1
|
Verma G, Gupta A. Next-Generation Chemiresistive Wearable Breath Sensors for Non-Invasive Healthcare Monitoring: Advances in Composite and Hybrid Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411495. [PMID: 39967468 DOI: 10.1002/smll.202411495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Recently wearable breath sensors have received significant attention in personalized healthcare systems by offering new methods for remote, non-invasive, and continuous monitoring of various health indicators from breath samples without disrupting daily routines. The rising demand for rapid, personalized diagnostics has sparked concerns over electronic waste from short-lived silicon-based devices. To address this issue, the development of flexible and wearable sensors for breath sensing applications is a promising approach. Research highlights the development of different flexible, wearable sensors operating with different operating principles, such as chemiresistive sensors to detect specific target analytes due to their simple design, high sensitivity, selectivity, and reliability. Further, focusing on the non-invasive detection of biomarkers through exhaled breath, chemiresistive wearable sensors offer a comprehensive and environmentally friendly solution. This article presents a comprehensive discussion of the recent advancement in chemiresistive wearable breath sensors for the non-invasive detection of breath biomarkers. The article further emphasizes the intricate development and functioning of the sensor, including the selection criteria for both the flexible substrate and advanced functional materials, including their sensing mechanisms. The review then explores the potential applications of wearable gas sensing systems with specific disease detection, with modern challenges associated with non-invasive breath sensors.
Collapse
Affiliation(s)
- Gulshan Verma
- Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| |
Collapse
|
2
|
Wang X, Xiao X, Feng Z, Wu Y, Yang J, Chen J. A Soft Bioelectronic Patch for Simultaneous Respiratory and Cardiovascular Monitoring. Adv Healthc Mater 2024; 13:e2303479. [PMID: 38010831 DOI: 10.1002/adhm.202303479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Sleep is critical to maintaining physical and mental health. Measuring physiological parameters to quantify sleep quality without uncomfortable user experience remains highly desired but a challenge. Here, this work develops a soft bioelectronic patch to perform simultaneous respiration and cardiovascular monitoring during sleep in a wearable and non-invasive manner. The soft bioelectronic patch system is mainly composed of a pressure sensor, a flexible printed circuit for signal processing, and a soft thermoplastic urethane mold for assembling different functional modules. The soft bioelectronic patch holds a sensitivity of >0.12 V kPa-1 and a remarkable low-frequency response from 0.5 to 15 Hz. It is demonstrated to continuously monitor respiration and heartbeat during the whole night, which could be harnessed for sleep monitoring and obstructive sleep apnea-hypopnea syndrome diagnosis. The reported soft bioelectronic patch represents a simple and convenient platform technology for sleep study.
Collapse
Affiliation(s)
- Xue Wang
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Zhiping Feng
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, P. R. China
| | - Yufen Wu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Jin Yang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, 400044, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Hussain T, Ullah S, Fernández-García R, Gil I. Wearable Sensors for Respiration Monitoring: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7518. [PMID: 37687977 PMCID: PMC10490703 DOI: 10.3390/s23177518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
This paper provides an overview of flexible and wearable respiration sensors with emphasis on their significance in healthcare applications. The paper classifies these sensors based on their operating frequency distinguishing between high-frequency sensors, which operate above 10 MHz, and low-frequency sensors, which operate below this level. The operating principles of breathing sensors as well as the materials and fabrication techniques employed in their design are addressed. The existing research highlights the need for robust and flexible materials to enable the development of reliable and comfortable sensors. Finally, the paper presents potential research directions and proposes research challenges in the field of flexible and wearable respiration sensors. By identifying emerging trends and gaps in knowledge, this review can encourage further advancements and innovation in the rapidly evolving domain of flexible and wearable sensors.
Collapse
Affiliation(s)
- Tauseef Hussain
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain; (R.F.-G.); (I.G.)
| | - Sana Ullah
- Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy;
| | - Raúl Fernández-García
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain; (R.F.-G.); (I.G.)
| | - Ignacio Gil
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain; (R.F.-G.); (I.G.)
| |
Collapse
|
4
|
Benjamin SR, de Lima F, Nascimento VAD, de Andrade GM, Oriá RB. Advancement in Paper-Based Electrochemical Biosensing and Emerging Diagnostic Methods. BIOSENSORS 2023; 13:689. [PMID: 37504088 PMCID: PMC10377443 DOI: 10.3390/bios13070689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The utilization of electrochemical detection techniques in paper-based analytical devices (PADs) has revolutionized point-of-care (POC) testing, enabling the precise and discerning measurement of a diverse array of (bio)chemical analytes. The application of electrochemical sensing and paper as a suitable substrate for point-of-care testing platforms has led to the emergence of electrochemical paper-based analytical devices (ePADs). The inherent advantages of these modified paper-based analytical devices have gained significant recognition in the POC field. In response, electrochemical biosensors assembled from paper-based materials have shown great promise for enhancing sensitivity and improving their range of use. In addition, paper-based platforms have numerous advantageous characteristics, including the self-sufficient conveyance of liquids, reduced resistance, minimal fabrication cost, and environmental friendliness. This study seeks to provide a concise summary of the present state and uses of ePADs with insightful commentary on their practicality in the field. Future developments in ePADs biosensors include developing novel paper-based systems, improving system performance with a novel biocatalyst, and combining the biosensor system with other cutting-edge tools such as machine learning and 3D printing.
Collapse
Affiliation(s)
- Stephen Rathinaraj Benjamin
- Drug Research and Development Center (NPDM), Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| | - Fábio de Lima
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul UFMS, Campo Grande 79070-900, MS, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul UFMS, Campo Grande 79070-900, MS, Brazil
| | - Geanne Matos de Andrade
- Drug Research and Development Center (NPDM), Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, Institute of Biomedicine, School of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| |
Collapse
|
5
|
Korotcenkov G, Simonenko NP, Simonenko EP, Sysoev VV, Brinzari V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081381. [PMID: 37110966 PMCID: PMC10144639 DOI: 10.3390/nano13081381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
This review article covers all types of paper-based humidity sensor, such as capacitive, resistive, impedance, fiber-optic, mass-sensitive, microwave, and RFID (radio-frequency identification) humidity sensors. The parameters of these sensors and the materials involved in their research and development, such as carbon nanotubes, graphene, semiconductors, and polymers, are comprehensively detailed, with a special focus on the advantages/disadvantages from an application perspective. Numerous technological/design approaches to the optimization of the performances of the sensors are considered, along with some non-conventional approaches. The review ends with a detailed analysis of the current problems encountered in the development of paper-based humidity sensors, supported by some solutions.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia;
| | - Vladimir Brinzari
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| |
Collapse
|
6
|
Lim WY, Goh CH, Yap KZ, Ramakrishnan N. One-Step Fabrication of Paper-Based Inkjet-Printed Graphene for Breath Monitor Sensors. BIOSENSORS 2023; 13:bios13020209. [PMID: 36831975 PMCID: PMC9953765 DOI: 10.3390/bios13020209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 05/14/2023]
Abstract
Irregularities in breathing patterns can be detected using breath monitor sensors, and this help clinicians to predict health disorders ranging from sleep disorders to heart failures. Variations in humidity during the inhalation and exhalation of breath have been utilized as a marker to detect breath patterns, and graphene-based devices are the favored sensing media for relative humidity (RH). In general, most graphene-based RH sensors have been used to explore resistance change as a measurement parameter to calibrate against the RH value, and they are prone to noise interference. Here, we fabricated RH sensors using graphene ink as a sensing medium and printed them in the shape of interdigital electrodes on glossy paper using an office inkjet printer. Further, we investigated the capacitance change in the sensor for the RH changes in the range of 10-70%. It exhibited excellent sensitivity with 0.03 pF/% RH, good stability, and high intraday and interday repeatability, with relative standard deviations of 1.2% and 2.2%, respectively. Finally, the sensor was embedded into a face mask and interfaced with a microcontroller, and capacitance change was measured under three different breathing situations: normal breathing, deep breathing, and coughing. The result show that the dominant frequency for normal breath is 0.22 Hz, for deep breath, it is 0.11 Hz, and there was no significant dominant cough frequency due to persistent coughing and inconsistent patterns. Moreover, the sensor exhibited a short response and recovery time (<5 s) during inhalation and exhalation. Thus, the proposed paper-based RH sensor is promising wearable and disposable healthcare technology for clinical and home care health applications.
Collapse
Affiliation(s)
- Wei Yin Lim
- Nano and Micro Devices Laboratory, Electrical and Computer Systems Engineering, School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Choon-Hian Goh
- Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science (LKCFES), Sungai Long Campus, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Kajang 43200, Malaysia
| | - Keenan Zhihong Yap
- Nano and Micro Devices Laboratory, Electrical and Computer Systems Engineering, School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Narayanan Ramakrishnan
- Nano and Micro Devices Laboratory, Electrical and Computer Systems Engineering, School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Flexible pressure and temperature dual-mode sensor based on buckling carbon nanofibers for respiration pattern recognition. Sci Rep 2022; 12:17434. [PMID: 36261444 PMCID: PMC9579593 DOI: 10.1038/s41598-022-21572-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023] Open
Abstract
Breathing condition is an essential physiological indicator closely related to human health. Wearable flexible breath sensors for respiration pattern recognition have attracted much attention as they can provide physiological signal details for personal medical diagnosis, health monitoring, etc. However, present smart mask based on flexible breath sensors using single-mode detection can only detect a relatively small number of respiration patterns, especially lacking the ability to accurately distinguish mouth breath from nasal one. Herein, a smart face mask incorporated with a dual-sensing mode breathing sensor that can recognize up to eight human respiration patterns is fabricated. The breathing sensor uses novel three dimensional (3D) buckling carbon nanofiber mats as active materials to realize the function of pressure and temperature sensing simultaneously. The pressure model of the sensors shows a high sensitivity that are able to precisely detect pressure generated by respiratory airflow, while the temperature model can realize non-contact temperature variation caused by breath. Benefit from the capacity of real-time recognition and accurate distinguishing between mouth breath and nasal breath, the face mask is further developed to monitor the development of mouth breathing syndrome. The dual-sensing mode sensor has great potential applications in health monitoring.
Collapse
|
9
|
Sivan Pillai A, Chandran A, Kuzhichalil Peethambharan S. Silver Nanoparticle-Decorated Multiwalled Carbon Nanotube Ink for Advanced Wearable Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46775-46788. [PMID: 36196480 DOI: 10.1021/acsami.2c14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles of average size 12-13 nm were successfully decorated on the surface of multiwalled carbon nanotubes (MWCNTs) through a scalable wet chemical method without altering the structure of the MWCNTs. Employing this Ag@MWCNT, a multifunctional room-temperature curable conductive ink was developed, with PEDOT:PSS as the conductive binder. Screen printing of the ink could yield conductive planar traces with a 9.5 μm thickness and a conductivity of 28.99 S/cm, minimal surface roughness, and good adhesion on Mylar and Kapton. The versatility of the ink for developing functional elements for printed electronics was demonstrated by fabricating prototypes of a wearable strain sensor, a smart glove, a wearable heater, and a wearable breath sensor. The printed strain sensor exhibited a massive sensing range for wearable applications, including an impressive 1332% normalized resistance change under a maximum stretchability of 23% with superior cyclic stability up to 10 000 cycles. The sensor also exhibited an impeccable gauge factor of 142 for a 5% strain (59 for 23%). Furthermore, the sensor was integrated into a smart glove that could flawlessly replicate a human finger's gestures with a minimal response time of 225-370 ms. Piezoresistive vibration sensors were also fabricated by printing the ink on Mylar, which was employed to fabricate a smart mask and a smart wearable patch to monitor variations in human respiratory and pulmonary cycles. Finally, an energy-efficient flexible heater was fabricated using the developed ink. The heater could generate a uniform temperature distribution of 130 °C at the expense of only 393 mW/cm2 and require a minimum response time of 20 s. Thus, the unique formulation of Ag@MWCNT ink proved suitable for versatile devices for future wearable applications.
Collapse
Affiliation(s)
- Adarsh Sivan Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate, Thiruvananthapuram695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh201 002, India
| | - Achu Chandran
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate, Thiruvananthapuram695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh201 002, India
| | - Surendran Kuzhichalil Peethambharan
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate, Thiruvananthapuram695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh201 002, India
| |
Collapse
|
10
|
Zhu Y, Xia P, Liu J, Fang Z, Du L, Zhao Z. Polyimide-Based High-Performance Film Bulk Acoustic Resonator Humidity Sensor and Its Application in Real-Time Human Respiration Monitoring. MICROMACHINES 2022; 13:758. [PMID: 35630225 PMCID: PMC9143046 DOI: 10.3390/mi13050758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Respiration monitoring is vital for human health assessment. Humidity sensing is a promising way to establish a relationship between human respiration and electrical signal. This paper presents a polyimide-based film bulk acoustic resonator (PI-FBAR) humidity sensor operating in resonant frequency and reflection coefficient S11 dual-parameter with high sensitivity and stability, and it is applied in real-time human respiration monitoring for the first time. Both these two parameters can be used to sense different breathing conditions, such as normal breathing and deep breathing, and breathing with different rates such as normal breathing, slow breathing, apnea, and fast breathing. Experimental results also indicate that the proposed humidity sensor has potential applications in predicting the fitness of individual and in the medical field for detecting body fluids loss and daily water intake warning. The respiratory rates measured by our proposed PI-FBAR humidity sensor operating in frequency mode and S11 mode have Pearson correlation of up to 0.975 and 0.982 with that measured by the clinical monitor, respectively. Bland-Altman method analysis results further revealed that both S11 and frequency response are in good agreement with clinical monitor. The proposed sensor combines the advantages of non-invasiveness, high sensitivity and high stability, and it has great potential in human health monitoring.
Collapse
Affiliation(s)
- Yusi Zhu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Xia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihang Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Fang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Lidong Du
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan Zhao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (J.L.); (Z.F.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Ye Z, Ling Y, Yang M, Xu Y, Zhu L, Yan Z, Chen PY. A Breathable, Reusable, and Zero-Power Smart Face Mask for Wireless Cough and Mask-Wearing Monitoring. ACS NANO 2022; 16:5874-5884. [PMID: 35298138 DOI: 10.1021/acsnano.1c11041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We herein introduce a lightweight and zero-power smart face mask, capable of wirelessly monitoring coughs in real time and identifying proper mask wearing in public places during a pandemic. The smart face mask relies on the compact, battery-free radio frequency (RF) harmonic transponder, which is attached to the inner layer of the mask for detecting its separation from the face. Specifically, the RF transponder composed of miniature antennas and passive frequency multiplier is made of spray-printed silver nanowires (AgNWs) coated with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) passivation layer and the recently discovered multiscale porous polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) substrate. Unlike conventional on-chip or on-board wireless sensors, the SEBS-AgNWs/PEDOT:PSS-based RF transponder is lightweight, stretchable, breathable, and comfortable. In addition, this wireless device has excellent resilience and robustness in long-term and repeated usages (i.e., repeated placement and removal of the soft transponder on the mask). We foresee that this wireless smart face mask, providing simultaneous cough and mask-wearing monitoring, may mitigate virus-transmissive events by tracking the potential contagious person and identifying mask-wearing conditions. Moreover, the ability to wirelessly assess cough frequencies may improve diagnosis accuracy for dealing with several diseases, such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yadong Xu
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Liang Zhu
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zheng Yan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|