1
|
Wu G, Song L, Xu Y, Zhang G, Fang J, Xiong S, Yang W, Jiang L. Functional gradient characteristics analysis of preschool-aged children with autism spectrum disorder. Cereb Cortex 2025; 35:bhaf098. [PMID: 40298445 DOI: 10.1093/cercor/bhaf098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social and behavioral impairments, emerging in early childhood with unclear causes. The primary aim of this study is to investigate shifts in the functional gradients underlying hierarchical brain network organization in ASD and to assess their potential contribution to clinical symptom severity. Resting-state functional magnetic resonance imaging was used to examine changes in functional gradients across seven major brain networks in a cohort of 52 individuals with ASD and 40 healthy controls. In the somatomotor network, neither the first nor third gradient showed significant group differences; however, two regions-right paracentral lobule and right postcentral gyrus-exhibited significant differences in the second gradient. In the frontoparietal network, only the left middle frontal gyrus in the second gradient showed a significant group difference. For the ventral attention network, only the primary gradient exhibited significant differences in the left insula, the right insula, and the right median cingulate and paracingulate gyri. In the default mode network, all three gradients showed statistically significant differences. These results suggest potential neuroimaging biomarkers for assessing the severity of ASD in preschool-aged children.
Collapse
Affiliation(s)
- Guangrong Wu
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Linfeng Song
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Yuanyuan Xu
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Guomin Zhang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Jie Fang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Siyan Xiong
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Wei Yang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| | - Lin Jiang
- Department of Radiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuangbei Street 98 #, Zunyi 563000, Guizhou, China
| |
Collapse
|
2
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
3
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Ke H, Wang F, Ma H, He Z. ADHD identification and its interpretation of functional connectivity using deep self-attention factorization. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Zhao F, Li N, Pan H, Chen X, Li Y, Zhang H, Mao N, Cheng D. Multi-View Feature Enhancement Based on Self-Attention Mechanism Graph Convolutional Network for Autism Spectrum Disorder Diagnosis. Front Hum Neurosci 2022; 16:918969. [PMID: 35911592 PMCID: PMC9334869 DOI: 10.3389/fnhum.2022.918969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
Functional connectivity (FC) network based on resting-state functional magnetic resonance imaging (rs-fMRI) has become an important tool to explore and understand the brain, which can provide objective basis for the diagnosis of neurodegenerative diseases, such as autism spectrum disorder (ASD). However, most functional connectivity (FC) networks only consider the unilateral features of nodes or edges, and the interaction between them is ignored. In fact, their integration can provide more comprehensive and crucial information in the diagnosis. To address this issue, a new multi-view brain network feature enhancement method based on self-attention mechanism graph convolutional network (SA-GCN) is proposed in this article, which can enhance node features through the connection relationship among different nodes, and then extract deep-seated and more discriminative features. Specifically, we first plug the pooling operation of self-attention mechanism into graph convolutional network (GCN), which can consider the node features and topology of graph network at the same time and then capture more discriminative features. In addition, the sample size is augmented by a "sliding window" strategy, which is beneficial to avoid overfitting and enhance the generalization ability. Furthermore, to fully explore the complex connection relationship among brain regions, we constructed the low-order functional graph network (Lo-FGN) and the high-order functional graph network (Ho-FGN) and enhance the features of the two functional graph networks (FGNs) based on SA-GCN. The experimental results on benchmark datasets show that: (1) SA-GCN can play a role in feature enhancement and can effectively extract more discriminative features, and (2) the integration of Lo-FGN and Ho-FGN can achieve the best ASD classification accuracy (79.9%), which reveals the information complementarity between them.
Collapse
Affiliation(s)
- Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Na Li
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Hongxin Pan
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Xiaobo Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yuan Li
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai, China
| | - Haicheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Dapeng Cheng
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
6
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|
7
|
Santana CP, de Carvalho EA, Rodrigues ID, Bastos GS, de Souza AD, de Brito LL. rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis. Sci Rep 2022; 12:6030. [PMID: 35411059 PMCID: PMC9001715 DOI: 10.1038/s41598-022-09821-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) diagnosis is still based on behavioral criteria through a lengthy and time-consuming process. Much effort is being made to identify brain imaging biomarkers and develop tools that could facilitate its diagnosis. In particular, using Machine Learning classifiers based on resting-state fMRI (rs-fMRI) data is promising, but there is an ongoing need for further research on their accuracy and reliability. Therefore, we conducted a systematic review and meta-analysis to summarize the available evidence in the literature so far. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across the 55 studies that offered sufficient information for quantitative analysis. Our results indicated overall summary sensitivity and specificity estimates of 73.8% and 74.8%, respectively. SVM stood out as the most used classifier, presenting summary estimates above 76%. Studies with bigger samples tended to obtain worse accuracies, except in the subgroup analysis for ANN classifiers. The use of other brain imaging or phenotypic data to complement rs-fMRI information seems promising, achieving higher sensitivities when compared to rs-fMRI data alone (84.7% versus 72.8%). Finally, our analysis showed AUC values between acceptable and excellent. Still, given the many limitations indicated in our study, further well-designed studies are warranted to extend the potential use of those classification algorithms to clinical settings.
Collapse
Affiliation(s)
- Caio Pinheiro Santana
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil.
| | - Emerson Assis de Carvalho
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
- Department of Computing, Federal Institute of Education, Science and Technology of South of Minas Gerais (IFSULDEMINAS), Machado, 37750-000, Brazil
| | - Igor Duarte Rodrigues
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Guilherme Sousa Bastos
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Adler Diniz de Souza
- Institute of Mathematics and Computation, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | | |
Collapse
|
8
|
Alfaro-Santafé JV, Alfaro-Santafé J, Lanuza-Cerzócimo C, Gómez-Bernal A, Pérez-Morcillo A, Almenar-Arasanz AJ, Mena-Tobar A, Laclériga-Giménez AF. Locally linear embedding and plantar pressure-time graph selection in heel pain classification: An observational, case-control study. J Biomech 2021; 128:110784. [PMID: 34628198 DOI: 10.1016/j.jbiomech.2021.110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
Plantar heel pain mainly manifests during the gait cycle when the whole foot is in contact with the floor, which corresponds to the second rocker of the gait. This moment can be studied through the analysis of pressure-time graphs obtained using plantar pressure plate systems. However, these graphs are complex, and a dimensionality reduction method, such as locally linear embedding (LLE), greatly assists in their comprehension. This observational, case-control pilot study included 45 subjects divided into case (n = 21) and control (n = 24) groups, depending on the presence/absence of plantar heel pain. The second rocker pressure-time graphs of the 45 subjects were obtained using the Footwork Pro® plantar pressure plate system. These graphs were analyzed and defined as the dynamic simultaneity surfaces (DSSs). This complex structure was composed of four dimensions: the dynamic simultaneity time (DST), slope upward grade (α), slope downward grade (β), and height (h), and were reduced into one dimension and classified into pathological and non-pathological subjects using the LLE method. All 45 DSSs were successfully reduced and classified to distinguish between the case (plantar heel pain) and control (non-plantar heel pain) subjects. This study is the first to use the LLE method for gait analysis. This method serves as a novel and promising tool for the study and classification of pathological and non-pathological gait cycles. This method opens the door for future research and analysis, with significant potential to assess diagnosis, treatment follow-up, and injury prevention in physical medicine consultations.
Collapse
Affiliation(s)
- José-Víctor Alfaro-Santafé
- R & D Department, Biomechanical Unit, Podoactiva Headquarters, Huesca, Spain; Faculty of Health and Sports Sciences, San Jorge University, Villanueva de Gállego, Spain.
| | - Javier Alfaro-Santafé
- R & D Department, Biomechanical Unit, Podoactiva Headquarters, Huesca, Spain; Faculty of Health and Sports Sciences, San Jorge University, Villanueva de Gállego, Spain.
| | - Carla Lanuza-Cerzócimo
- R & D Department, Biomechanical Unit, Podoactiva Headquarters, Huesca, Spain; Faculty of Health and Sports Sciences, San Jorge University, Villanueva de Gállego, Spain.
| | - Antonio Gómez-Bernal
- R & D Department, Biomechanical Unit, Podoactiva Headquarters, Huesca, Spain; Faculty of Health and Sports Sciences, San Jorge University, Villanueva de Gállego, Spain.
| | | | - Alejandro-Jesús Almenar-Arasanz
- R & D Department, Biomechanical Unit, Podoactiva Headquarters, Huesca, Spain; Faculty of Health and Sports Sciences, San Jorge University, Villanueva de Gállego, Spain.
| | | | - Antonio-Francisco Laclériga-Giménez
- Faculty of Health and Sports Sciences, San Jorge University, Villanueva de Gállego, Spain; Service of Orthopaedic Surgery and Traumathology, Miguel Servet Universitary Hospital, Zaragoza, Spain.
| |
Collapse
|
9
|
Tarchi L, Damiani S, La Torraca Vittori P, Marini S, Nazzicari N, Castellini G, Pisano T, Politi P, Ricca V. The colors of our brain: an integrated approach for dimensionality reduction and explainability in fMRI through color coding (i-ECO). Brain Imaging Behav 2021; 16:977-990. [PMID: 34689318 PMCID: PMC9107439 DOI: 10.1007/s11682-021-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
Several systematic reviews have highlighted the role of multiple sources in the investigation of psychiatric illness. For what concerns fMRI, the focus of recent literature preferentially lies on three lines of research, namely: functional connectivity, network analysis and spectral analysis. Data was gathered from the UCLA Consortium for Neuropsychiatric Phenomics. The sample was composed by 130 neurotypicals, 50 participants diagnosed with Schizophrenia, 49 with Bipolar disorder and 43 with ADHD. Single fMRI scans were reduced in their dimensionality by a novel method (i-ECO) averaging results per Region of Interest and through an additive color method (RGB): local connectivity values (Regional Homogeneity), network centrality measures (Eigenvector Centrality), spectral dimensions (fractional Amplitude of Low-Frequency Fluctuations). Average images per diagnostic group were plotted and described. The discriminative power of this novel method for visualizing and analyzing fMRI results in an integrative manner was explored through the usage of convolutional neural networks. The new methodology of i-ECO showed between-groups differences that could be easily appreciated by the human eye. The precision-recall Area Under the Curve (PR-AUC) of our models was > 84.5% for each diagnostic group as evaluated on the test-set – 80/20 split. In conclusion, this study provides evidence for an integrative and easy-to-understand approach in the analysis and visualization of fMRI results. A high discriminative power for psychiatric conditions was reached. This proof-of-work study may serve to investigate further developments over more extensive datasets covering a wider range of psychiatric diagnoses.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | | | - Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Centre for Fodder Crops and Dairy Productions, Lodi, LO, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| |
Collapse
|
10
|
Pospelov N, Tetereva A, Martynova O, Anokhin K. The Laplacian eigenmaps dimensionality reduction of fMRI data for discovering stimulus-induced changes in the resting-state brain activity. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Song JW, Yoon NR, Jang SM, Lee GY, Kim BN. Neuroimaging-Based Deep Learning in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2020; 31:97-104. [PMID: 32665754 PMCID: PMC7350542 DOI: 10.5765/jkacap.200021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Deep learning (DL) is a kind of machine learning technique that uses artificial intelligence to identify the characteristics of given data and efficiently analyze large amounts of information to perform tasks such as classification and prediction. In the field of neuroimaging of neurodevelopmental disorders, various biomarkers for diagnosis, classification, prognosis prediction, and treatment response prediction have been examined; however, they have not been efficiently combined to produce meaningful results. DL can be applied to overcome these limitations and produce clinically helpful results. Here, we review studies that combine neurodevelopmental disorder neuroimaging and DL techniques to explore the strengths, limitations, and future directions of this research area.
Collapse
Affiliation(s)
- Jae-Won Song
- Department of Child and Adolescent Psychiatry, Seoul National University Hospital, Seoul, Korea
| | - Na-Rae Yoon
- Department of Child and Adolescent Psychiatry, Seoul National University Hospital, Seoul, Korea
| | - Soo-Min Jang
- Department of Child and Adolescent Psychiatry, Seoul National University Hospital, Seoul, Korea
| | - Ga-Young Lee
- Seoul National University Hospital, Autism and Developmental Disorder Center, Seoul, Korea
| | - Bung-Nyun Kim
- Department of Child and Adolescent Psychiatry, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|