduction in breathing is associated with loud snoring, which may awaken the person with a feeling of suffocation. So far, a variety of methods have been introduced by researchers to diagnose sleep apnea, among which the polysomnography (PSG) method is known to be the best. Analysis of PSG signals is very complicated. Many studies have been conducted on the automatic diagnosis of sleep apnea from biological signals using artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods. This research reviews and investigates the studies on the diagnosis of sleep apnea using AI methods. First, computer aided diagnosis system (CADS) for sleep apnea using ML and DL techniques along with its parts including dataset, preprocessing, and ML and DL methods are introduced. This research also summarizes the important specifications of the studies on the diagnosis of sleep apnea using ML and DL methods in a table. In the following, a comprehensive discussion is made on the studies carried out in this field. The challenges in the diagnosis of sleep apnea using AI methods are of paramount importance for researchers. Accordingly, these obstacles are elaborately addressed. In another section, the most important future works for studies on sleep apnea detection from PSG signals and AI techniques are presented. Ultimately, the essential findings of this study are provided in the conclusion section.This article is categorized under:
Technologies > Artificial Intelligence
Application Areas > Data Mining Software Tools
Algorithmic Development > Biological Data Mining
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering BDAL Lab, K. N. Toosi University of Technology Tehran Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch Islamic Azad University Mashhad Iran
| | - Mahboobeh Jafari
- Electrical and Computer Engineering Faculty Semnan University Semnan Iran
| | - Ram Bilas Pachori
- Department of Electrical Engineering Indian Institute of Technology Indore Indore India
| | - Ali Khadem
- Department of Biomedical Engineering Faculty of Electrical Engineering, K. N. Toosi University of Technology Tehran Iran
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Geelong Victoria Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT University of Technology Sydney (UTS) Sydney New South Wales Australia
| |
Collapse
|
14
|
Garde AJ, Gibson NA, Samuels MP, Evans HJ. Recent advances in paediatric sleep disordered breathing. Breathe (Sheff) 2022; 18:220151. [PMID: 36340818 PMCID: PMC9584598 DOI: 10.1183/20734735.0151-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
This article reviews the latest evidence pertaining to childhood sleep disordered breathing (SDB), which is associated with negative neurobehavioural, cardiovascular and growth outcomes. Polysomnography is the accepted gold standard for diagnosing SDB but is expensive and limited to specialist centres. Simpler tests such as cardiorespiratory polygraphy and pulse oximetry are probably sufficient for diagnosing obstructive sleep apnoea (OSA) in typically developing children, and new data-processing techniques may improve their accuracy. Adenotonsillectomy is the first-line treatment for OSA, with recent evidence showing that intracapsular tonsillectomy results in lower rates of adverse events than traditional techniques. Anti-inflammatory medication and positive airway pressure respiratory support are not always suitable or successful, although weight loss and hypoglossal nerve stimulation may help in select comorbid conditions. Educational aims To understand the clinical impact of childhood sleep disordered breathing (SDB).To understand that, while sleep laboratory polysomnography has been the gold standard for diagnosis of SDB, other diagnostic techniques exist with their own benefits and limitations.To recognise that adenotonsillectomy and positive pressure respiratory support are the mainstays of treating childhood SDB, but different approaches may be indicated in certain patient groups.
Collapse
Affiliation(s)
- Alison J.B. Garde
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Martin P. Samuels
- Staffordshire Children's Hospital, Royal Stoke University Hospital, Stoke-on-Trent, UK,Great Ormond Street Hospital, London, UK
| | - Hazel J. Evans
- University Hospital Southampton NHS Foundation Trust, Southampton, UK,Corresponding author: Hazel J. Evans ()
| |
Collapse
|
15
|
Jiménez-García J, García M, Gutiérrez-Tobal GC, Kheirandish-Gozal L, Vaquerizo-Villar F, Álvarez D, del Campo F, Gozal D, Hornero R. A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry. Comput Biol Med 2022; 147:105784. [DOI: 10.1016/j.compbiomed.2022.105784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
|
16
|
Castillo-Escario Y, Werthen-Brabants L, Groenendaal W, Deschrijver D, Jane R. Convolutional Neural Networks for Apnea Detection from Smartphone Audio Signals: Effect of Window Size. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:666-669. [PMID: 36085651 DOI: 10.1109/embc48229.2022.9871396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although sleep apnea is one of the most prevalent sleep disorders, most patients remain undiagnosed and untreated. The gold standard for sleep apnea diagnosis, polysomnography, has important limitations such as its high cost and complexity. This leads to a growing need for novel cost-effective systems. Mobile health tools and deep learning algorithms are nowadays being proposed as innovative solutions for automatic apnea detection. In this work, a convolutional neural network (CNN) is trained for the identification of apnea events from the spectrograms of audio signals recorded with a smartphone. A systematic comparison of the effect of different window sizes on the model performance is provided. According to the results, the best models are obtained with 60 s windows (sensitivity-0.72, specilicity-0.89, AUROC = 0.88), For smaller windows, the model performance can be negatively impacted, because the windows become shorter than most apnea events, by which sound reductions can no longer be appreciated. On the other hand, longer windows tend to include multiple or mixed events, that will confound the model. This careful trade-off demonstrates the importance of selecting a proper window size to obtain models with adequate predictive power. This paper shows that CNNs applied to smartphone audio signals can facilitate sleep apnea detection in a realistic setting and is a first step towards an automated method to assist sleep technicians. Clinical Relevance- The results show the effect of the window size on the predictive power of CNNs for apnea detection. Furthermore, the potential of smartphones, audio signals, and deep neural networks for automatic sleep apnea screening is demonstrated.
Collapse
|
17
|
Detection of pediatric obstructive sleep apnea using a multilayer perception model based on single-channel oxygen saturation or clinical features. Methods 2022; 204:361-367. [DOI: 10.1016/j.ymeth.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
|
18
|
Del Campo F, Arroyo CA, Zamarrón C, Álvarez D. Diagnosis of Obstructive Sleep Apnea in Patients with Associated Comorbidity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:43-61. [PMID: 36217078 DOI: 10.1007/978-3-031-06413-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Obstructive sleep apnea (OSA) is a heterogeneous disease with many physiological implications. OSA is associated with a great diversity of diseases, with which it shares common and very often bidirectional pathophysiological mechanisms, leading to significantly negative implications on morbidity and mortality. In these patients, underdiagnosis of OSA is high. Concerning cardiorespiratory comorbidities, several studies have assessed the usefulness of simplified screening tests for OSA in patients with hypertension, COPD, heart failure, atrial fibrillation, stroke, morbid obesity, and in hospitalized elders.The key question is whether there is any benefit in the screening for the existence of OSA in patients with comorbidities. In this regard, there are few studies evaluating the performance of the various diagnostic procedures in patients at high risk for OSA. The purpose of this chapter is to review the existing literature about diagnosis in those diseases with a high risk for OSA, with special reference to artificial intelligence-related methods.
Collapse
Affiliation(s)
- Félix Del Campo
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain
| | - C Ainhoa Arroyo
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Carlos Zamarrón
- Division of Respiratory Medicine, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Daniel Álvarez
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain.
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN). Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Gutiérrez-Tobal GC, Álvarez D, Vaquerizo-Villar F, Barroso-García V, Gómez-Pilar J, Del Campo F, Hornero R. Conventional Machine Learning Methods Applied to the Automatic Diagnosis of Sleep Apnea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:131-146. [PMID: 36217082 DOI: 10.1007/978-3-031-06413-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The overnight polysomnography shows a range of drawbacks to diagnose obstructive sleep apnea (OSA) that have led to the search for artificial intelligence-based alternatives. Many classic machine learning methods have been already evaluated for this purpose. In this chapter, we show the main approaches found in the scientific literature along with the most used data to develop the models, useful and large easily available databases, and suitable methods to assess performances. In addition, a range of results from selected studies are presented as examples of these methods. Very high diagnostic performances are reported in these results regardless of the approaches taken. This leads us to conclude that conventional machine learning methods are useful techniques to develop new OSA diagnosis simplification proposals and to act as benchmark for other more recent methods such as deep learning.
Collapse
Affiliation(s)
- Gonzalo C Gutiérrez-Tobal
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales, Nanomedicina, Madrid, Spain.
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.
| | - Daniel Álvarez
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales, Nanomedicina, Madrid, Spain
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Fernando Vaquerizo-Villar
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales, Nanomedicina, Madrid, Spain
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Verónica Barroso-García
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales, Nanomedicina, Madrid, Spain
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Javier Gómez-Pilar
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales, Nanomedicina, Madrid, Spain
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Félix Del Campo
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales, Nanomedicina, Madrid, Spain
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Sleep Unit, Pneumology Service, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Roberto Hornero
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales, Nanomedicina, Madrid, Spain
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| |
Collapse
|
20
|
Álvarez D, Gutiérrez-Tobal GC, Vaquerizo-Villar F, Moreno F, Del Campo F, Hornero R. Oximetry Indices in the Management of Sleep Apnea: From Overnight Minimum Saturation to the Novel Hypoxemia Measures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:219-239. [PMID: 36217087 DOI: 10.1007/978-3-031-06413-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obstructive sleep apnea (OSA) is a multidimensional disease often underdiagnosed due to the complexity and unavailability of its standard diagnostic method: the polysomnography. Among the alternative abbreviated tests searching for a compromise between simplicity and accurateness, oximetry is probably the most popular. The blood oxygen saturation (SpO2) signal is characterized by a near-constant profile in healthy subjects breathing normally, while marked drops (desaturations) are linked to respiratory events. Parameterization of the desaturations has led to a great number of indices of severity assessment commonly used to assist in OSA diagnosis. In this chapter, the main methodologies used to characterize the overnight oximetry profile are reviewed, from visual inspection and simple statistics to complex measures involving signal processing and pattern recognition techniques. We focus on the individual performance of each approach, but also on the complementarity among the great amount of indices existing in the state of the art, looking for the most relevant oximetric feature subset. Finally, a quick overview of SpO2-based deep learning applications for OSA management is carried out, where the raw oximetry signal is analyzed without previous parameterization. Our research allows us to conclude that all the methodologies (conventional, time, frequency, nonlinear, and hypoxemia-based) demonstrate high ability to provide relevant oximetric indices, but only a reduced set provide non-redundant complementary information leading to a significant performance increase. Finally, although oximetry is a robust tool, greater standardization and prospective validation of the measures derived from complex signal processing techniques are still needed to homogenize interpretation and increase generalizability.
Collapse
Affiliation(s)
- Daniel Álvarez
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain.
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain.
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Fernando Vaquerizo-Villar
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Fernando Moreno
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Félix Del Campo
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
21
|
Vaquerizo-Villar F, Álvarez D, Gutiérrez-Tobal GC, Arroyo-Domingo CA, del Campo F, Hornero R. Deep-Learning Model Based on Convolutional Neural Networks to Classify Apnea–Hypopnea Events from the Oximetry Signal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:255-264. [PMID: 36217089 DOI: 10.1007/978-3-031-06413-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Automated analysis of the blood oxygen saturation (SpO2) signal from nocturnal oximetry has shown usefulness to simplify the diagnosis of obstructive sleep apnea (OSA), including the detection of respiratory events. However, the few preceding studies using SpO2 recordings have focused on the automated detection of respiratory events versus normal respiration, without making any distinction between apneas and hypopneas. In this sense, the characteristics of oxygen desaturations differ between obstructive apnea and hypopnea episodes. In this chapter, we use the SpO2 signal along with a convolutional neural network (CNN)-based deep-learning architecture for the automatic identification of apnea and hypopnea events. A total of 398 SpO2 signals from adult OSA patients were used for this purpose. A CNN architecture was trained using 30-s epochs from the SpO2 signal for the automatic classification of three classes: normal respiration, apnea, and hypopnea. Then, the apnea index (AI), the hypopnea index (HI), and the apnea-hypopnea index (AHI) were obtained by aggregating the outputs of the CNN for each subject (AICNN, HICNN, and AHICNN). This model showed a promising diagnostic performance in an independent test set, with 80.3% 3-class accuracy and 0.539 3-class Cohen's kappa for the classification of respiratory events. Furthermore, AICNN, HICNN, and AHICNN showed a high agreement with the values obtained from the standard PSG: 0.8023, 0.6774, and 0.8466 intra-class correlation coefficients (ICCs), respectively. This suggests that CNN can be used to analyze SpO2 recordings for the automated diagnosis of OSA in at-home oximetry tests.
Collapse
|
22
|
Gozal D. Diagnostic approaches to respiratory abnormalities in craniofacial syndromes. Semin Fetal Neonatal Med 2021; 26:101292. [PMID: 34556443 DOI: 10.1016/j.siny.2021.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Craniofacial syndromes are a complex cluster of genetic conditions characterized by embryonic perturbations in the developmental trajectory of the upper airway and related structures. The presence of reduced airway size and maladaptive neuromuscular responses, particularly during sleep, leads to significant alterations in sleep architecture and overall detrimental gas exchange abnormalities that can be life-threatening. The common need for multi-stage therapeutic interventions for these craniofacial problems requires careful titration of anatomy and function, and the latter is currently evaluated by overnight polysomnography in sleep laboratories. The cost, inconvenience, and scarcity of pediatric sleep laboratories preclude the frequent evaluations that could optimize the overall process of treatment and corresponding outcomes. Here, we critically examine reductionist approaches to polysomnography in children to establish the parallel approximation of such techniques to infant with craniofacial disorders. The need for prospective longitudinal multicenter studies with side-by-side comparisons aimed at identifying an optimal diagnostic and long-term monitoring paradigm for these potentially life-threatening conditions is emphasized.
Collapse
Affiliation(s)
- David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
23
|
Li Y, Zeng G, Zhang Y, Wang J, Jin Q, Sun L, Zhang Q, Lian Q, Qian G, Xia N, Peng R, Tang K, Wang S, Wang Y. AGMB-Transformer: Anatomy-Guided Multi-Branch Transformer Network for Automated Evaluation of Root Canal Therapy. IEEE J Biomed Health Inform 2021; 26:1684-1695. [PMID: 34797767 DOI: 10.1109/jbhi.2021.3129245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accurate evaluation of the treatment result on X-ray images is a significant and challenging step in root canal therapy since the incorrect interpretation of the therapy results will hamper timely follow-up which is crucial to the patients' treatment outcome. Nowadays, the evaluation is performed in a manual manner, which is time-consuming, subjective, and error-prone. In this paper, we aim to automate this process by leveraging the advances in computer vision and artificial intelligence, to provide an objective and accurate method for root canal therapy result assessment. A novel anatomy-guided multi-branch Transformer (AGMB-Transformer) network is proposed, which first extracts a set of anatomy features and then uses them to guide a multi-branch Transformer network for evaluation. Specifically, we design a polynomial curve fitting segmentation strategy with the help of landmark detection to extract the anatomy features. Moreover, a branch fusion module and a multi-branch structure including our progressive Transformer and Group Multi-Head Self-Attention (GMHSA) are designed to focus on both global and local features for an accurate diagnosis. To facilitate the research, we have collected a large-scale root canal therapy evaluation dataset with 245 root canal therapy X-ray images, and the experiment results show that our AGMB-Transformer can improve the diagnosis accuracy from 57.96% to 90.20% compared with the baseline network. The proposed AGMB-Transformer can achieve a highly accurate evaluation of root canal therapy. To our best knowledge, our work is the first to perform automatic root canal therapy evaluation and has important clinical value to reduce the workload of endodontists.
Collapse
|
24
|
Martín-Montero A, Gutiérrez-Tobal GC, Gozal D, Barroso-García V, Álvarez D, del Campo F, Kheirandish-Gozal L, Hornero R. Bispectral Analysis of Heart Rate Variability to Characterize and Help Diagnose Pediatric Sleep Apnea. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1016. [PMID: 34441156 PMCID: PMC8394544 DOI: 10.3390/e23081016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Pediatric obstructive sleep apnea (OSA) is a breathing disorder that alters heart rate variability (HRV) dynamics during sleep. HRV in children is commonly assessed through conventional spectral analysis. However, bispectral analysis provides both linearity and stationarity information and has not been applied to the assessment of HRV in pediatric OSA. Here, this work aimed to assess HRV using bispectral analysis in children with OSA for signal characterization and diagnostic purposes in two large pediatric databases (0-13 years). The first database (training set) was composed of 981 overnight ECG recordings obtained during polysomnography. The second database (test set) was a subset of the Childhood Adenotonsillectomy Trial database (757 children). We characterized three bispectral regions based on the classic HRV frequency ranges (very low frequency: 0-0.04 Hz; low frequency: 0.04-0.15 Hz; and high frequency: 0.15-0.40 Hz), as well as three OSA-specific frequency ranges obtained in recent studies (BW1: 0.001-0.005 Hz; BW2: 0.028-0.074 Hz; BWRes: a subject-adaptive respiratory region). In each region, up to 14 bispectral features were computed. The fast correlation-based filter was applied to the features obtained from the classic and OSA-specific regions, showing complementary information regarding OSA alterations in HRV. This information was then used to train multi-layer perceptron (MLP) neural networks aimed at automatically detecting pediatric OSA using three clinically defined severity classifiers. Both classic and OSA-specific MLP models showed high and similar accuracy (Acc) and areas under the receiver operating characteristic curve (AUCs) for moderate (classic regions: Acc = 81.0%, AUC = 0.774; OSA-specific regions: Acc = 81.0%, AUC = 0.791) and severe (classic regions: Acc = 91.7%, AUC = 0.847; OSA-specific regions: Acc = 89.3%, AUC = 0.841) OSA levels. Thus, the current findings highlight the usefulness of bispectral analysis on HRV to characterize and diagnose pediatric OSA.
Collapse
Affiliation(s)
- Adrián Martín-Montero
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
| | - Gonzalo C. Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO 65212, USA; (D.G.); (L.K.-G.)
| | - Verónica Barroso-García
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Félix del Campo
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
- Sleep-Ventilation Unit, Pneumology Service, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health and the Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO 65212, USA; (D.G.); (L.K.-G.)
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| |
Collapse
|