1
|
Uzma, Xiong H. Trends development and applications on electrophoresis techniques of slab gel, capillary, microchip/microfluidic capillary, and isotachophoresis. Talanta 2025; 293:128029. [PMID: 40222097 DOI: 10.1016/j.talanta.2025.128029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025]
Abstract
This review describes the various electrophoresis techniques involved in slab gel, capillary, microchip, and isotachophoresis. Each technique offers distinct advantages and limitations in terms of resolution, sensitivity, speed, capacity, and cost of resources. While the manuscript provides an overview of the setup methods for these electrophoresis techniques, it also evaluates their unique characteristics and summarizes a range of analytical applications, including environmental monitoring, proteomics and genomics analysis, clinical diagnostics, pharmaceutical analysis, and biochemical research. This review contributes to the future directions of available electrophoresis techniques and aids knowledge seekers or practitioners in selecting the most appropriate methods for their specific analytical needs. This review highlights the strengths and potential applications of each technique, providing insights into advancing analytical methodologies and exploring emerging trends across scientific disciplines.
Collapse
Affiliation(s)
- Uzma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China; Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China
| | - Hai Xiong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, PR China; Institute for Advanced Study, Shenzhen University, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Deliorman M, Ali DS, Qasaimeh MA. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Biomed Eng Comput Biol 2023; 14:11795972231214387. [PMID: 38033395 PMCID: PMC10683381 DOI: 10.1177/11795972231214387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Microfluidic systems offer versatile biomedical tools and methods to enhance human convenience and health. Advances in these systems enables next-generation microfluidics that integrates automation, manipulation, and smart readout systems, as well as design and three-dimensional (3D) printing for precise production of microchannels and other microstructures rapidly and with great flexibility. These 3D-printed microfluidic platforms not only control the complex fluid behavior for various biomedical applications, but also serve as microconduits for building 3D tissue constructs-an integral component of advanced drug development, toxicity assessment, and accurate disease modeling. Furthermore, the integration of other emerging technologies, such as advanced microscopy and robotics, enables the spatiotemporal manipulation and high-throughput screening of cell physiology within precisely controlled microenvironments. Notably, the portability and high precision automation capabilities in these integrated systems facilitate rapid experimentation and data acquisition to help deepen our understanding of complex biological systems and their behaviors. While certain challenges, including material compatibility, scaling, and standardization still exist, the integration with artificial intelligence, the Internet of Things, smart materials, and miniaturization holds tremendous promise in reshaping traditional microfluidic approaches. This transformative potential, when integrated with advanced technologies, has the potential to revolutionize biomedical research and healthcare applications, ultimately benefiting human health. This review highlights the advances in the field and emphasizes the critical role of the next generation microfluidic systems in advancing biomedical research, point-of-care diagnostics, and healthcare systems.
Collapse
Affiliation(s)
| | - Dima Samer Ali
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| |
Collapse
|
3
|
Sena-Torralba A, Banguera-Ordoñez YD, Mira-Pascual L, Maquieira Á, Morais S. Exploring the potential of paper-based electrokinetic phenomena in PoC biosensing. Trends Biotechnol 2023; 41:1299-1313. [PMID: 37150668 DOI: 10.1016/j.tibtech.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023]
Abstract
In order to decentralize health care, the development of point-of-care (PoC) assays has gained significant attention in recent decades. The lateral flow immunoassay (LFIA) has emerged as a promising bioanalytical method due to its low cost and single-step detection process. However, its limited sensitivity and inability to detect disease biomarkers at clinically relevant levels have hindered its application for early diagnosis. This review explores the potential of merging different electrokinetic phenomena into paper-based assays to enhance their analytical performance, offering a versatile and affordable approach for PoC testing. The review exposes the challenges faced in integrating electrokinetic phenomena with paper-based biosensing and concludes by discussing the issues that need to be improved to maximize the potential of this technology for early diagnosis.
Collapse
Affiliation(s)
- Amadeo Sena-Torralba
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Yulieth D Banguera-Ordoñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Laia Mira-Pascual
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
4
|
Malá Z, Gebauer P. Analytical isotachophoresis 1967–2022: From standard analytical technique to universal on-line concentration tool. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Zargartalebi H, Yousefi H, Flynn CD, Gomis S, Das J, Young TL, Chien E, Mubareka S, McGeer A, Wang H, Sargent EH, Nezhad AS, Kelley SO. Capillary-Assisted Molecular Pendulum Bioanalysis. J Am Chem Soc 2022; 144:18338-18349. [PMID: 36173381 DOI: 10.1021/jacs.2c06192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of robust biosensing strategies that can be easily implemented in everyday life remains a challenge for the future of modern biosensor research. While several reagentless approaches have attempted to address this challenge, they often achieve user-friendliness through sacrificing sensitivity or universality. While acceptable for certain applications, these trade-offs hinder the widespread adoption of reagentless biosensing technologies. Here, we report a novel approach to reagentless biosensing that achieves high sensitivity, rapid detection, and universality using the SARS-CoV-2 virus as a model target. Universality is achieved by using nanoscale molecular pendulums, which enables reagentless electrochemical biosensing through a variable antibody recognition element. Enhanced sensitivity and rapid detection are accomplished by incorporating the coffee-ring phenomenon into the sensing scheme, allowing for target preconcentration on a ring-shaped electrode. Using this approach, we obtained limits of detection of 1 fg/mL and 20 copies/mL for the SARS-CoV-2 nucleoproteins and viral particles, respectively. In addition, clinical sample analysis showed excellent agreement with Ct values from PCR-positive SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Hossein Zargartalebi
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Connor D Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Surath Gomis
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Tiana L Young
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Emily Chien
- Sunnybrook Research Institute, Toronto, ON M4N 3N5, Canada
| | | | - Allison McGeer
- Department of Microbiology, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hansen Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Amir Sanati Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
6
|
Recent progress in analytical capillary isotachophoresis (2018 - March 2022). J Chromatogr A 2022; 1677:463337. [PMID: 35868155 DOI: 10.1016/j.chroma.2022.463337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022]
Abstract
This review brings a survey of papers on analytical capillary and microchip isotachophoresis published since 2018 until the first quarter of 2022. Theoretical papers extending fundamental knowledge include those on computer simulations that remain an important research tool useful in the design of electrolyte systems. Many papers are focused on instrumental aspects where new media including microfluidic devices and their hyphenation to various detection techniques bring remarkable results. Papers reporting analytical applications demonstrate the potential of contemporary analytical isotachophoresis. Although it is not being used on a mass scale, its special features are attracting continued interest resulting in applications of isotachophoresis both as a stand-alone analytical method and as a part of multidimensional separation techniques.
Collapse
|
7
|
Abstract
Isotachophoresis (ITP) is a versatile electrophoretic technique that can be used for sample preconcentration, separation, purification, and mixing, and to control and accelerate chemical reactions. Although the basic technique is nearly a century old and widely used, there is a persistent need for an easily approachable, succinct, and rigorous review of ITP theory and analysis. This is important because the interest and adoption of the technique has grown over the last two decades, especially with its implementation in microfluidics and integration with on-chip chemical and biochemical assays. We here provide a review of ITP theory starting from physicochemical first-principles, including conservation of species, conservation of current, approximation of charge neutrality, pH equilibrium of weak electrolytes, and so-called regulating functions that govern transport dynamics, with a strong emphasis on steady and unsteady transport. We combine these generally applicable (to all types of ITP) theoretical discussions with applications of ITP in the field of microfluidic systems, particularly on-chip biochemical analyses. Our discussion includes principles that govern the ITP focusing of weak and strong electrolytes; ITP dynamics in peak and plateau modes; a review of simulation tools, experimental tools, and detection methods; applications of ITP for on-chip separations and trace analyte manipulation; and design considerations and challenges for microfluidic ITP systems. We conclude with remarks on possible future research directions. The intent of this review is to help make ITP analysis and design principles more accessible to the scientific and engineering communities and to provide a rigorous basis for the increased adoption of ITP in microfluidics.
Collapse
Affiliation(s)
- Ashwin Ramachandran
- Department
of Aeronautics and Astronautics, Stanford
University, Stanford, California 94305, United States
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Shi H, Jiang S, Liu B, Liu Z, Reis NM. Modern microfluidic approaches for determination of ions. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Avaro AS, Sun Y, Jiang K, Bahga SS, Santiago JG. Web-Based Open-Source Tool for Isotachophoresis. Anal Chem 2021; 93:15768-15774. [PMID: 34788021 DOI: 10.1021/acs.analchem.1c03925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the development of a client-side web-based simulator for complex electrophoresis phenomena, including isotachophoresis. The simulation tool is called Client-based Application for Fast Electrophoresis Simulation (CAFES). CAFES uses the broad cross-browser compatibility of JavaScript to provide a rapid and easy-to-use tool for coupled unsteady electromigration, diffusion, and equilibrium electrolyte reactions among multiple weak electrolytes. The code uses a stationary grid (for simplicity) and an adaptive time step to provide reliable estimates of ion concentration dynamics (including pH profile evolution), requiring no prior installation nor compilation. CAFES also offers a large database of commonly used species and their relevant physicochemical properties. We present a validation of predictions from CAFES by comparing them to experimental data of peak- and plateau-mode isotachophoresis experiments. The code yields accurate estimates of interface velocity, plateau length and relative intensity, and pH variations while significantly reducing the computation time compared to existing codes. The tool is open-source and available for free at https://microfluidics.stanford.edu/cafes.
Collapse
Affiliation(s)
- Alexandre S Avaro
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yixiao Sun
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kaiying Jiang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Supreet S Bahga
- Department of Mechanical Engineering, IIT Delhi Hauz Khas, New Delhi 110016, India
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
11
|
Jiang Q, Ramachandran A, Santiago JG. Species Abundance and Reaction Off-Rate Regulate Product Formation in Reactions Accelerated Using Isotachophoresis. Anal Chem 2021; 93:12541-12548. [PMID: 34492181 DOI: 10.1021/acs.analchem.1c01805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present a model for second-order and pseudo-first-order reversible chemical reactions accelerated using peak-mode isotachophoresis (ITP). In such systems, ITP preconcentrates and co-locates the reactants between the leading and trailing electrolyte zones, and this significantly accelerates chemical reactions. Our model quantifies the effects of reaction rate constants and species abundance on product formation rate. We identify two key non-dimensional parameters, which are specific groupings of reaction rate constants, species concentrations, and influx rates. We then use a regular perturbation to study the effects of reverse reaction rate and relative species abundance (and relative rates of species accumulation) on production rate. We also use this perturbation method to derive an analytical expression for the quasi-steady-state production rate achievable by ITP. Our analytical models and numerical solutions are generally applicable to a wide range of systems, which use ITP to enhance reactions. The model is also an interesting case study of the complex coupling of electric field-driven species transport and reaction kinetics.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.,Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, California 94305, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|