1
|
Chowdhury MUS, Roy S, Aryal KP, Leung H, Pandey R. Realizing the Potential of Commercial E-Textiles for Wearable Glucose Biosensing Application. ACS MATERIALS AU 2024; 4:592-603. [PMID: 39554862 PMCID: PMC11565280 DOI: 10.1021/acsmaterialsau.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 11/19/2024]
Abstract
Advancements in wearable technology have enabled noninvasive health monitoring using biosensors. This research focuses on developing a textile-based sweat glucose sensor using commercially available conductive textiles, evading the complexity of traditional fabrication methods. A comparative analysis of three low-cost conductive textiles, Adafruit 1364, 1167, and 4762, has been conducted for electrochemical glucose detection with glucose-specific enzymes such as glucose oxidase (GOx) and glucose dehydrogenase (GDH). Adafruit 1364 outperformed others in morphological, electrochemical, and wearable properties. Cyclic voltammetry shows that Adafruit 1364 and 4762 effectively detect glucose at the potential of 0.23 and 0.08 V using glucose oxidase and 0.1 and 0.08 V using glucose dehydrogenase enzymes, respectively. Furthermore, chronoamperometry has been conducted to confirm the presence of glucose at 1 μM concentration. Differential pulse voltammetry was conducted to assess the sensitivity of the Adafruit 1364 fabric electrode using glucose solutions with concentrations of 0.05, 0.15, 0.25, and 0.5 mM. The electrode immobilized with GOx showed a sensitivity of 0.005 μA μM-1 and a limit of detection (LOD) of 41.3 μM, while the electrode immobilized with GDH exhibited a sensitivity of 0.0019 μA μM-1 and an LOD of 63.1 μM. The study also highlighted the reproducibility, effect of interferents, and advantageous wearable properties of these sensors.
Collapse
Affiliation(s)
| | - Sutirtha Roy
- Department
of Electrical and Software Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Krishna Prasad Aryal
- Department
of Biomedical Engineering, University of
Calgary, Calgary T2N 1N4, Alberta, Canada
| | - Henry Leung
- Department
of Electrical and Software Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Richa Pandey
- Department
of Biomedical Engineering, University of
Calgary, Calgary T2N 1N4, Alberta, Canada
- Hotchkiss
Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
2
|
Warncke MN, Böhmer CH, Sachse C, Fischer S, Häntzsche E, Nocke A, Mersch J, Cherif C. Advancing Smart Textiles: Structural Evolution of Knitted Piezoresistive Strain Sensors for Enabling Precise Motion Capture. Polymers (Basel) 2023; 15:3936. [PMID: 37835987 PMCID: PMC10574850 DOI: 10.3390/polym15193936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, there has been remarkable progress in the development of smart textiles, especially knitted strain sensors, to achieve reliable sensor signals. Stable and reliable electro-mechanical properties of sensors are essential for using textile-based sensors in medical applications. However, the challenges associated with significant hysteresis and low gauge factor (GF) values remain for using strain sensors for motion capture. To evaluate these issues, a comprehensive investigation of the cyclic electro-mechanical properties of weft-knitted strain sensors was conducted in the present study to develop a drift-free elastic strain sensor with a robust sensor signal for motion capture for medical devices. Several variables are considered in the study, including the variation of the basic knit pattern, the incorporation of the electrically conductive yarn, and the size of the strain sensor. The effectiveness and feasibility of the developed knitted strain sensors are demonstrated through an experimental evaluation, by determining the gauge factor, its nonlinearity, hysteresis, and drift. The developed knitted piezoresistive strain sensors have a GF of 2.4, a calculated drift of 50%, 12.5% hysteresis, and 0.3% nonlinearity in parts.
Collapse
Affiliation(s)
- Mareen N. Warncke
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Carola H. Böhmer
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Carmen Sachse
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Susanne Fischer
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Eric Häntzsche
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Andreas Nocke
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Johannes Mersch
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), TUD Dresden University of Technology, 01069 Dresden, Germany
| |
Collapse
|
3
|
Vidhya CM, Maithani Y, Singh JP. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review. BIOSENSORS 2023; 13:679. [PMID: 37504078 PMCID: PMC10377545 DOI: 10.3390/bios13070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
The technology of wearable medical equipment has advanced to the point where it is now possible to monitor the electrocardiogram and electromyogram comfortably at home. The transition from wet Ag/AgCl electrodes to various types of gel-free dry electrodes has made it possible to continuously and accurately monitor the biopotential signals. Fabrics or textiles, which were once meant to protect the human body, have undergone significant development and are now employed as intelligent textile materials for healthcare monitoring. The conductive textile electrodes provide the benefit of being breathable and comfortable. In recent years, there has been a significant advancement in the fabrication of wearable conductive textile electrodes for monitoring biopotential signals. This review paper provides a comprehensive overview of the advances in wearable conductive textile electrodes for biopotential signal monitoring. The paper covers various aspects of the technology, including the electrode design, various manufacturing techniques utilised to fabricate wearable smart fabrics, and performance characteristics. The advantages and limitations of various types of textile electrodes are discussed, and key challenges and future research directions are identified. This will allow them to be used to their fullest potential for signal gathering during physical activities such as running, swimming, and other exercises while being linked into wireless portable health monitoring systems.
Collapse
Affiliation(s)
- C M Vidhya
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Yogita Maithani
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jitendra P Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023; 19:100565. [PMID: 36816602 PMCID: PMC9932217 DOI: 10.1016/j.mtbio.2023.100565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Sedentary lifestyles and evolving work environments have created challenges for global health and cause huge burdens on healthcare and fitness systems. Physical immobility and functional losses due to aging are two main reasons for noncommunicable disease mortality. Smart electronic textiles (e-textiles) have attracted considerable attention because of their potential uses in health monitoring, rehabilitation, and training assessment applications. Interactive textiles integrated with electronic devices and algorithms can be used to gather, process, and digitize data on human body motion in real time for purposes such as electrotherapy, improving blood circulation, and promoting wound healing. This review summarizes research advances on e-textiles designed for wearable healthcare and fitness systems. The significance of e-textiles, key applications, and future demand expectations are addressed in this review. Various health conditions and fitness problems and possible solutions involving the use of multifunctional interactive garments are discussed. A brief discussion of essential materials and basic procedures used to fabricate wearable e-textiles are included. Finally, the current challenges, possible solutions, opportunities, and future perspectives in the area of smart textiles are discussed.
Collapse
Affiliation(s)
- Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Bin Choi
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Huang F, Yan Z, Zhou S, Gu B, Wang S, Wang S, Zhou S. Copper electrode preparation by a selective laser reduction of copper oxide on lignin fiber membranes and its application as a photodetector. OPTICS EXPRESS 2023; 31:8190-8200. [PMID: 36859935 DOI: 10.1364/oe.486114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The performance of electrodes is a key factor affecting the development of smart fabrics. The preparation of common fabric flexible electrodes has defects such as high cost, complicated preparation, and complex patterning that limit the development of fabric-based metal electrodes. Therefore, this paper presented a simple fabrication method for preparing Cu electrodes using selective laser reduction of CuO nanoparticles. By optimizing laser processing power, scanning speed, and focusing degree), we prepared a Cu circuit with an electrical resistivity of ∼ 5.53 µΩ.m. Based on the photothermoelectric properties of Cu electrodes, a white light photodetector is developed. The detectivity of the photodetector reaches ∼2.14 mA/W at a power density of 10.01 mW/cm2. This method is instructive for preparing metal electrodes or conductive lines on the surface of fabrics, and provides specific techniques for manufacturing wearable photodetectors.
Collapse
|
6
|
Kahankova R, Barnova K, Jaros R, Pavlicek J, Snasel V, Martinek R. Pregnancy in the time of COVID-19: towards Fetal monitoring 4.0. BMC Pregnancy Childbirth 2023; 23:33. [PMID: 36647041 PMCID: PMC9841500 DOI: 10.1186/s12884-023-05349-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
On the outbreak of the global COVID-19 pandemic, high-risk and vulnerable groups in the population were at particular risk of severe disease progression. Pregnant women were one of these groups. The infectious disease endangered not only the physical health of pregnant women, but also their mental well-being. Improving the mental health of pregnant women and reducing their risk of an infectious disease could be achieved by using remote home monitoring solutions. These would allow the health of the mother and fetus to be monitored from the comfort of their home, a reduction in the number of physical visits to the doctor and thereby eliminate the need for the mother to venture into high-risk public places. The most commonly used technique in clinical practice, cardiotocography, suffers from low specificity and requires skilled personnel for the examination. For that and due to the intermittent and active nature of its measurements, it is inappropriate for continuous home monitoring. The pandemic has demonstrated that the future lies in accurate remote monitoring and it is therefore vital to search for an option for fetal monitoring based on state-of-the-art technology that would provide a safe, accurate, and reliable information regarding fetal and maternal health state. In this paper, we thus provide a technical and critical review of the latest literature and on this topic to provide the readers the insights to the applications and future directions in fetal monitoring. We extensively discuss the remaining challenges and obstacles in future research and in developing the fetal monitoring in the new era of Fetal monitoring 4.0, based on the pillars of Healthcare 4.0.
Collapse
Affiliation(s)
- Radana Kahankova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, Ostrava, Czechia
| | - Katerina Barnova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, Ostrava, Czechia
| | - Rene Jaros
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, Ostrava, Czechia
| | - Jan Pavlicek
- Department of Pediatrics, Faculty Hospital, Faculty of Medicine, Ostrava University, Ostrava, Czechia
| | - Vaclav Snasel
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, Ostrava, Czechia
| | - Radek Martinek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, Ostrava, Czechia
| |
Collapse
|
7
|
Khan MA, Saibene M, Das R, Brunner IC, Puthusserypady S. Emergence of flexible technology in developing advanced systems for post-stroke rehabilitation: a comprehensive review. J Neural Eng 2021; 18. [PMID: 34736239 DOI: 10.1088/1741-2552/ac36aa] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Stroke is one of the most common neural disorders, which causes physical disabilities and motor impairments among its survivors. Several technologies have been developed for providing stroke rehabilitation and to assist the survivors in performing their daily life activities. Currently, the use of flexible technology (FT) for stroke rehabilitation systems is on a rise that allows the development of more compact and lightweight wearable systems, which stroke survivors can easily use for long-term activities. APPROACH For stroke applications, FT mainly includes the "flexible/stretchable electronics", "e-textile (electronic textile)" and "soft robotics". Thus, a thorough literature review has been performed to report the practical implementation of FT for post-stroke application. MAIN RESULTS In this review, the highlights of the advancement of FT in stroke rehabilitation systems are dealt with. Such systems mainly involve the "biosignal acquisition unit", "rehabilitation devices" and "assistive systems". In terms of biosignals acquisition, electroencephalography (EEG) and electromyography (EMG) are comprehensively described. For rehabilitation/assistive systems, the application of functional electrical stimulation (FES) and robotics units (exoskeleton, orthosis, etc.) have been explained. SIGNIFICANCE This is the first review article that compiles the different studies regarding flexible technology based post-stroke systems. Furthermore, the technological advantages, limitations, and possible future implications are also discussed to help improve and advance the flexible systems for the betterment of the stroke community.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 215, Lyngby, 2800, DENMARK
| | - Matteo Saibene
- Technical University of Denmark, Ørsteds Plads, Building 345C, Lyngby, 2800, DENMARK
| | - Rig Das
- Technical University of Denmark, Ørsteds Plads Building 345C, Room 214, Lyngby, 2800, DENMARK
| | | | | |
Collapse
|
8
|
A System-Level Approach towards a Hybrid Energy Harvesting Glove. SENSORS 2021; 21:s21165349. [PMID: 34450791 PMCID: PMC8400813 DOI: 10.3390/s21165349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
This paper presents a novel wearable hybrid harvester system as a glove that contains four distinct scavenging modules of flexible transducer film, photosensitive 3D dual-gate thin-film transistor, and a particular power management box. Each single module is formed by a piezoelectric-charge-gated TFT (PCGTFT). The reported system is capable of scavenging energy from two various free of charge energy sources (Piezoelectric plus Photoelectric). Aforesaid system unlike other state-of-the-arts overcomes several key challenges in interfacing, storage and power management. Harvested energy which is administered through power and storage management system ultimately lightens a typical light emitting diode (LED), testifies capability of such glove to power up some low-power electronic devices.
Collapse
|
9
|
Abstract
Smart wearable textiles can sense, react, and adapt themselves to external conditions or stimuli, and they can be divided into active and passive smart wearable textiles, which can work with the human brain for cognition, reasoning, and activating capacity. Wearable technology is among the fastest growing parts of health, entertainment, and education. In the future, the development of wearable electronics will be focused on multifunctional, user-friendly, and user acceptance and comfort features and shall be based on advanced electronic textile systems.
Collapse
|