5
|
Zhang X, Dash RK, Clough AV, Xie D, Jacobs ER, Audi SH. Integrated Computational Model of Lung Tissue Bioenergetics. Front Physiol 2019; 10:191. [PMID: 30906264 PMCID: PMC6418344 DOI: 10.3389/fphys.2019.00191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/15/2019] [Indexed: 11/29/2022] Open
Abstract
Altered lung tissue bioenergetics plays a key role in the pathogenesis of lung diseases. A wealth of information exists regarding the bioenergetic processes in mitochondria isolated from rat lungs, cultured pulmonary endothelial cells, and intact rat lungs under physiological and pathophysiological conditions. However, the interdependence of those processes makes it difficult to quantify the impact of a change in a single or multiple process(es) on overall lung tissue bioenergetics. Integrated computational modeling provides a mechanistic and quantitative framework for the bioenergetic data at different levels of biological organization. The objective of this study was to develop and validate an integrated computational model of lung bioenergetics using existing experimental data from isolated perfused rat lungs. The model expands our recently developed computational model of the bioenergetics of mitochondria isolated from rat lungs by accounting for glucose uptake and phosphorylation, glycolysis, and the pentose phosphate pathway. For the mitochondrial region of the model, values of kinetic parameters were fixed at those estimated in our recent model of the bioenergetics of mitochondria isolated from rat lungs. For the cytosolic region of the model, intrinsic parameters such as apparent Michaelis constants were determined based on previously published enzyme kinetics data, whereas extrinsic parameters such as maximal reaction and transport velocities were estimated by fitting the model solution to published data from isolated rat lungs. The model was then validated by assessing its ability to predict existing experimental data not used for parameter estimation, including relationships between lung nucleotides content, lung lactate production rate, and lung energy charge under different experimental conditions. In addition, the model was used to gain novel insights on how lung tissue glycolytic rate is regulated by exogenous substrates such as glucose and lactate, and assess differences in the bioenergetics of mitochondria isolated from lung tissue and those of mitochondria in intact lungs. To the best of our knowledge, this is the first model of lung tissue bioenergetics. The model provides a mechanistic and quantitative framework for integrating available lung tissue bioenergetics data, and for testing novel hypotheses regarding the role of different cytosolic and mitochondrial processes in lung tissue bioenergetics.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anne V Clough
- Zablocki V. A. Medical Center, Milwaukee, WI, United States.,Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI, United States
| | - Dexuan Xie
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Elizabeth R Jacobs
- Zablocki V. A. Medical Center, Milwaukee, WI, United States.,Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States.,Zablocki V. A. Medical Center, Milwaukee, WI, United States.,Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Ma C, Beyer AM, Durand M, Clough AV, Zhu D, Norwood Toro L, Terashvili M, Ebben JD, Hill RB, Audi SH, Medhora M, Jacobs ER. Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins. Arterioscler Thromb Vasc Biol 2018; 38:622-635. [PMID: 29419407 DOI: 10.1161/atvbaha.117.310605] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 01/15/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. APPROACH AND RESULTS Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter-binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. CONCLUSIONS Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction.
Collapse
Affiliation(s)
- Cui Ma
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Andreas M Beyer
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Matthew Durand
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Anne V Clough
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Daling Zhu
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Laura Norwood Toro
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Maia Terashvili
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Johnathan D Ebben
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - R Blake Hill
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Said H Audi
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Meetha Medhora
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.)
| | - Elizabeth R Jacobs
- From the College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China (C.M., D.Z., M.M., E.R.J.); Department of Medicine (C.M., A.M.B., A.C., L.N., J.E., M.M., E.R.J.), Department of Physical Medicine and Rehabilitation (M.D.), Department of Physiology (A.M.B., M.M., E.R.J.), Department of Biochemistry (B.H.), Department of Radiation Oncology (M.M.), Department of Biophysics (N.H.), and Cardiovascular Center (M.T., C.M., A.B., M.D., M.M., E.R.J.), Medical College of Wisconsin, Milwaukee; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee (A.C., S.H.A., M.M., E.R.J.); Department of Biomedical Engineering, Marquette University, Milwaukee (S.H.A.); and Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee (A.C.).
| |
Collapse
|