1
|
Tenzin S, Rassau A, Chai D. Application of Event Cameras and Neuromorphic Computing to VSLAM: A Survey. Biomimetics (Basel) 2024; 9:444. [PMID: 39056885 PMCID: PMC11274992 DOI: 10.3390/biomimetics9070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Simultaneous Localization and Mapping (SLAM) is a crucial function for most autonomous systems, allowing them to both navigate through and create maps of unfamiliar surroundings. Traditional Visual SLAM, also commonly known as VSLAM, relies on frame-based cameras and structured processing pipelines, which face challenges in dynamic or low-light environments. However, recent advancements in event camera technology and neuromorphic processing offer promising opportunities to overcome these limitations. Event cameras inspired by biological vision systems capture the scenes asynchronously, consuming minimal power but with higher temporal resolution. Neuromorphic processors, which are designed to mimic the parallel processing capabilities of the human brain, offer efficient computation for real-time data processing of event-based data streams. This paper provides a comprehensive overview of recent research efforts in integrating event cameras and neuromorphic processors into VSLAM systems. It discusses the principles behind event cameras and neuromorphic processors, highlighting their advantages over traditional sensing and processing methods. Furthermore, an in-depth survey was conducted on state-of-the-art approaches in event-based SLAM, including feature extraction, motion estimation, and map reconstruction techniques. Additionally, the integration of event cameras with neuromorphic processors, focusing on their synergistic benefits in terms of energy efficiency, robustness, and real-time performance, was explored. The paper also discusses the challenges and open research questions in this emerging field, such as sensor calibration, data fusion, and algorithmic development. Finally, the potential applications and future directions for event-based SLAM systems are outlined, ranging from robotics and autonomous vehicles to augmented reality.
Collapse
Affiliation(s)
| | - Alexander Rassau
- School of Engineering, Edith Cowan University, Perth, WA 6027, Australia; (S.T.); (D.C.)
| | | |
Collapse
|
2
|
Nunes UM, Demiris Y. Robust Event-Based Vision Model Estimation by Dispersion Minimisation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:9561-9573. [PMID: 34813470 DOI: 10.1109/tpami.2021.3130049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We propose a novel Dispersion Minimisation framework for event-based vision model estimation, with applications to optical flow and high-speed motion estimation. The framework extends previous event-based motion compensation algorithms by avoiding computing an optimisation score based on an explicit image-based representation, which provides three main benefits: i) The framework can be extended to perform incremental estimation, i.e., on an event-by-event basis. ii) Besides purely visual transformations in 2D, the framework can readily use additional information, e.g., by augmenting the events with depth, to estimate the parameters of motion models in higher dimensional spaces. iii) The optimisation complexity only depends on the number of events. We achieve this by modelling the event alignment according to candidate parameters and minimising the resultant dispersion, which is computed by a family of suitable entropy-based measures. Data whitening is also proposed as a simple and effective pre-processing step to make the framework's accuracy performance more robust, as well as other event-based motion-compensation methods. The framework is evaluated on several challenging motion estimation problems, including 6-DOF transformation, rotational motion, and optical flow estimation, achieving state-of-the-art performance.
Collapse
|
3
|
Glover A, Dinale A, Rosa LDS, Bamford S, Bartolozzi C. luvHarris: A Practical Corner Detector for Event-Cameras. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:10087-10098. [PMID: 34910630 DOI: 10.1109/tpami.2021.3135635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There have been a number of corner detection methods proposed for event cameras in the last years, since event-driven computer vision has become more accessible. Current state-of-the-art have either unsatisfactory accuracy or real-time performance when considered for practical use, for example when a camera is randomly moved in an unconstrained environment. In this paper, we present yet another method to perform corner detection, dubbed look-up event-Harris (luvHarris), that employs the Harris algorithm for high accuracy but manages an improved event throughput. Our method has two major contributions, 1. a novel "threshold ordinal event-surface" that removes certain tuning parameters and is well suited for Harris operations, and 2. an implementation of the Harris algorithm such that the computational load per event is minimised and computational heavy convolutions are performed only 'as-fast-as-possible', i.e., only as computational resources are available. The result is a practical, real-time, and robust corner detector that runs more than 2.6× the speed of current state-of-the-art; a necessity when using a high-resolution event-camera in real-time. We explain the considerations taken for the approach, compare the algorithm to current state-of-the-art in terms of computational performance and detection accuracy, and discuss the validity of the proposed approach for event cameras.
Collapse
|
4
|
Ralph N, Joubert D, Jolley A, Afshar S, Tothill N, van Schaik A, Cohen G. Real-Time Event-Based Unsupervised Feature Consolidation and Tracking for Space Situational Awareness. Front Neurosci 2022; 16:821157. [PMID: 35600627 PMCID: PMC9120364 DOI: 10.3389/fnins.2022.821157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Earth orbit is a limited natural resource that hosts a vast range of vital space-based systems that support the international community's national, commercial and defence interests. This resource is rapidly becoming depleted with over-crowding in high demand orbital slots and a growing presence of space debris. We propose the Fast Iterative Extraction of Salient targets for Tracking Asynchronously (FIESTA) algorithm as a robust, real-time and reactive approach to optical Space Situational Awareness (SSA) using Event-Based Cameras (EBCs) to detect, localize, and track Resident Space Objects (RSOs) accurately and timely. We address the challenges of the asynchronous nature and high temporal resolution output of the EBC accurately, unsupervised and with few tune-able parameters using concepts established in the neuromorphic and conventional tracking literature. We show this algorithm is capable of highly accurate in-frame RSO velocity estimation and average sub-pixel localization in a simulated test environment to distinguish the capabilities of the EBC and optical setup from the proposed tracking system. This work is a fundamental step toward accurate end-to-end real-time optical event-based SSA, and developing the foundation for robust closed-form tracking evaluated using standardized tracking metrics.
Collapse
Affiliation(s)
- Nicholas Ralph
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
- *Correspondence: Nicholas Ralph
| | - Damien Joubert
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Andrew Jolley
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
- Air and Space Power Development Centre, Royal Australian Air Force, Canberra, ACT, Australia
| | - Saeed Afshar
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Nicholas Tothill
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - André van Schaik
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| | - Gregory Cohen
- International Centre for Neuromorphic Engineering, MARCS Institute for Brain Behaviour and Development, Western Sydney University, Werrington, NSW, Australia
| |
Collapse
|
5
|
Pan L, Hartley R, Scheerlinck C, Liu M, Yu X, Dai Y. High Frame Rate Video Reconstruction Based on an Event Camera. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:2519-2533. [PMID: 33166250 DOI: 10.1109/tpami.2020.3036667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Event-based cameras measure intensity changes (called 'events') with microsecond accuracy under high-speed motion and challenging lighting conditions. With the 'active pixel sensor' (APS), the 'Dynamic and Active-pixel Vision Sensor' (DAVIS) allows the simultaneous output of intensity frames and events. However, the output images are captured at a relatively low frame rate and often suffer from motion blur. A blurred image can be regarded as the integral of a sequence of latent images, while events indicate changes between the latent images. Thus, we are able to model the blur-generation process by associating event data to a latent sharp image. Based on the abundant event data alongside a low frame rate, easily blurred images, we propose a simple yet effective approach to reconstruct high-quality and high frame rate sharp videos. Starting with a single blurred frame and its event data from DAVIS, we propose the Event-based Double Integral (EDI) model and solve it by adding regularization terms. Then, we extend it to multiple Event-based Double Integral (mEDI) model to get more smooth results based on multiple images and their events. Furthermore, we provide a new and more efficient solver to minimize the proposed energy model. By optimizing the energy function, we achieve significant improvements in removing blur and the reconstruction of a high temporal resolution video. The video generation is based on solving a simple non-convex optimization problem in a single scalar variable. Experimental results on both synthetic and real datasets demonstrate the superiority of our mEDI model and optimization method compared to the state-of-the-art.
Collapse
|
6
|
Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B, Censi A, Leutenegger S, Davison AJ, Conradt J, Daniilidis K, Scaramuzza D. Event-Based Vision: A Survey. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:154-180. [PMID: 32750812 DOI: 10.1109/tpami.2020.3008413] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of μs), very high dynamic range (140 dB versus 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.
Collapse
|
7
|
Li R, Shi D, Zhang Y, Li R, Wang M. Asynchronous event feature generation and tracking based on gradient descriptor for event cameras. INT J ADV ROBOT SYST 2021. [DOI: 10.1177/17298814211027028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recently, the event camera has become a popular and promising vision sensor in the research of simultaneous localization and mapping and computer vision owing to its advantages: low latency, high dynamic range, and high temporal resolution. As a basic part of the feature-based SLAM system, the feature tracking method using event cameras is still an open question. In this article, we present a novel asynchronous event feature generation and tracking algorithm operating directly on event-streams to fully utilize the natural asynchronism of event cameras. The proposed algorithm consists of an event-corner detection unit, a descriptor construction unit, and an event feature tracking unit. The event-corner detection unit addresses a fast and asynchronous corner detector to extract event-corners from event-streams. For the descriptor construction unit, we propose a novel asynchronous gradient descriptor inspired by the scale-invariant feature transform descriptor, which helps to achieve quantitative measurement of similarity between event feature pairs. The construction of the gradient descriptor can be decomposed into three stages: speed-invariant time surface maintenance and extraction, principal orientation calculation, and descriptor generation. The event feature tracking unit combines the constructed gradient descriptor and an event feature matching method to achieve asynchronous feature tracking. We implement the proposed algorithm in C++ and evaluate it on a public event dataset. The experimental results show that our proposed method achieves improvement in terms of tracking accuracy and real-time performance when compared with the state-of-the-art asynchronous event-corner tracker and with no compromise on the feature tracking lifetime.
Collapse
Affiliation(s)
- Ruoxiang Li
- National University of Defense Technology, Changsha, China
| | - Dianxi Shi
- Artificial Intelligence Research Center (AIRC), National Innovation Institute of Defense Technology (NIIDT), Beijing, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China
| | - Yongjun Zhang
- Artificial Intelligence Research Center (AIRC), National Innovation Institute of Defense Technology (NIIDT), Beijing, China
| | - Ruihao Li
- Artificial Intelligence Research Center (AIRC), National Innovation Institute of Defense Technology (NIIDT), Beijing, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, China
| | - Mingkun Wang
- National University of Defense Technology, Changsha, China
| |
Collapse
|
8
|
Gehrig M, Aarents W, Gehrig D, Scaramuzza D. DSEC: A Stereo Event Camera Dataset for Driving Scenarios. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3068942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Evaluation of Event-Based Corner Detectors. J Imaging 2021; 7:jimaging7020025. [PMID: 34460624 PMCID: PMC8321277 DOI: 10.3390/jimaging7020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/03/2022] Open
Abstract
Bio-inspired Event-Based (EB) cameras are a promising new technology that outperforms standard frame-based cameras in extreme lighted and fast moving scenes. Already, a number of EB corner detection techniques have been developed; however, the performance of these EB corner detectors has only been evaluated based on a few author-selected criteria rather than on a unified common basis, as proposed here. Moreover, their experimental conditions are mainly limited to less interesting operational regions of the EB camera (on which frame-based cameras can also operate), and some of the criteria, by definition, could not distinguish if the detector had any systematic bias. In this paper, we evaluate five of the seven existing EB corner detectors on a public dataset including extreme illumination conditions that have not been investigated before. Moreover, this evaluation is the first of its kind in terms of analysing not only such a high number of detectors, but also applying a unified procedure for all. Contrary to previous assessments, we employed both the intensity and trajectory information within the public dataset rather than only one of them. We show that a rigorous comparison among EB detectors can be performed without tedious manual labelling and even with challenging acquisition conditions. This study thus proposes the first standard unified EB corner evaluation procedure, which will enable better understanding of the underlying mechanisms of EB cameras and can therefore lead to more efficient EB corner detection techniques.
Collapse
|