1
|
Yu X, Bao H, Xu Q, Chen M, Bao B. Deep brain stimulation and lag synchronization in a memristive two-neuron network. Neural Netw 2024; 180:106728. [PMID: 39299036 DOI: 10.1016/j.neunet.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
In the pursuit of potential treatments for neurological disorders and the alleviation of patient suffering, deep brain stimulation (DBS) has been utilized to intervene or investigate pathological neural activities. To explore the exact mechanism of how DBS works, a memristive two-neuron network considering DBS is newly proposed in this work. This network is implemented by coupling two-dimensional Morris-Lecar neuron models and using a memristor synaptic synapse to mimic synaptic plasticity. The complex bursting activities and dynamical effects are revealed numerically through dynamical analysis. By examining the synchronous behavior, the desynchronization mechanism of the memristor synapse is uncovered. The study demonstrates that synaptic connections lead to the appearance of time-lagged or asynchrony in completely synchronized firing activities. Additionally, the memristive two-neuron network is implemented in hardware based on FPGA, and experimental results confirm the abundant neuronal electrical activities and chaotic dynamical behaviors. This work offers insights into the potential mechanisms of DBS intervention in neural networks.
Collapse
Affiliation(s)
- Xihong Yu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| | - Han Bao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China.
| | - Quan Xu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| | - Mo Chen
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| | - Bocheng Bao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| |
Collapse
|
2
|
Guo Y, Lv M, Wang C, Ma J. Energy controls wave propagation in a neural network with spatial stimuli. Neural Netw 2024; 171:1-13. [PMID: 38091753 DOI: 10.1016/j.neunet.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 01/29/2024]
Abstract
Nervous system has distinct anisotropy and some intrinsic biophysical properties enable neurons present various firing modes in neural activities. In presence of realistic electromagnetic fields, non-uniform radiation activates these neurons with energy diversity. By using a feasible model, energy function is obtained to predict the growth of synaptic connections of these neurons. Distribution of average value of the Hamilton energy function vs. intensity of noisy disturbance can predict the occurrence of coherence resonance, which the neural activities show high regularity by applying noisy disturbance with moderate intensity. From physical viewpoint, the average energy value has similar role average power for the neuron. Non-uniform spatial disturbance is applied and energy is injected into the neural network, statistical synchronization factor is calculated to predict the network synchronization stability and wave propagation. The intensity for field coupling is adaptively controlled by energy diversity between adjacent neurons. Local energy balance will terminate further growth of the coupling intensity; otherwise, heterogeneity is formed in the network due to energy diversity. Furthermore, memristive channel current is introduced into the neuron model for perceiving the effect of electromagnetic induction and radiation, and a memristive neuron is obtained. The circuit implement of memristive circuit depends on the connection to a magnetic flux-controlled memristor into the mentioned neural circuit in an additive branch circuit. The connection and activation of this memristive neural network are controlled under external spatial electromagnetic radiation by capturing enough field energy. Continuous energy collection and exchange generate energy diversity and synaptic connection is created to regulate the synchronous firing patterns and energy balance.
Collapse
Affiliation(s)
- Yitong Guo
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China
| | - Mi Lv
- Faculty of Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 834000, Xinjiang, PR China
| | - Chunni Wang
- Department of Physics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China.
| | - Jun Ma
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China; Department of Physics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, PR China
| |
Collapse
|
3
|
Fang X, Duan S, Wang L. Memristive Izhikevich Spiking Neuron Model and Its Application in Oscillatory Associative Memory. Front Neurosci 2022; 16:885322. [PMID: 35592261 PMCID: PMC9110805 DOI: 10.3389/fnins.2022.885322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
The Izhikevich (IZH) spiking neuron model can display spiking and bursting behaviors of neurons. Based on the switching property and bio-plausibility of the memristor, the memristive Izhikevich (MIZH) spiking neuron model is built. Firstly, the MIZH spiking model is introduced and used to generate 23 spiking patterns. We compare the 23 spiking patterns produced by the IZH and MIZH spiking models. Secondly, the MIZH spiking model actively reproduces various neuronal behaviors, including the excitatory cortical neurons, the inhibitory cortical neurons, and other cortical neurons. Finally, the collective dynamic activities of the MIZH neuronal network are performed, and the MIZH oscillatory network is constructed. Experimental results illustrate that the constructed MIZH spiking neuron model performs high firing frequency and good frequency adaptation. The model can easily simulate various spiking and bursting patterns of distinct neurons in the brain. The MIZH neuronal network realizes the synchronous and asynchronous collective behaviors. The MIZH oscillatory network can memorize and retrieve the information patterns correctly and efficiently with high retrieval accuracy.
Collapse
|
4
|
Central Nervous System: Overall Considerations Based on Hardware Realization of Digital Spiking Silicon Neurons (DSSNs) and Synaptic Coupling. MATHEMATICS 2022. [DOI: 10.3390/math10060882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Central Nervous System (CNS) is the part of the nervous system including the brain and spinal cord. The CNS is so named because the brain integrates the received information and influences the activity of different sections of the bodies. The basic elements of this important organ are: neurons, synapses, and glias. Neuronal modeling approach and hardware realization design for the nervous system of the brain is an important issue in the case of reproducing the same biological neuronal behaviors. This work applies a quadratic-based modeling called Digital Spiking Silicon Neuron (DSSN) to propose a modified version of the neuronal model which is capable of imitating the basic behaviors of the original model. The proposed neuron is modeled based on the primary hyperbolic functions, which can be realized in high correlation state with the main model (original one). Really, if the high-cost terms of the original model, and its functions were removed, a low-error and high-performance (in case of frequency and speed-up) new model will be extracted compared to the original model. For testing and validating the new model in hardware state, Xilinx Spartan-3 FPGA board has been considered and used. Hardware results show the high-degree of similarity between the original and proposed models (in terms of neuronal behaviors) and also higher frequency and low-cost condition have been achieved. The implementation results show that the overall saving is more than other papers and also the original model. Moreover, frequency of the proposed neuronal model is about 168 MHz, which is significantly higher than the original model frequency, 63 MHz.
Collapse
|
5
|
An Investigation on Spiking Neural Networks Based on the Izhikevich Neuronal Model: Spiking Processing and Hardware Approach. MATHEMATICS 2022. [DOI: 10.3390/math10040612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The main required organ of the biological system is the Central Nervous System (CNS), which can influence the other basic organs in the human body. The basic elements of this important organ are neurons, synapses, and glias (such as astrocytes, which are the highest percentage of glias in the human brain). Investigating, modeling, simulation, and hardware implementation (realization) of different parts of the CNS are important in case of achieving a comprehensive neuronal system that is capable of emulating all aspects of the real nervous system. This paper uses a basic neuron model called the Izhikevich neuronal model to achieve a high copy of the primary nervous block, which is capable of regenerating the behaviors of the human brain. The proposed approach can regenerate all aspects of the Izhikevich neuron in high similarity degree and performances. The new model is based on Look-Up Table (LUT) modeling of the mathematical neuromorphic systems, which can be realized in a high degree of correlation with the original model. The proposed procedure is considered in three cases: 100 points LUT modeling, 1000 points LUT modeling, and 10,000 points LUT modeling. Indeed, by removing the high-cost functions in the original model, the presented model can be implemented in a low-error, high-speed, and low-area resources state in comparison with the original system. To test and validate the proposed final hardware, a digital FPGA board (Xilinx Virtex-II FPGA board) is used. Digital hardware synthesis illustrates that our presented approach can follow the Izhikevich neuron in a high-speed state (more than the original model), increase efficiency, and also reduce overhead costs. Implementation results show the overall saving of 84.30% in FPGA and also the higher frequency of the proposed model of about 264 MHz, which is significantly higher than the original model, 28 MHz.
Collapse
|
6
|
Wang J, Cauwenberghs G, Broccard FD. Neuromorphic Dynamical Synapses With Reconfigurable Voltage-Gated Kinetics. IEEE Trans Biomed Eng 2019; 67:1831-1840. [PMID: 31647418 DOI: 10.1109/tbme.2019.2948809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Although biological synapses express a large variety of receptors in neuronal membranes, the current hardware implementation of neuromorphic synapses often rely on simple models ignoring the heterogeneity of synaptic transmission. Our objective is to emulate different types of synapses with distinct properties. METHODS Conductance-based chemical and electrical synapses were implemented between silicon neurons on a fully programmable and reconfigurable, biophysically realistic neuromorphic VLSI chip. Different synaptic properties were achieved by configuring on-chip digital parameters for the conductances, reversal potentials, and voltage dependence of the channel kinetics. The measured I-V characteristics of the artificial synapses were compared with biological data. RESULTS We reproduced the response properties of five different types of chemical synapses, including both excitatory ( AMPA, NMDA) and inhibitory ( GABAA, GABAC, glycine) ionotropic receptors. In addition, electrical synapses were implemented in a small network of four silicon neurons. CONCLUSION Our work extends the repertoire of synapse types between silicon neurons, providing greater flexibility for the design and implementation of biologically realistic neural networks on neuromorphic chips. SIGNIFICANCE A higher synaptic heterogeneity in neuromorphic chips is relevant for the hardware implementation of energy-efficient population codes as well as for dynamic clamp applications where neural models are implemented in neuromorphic VLSI hardware.
Collapse
|
7
|
Haghiri S, Zahedi A, Naderi A, Ahmadi A. Multiplierless Implementation of Noisy Izhikevich Neuron With Low-Cost Digital Design. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1422-1430. [PMID: 30188839 DOI: 10.1109/tbcas.2018.2868746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fast speed and a high accuracy implementation of biological plausible neural networks are vital key objectives to achieve new solutions to model, simulate and cure the brain diseases. Efficient hardware implementation of spiking neural networks is a significant approach in biological neural networks. This paper presents a multiplierless noisy Izhikevich neuron (MNIN) model, which is used for the digital implementation of biological neural networks in large scale. Simulation results show that the MNIN model reproduces the same operations of the original noisy Izhikevich neuron. The proposed model has a low-cost hardware implementation property compared with the original neuron model. The field-programmable gate array realization results demonstrated that the MNIN model follows the different spiking patterns appropriately.
Collapse
|
8
|
Natarajan A, Hasler J. Hodgkin-Huxley Neuron and FPAA Dynamics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:918-926. [PMID: 30010587 DOI: 10.1109/tbcas.2018.2837055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the experimental silicon results on the dynamics of a Hodgkin-Huxley neuron implemented on a reconfigurable platform. The circuit has been inspired by the similarity between biology and silicon, by modeling ion channels and their time constants. Another significant motivation behind this paper is to make the system available to circuit designers as well as users in the neuroscience community. The open-source tool infrastructure and a remote system ease the accessibility of our system to a number of users. We demonstrate the reproducibility of the results by replicating the dynamics across different boards along with responses from different inputs and with different parameters. The reconfigurability enables one to make use of a single primary design to obtain a variety of results. The measurements are taken from the system compiled on a field programmable analog array fabricated on a 350-nm process.
Collapse
|
9
|
Wang J, Breen D, Akinin A, Broccard F, Abarbanel HDI, Cauwenberghs G. Assimilation of Biophysical Neuronal Dynamics in Neuromorphic VLSI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:1258-1270. [PMID: 29324422 DOI: 10.1109/tbcas.2017.2776198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Representing the biophysics of neuronal dynamics and behavior offers a principled analysis-by-synthesis approach toward understanding mechanisms of nervous system functions. We report on a set of procedures assimilating and emulating neurobiological data on a neuromorphic very large scale integrated (VLSI) circuit. The analog VLSI chip, NeuroDyn, features 384 digitally programmable parameters specifying for 4 generalized Hodgkin-Huxley neurons coupled through 12 conductance-based chemical synapses. The parameters also describe reversal potentials, maximal conductances, and spline regressed kinetic functions for ion channel gating variables. In one set of experiments, we assimilated membrane potential recorded from one of the neurons on the chip to the model structure upon which NeuroDyn was designed using the known current input sequence. We arrived at the programmed parameters except for model errors due to analog imperfections in the chip fabrication. In a related set of experiments, we replicated songbird individual neuron dynamics on NeuroDyn by estimating and configuring parameters extracted using data assimilation from intracellular neural recordings. Faithful emulation of detailed biophysical neural dynamics will enable the use of NeuroDyn as a tool to probe electrical and molecular properties of functional neural circuits. Neuroscience applications include studying the relationship between molecular properties of neurons and the emergence of different spike patterns or different brain behaviors. Clinical applications include studying and predicting effects of neuromodulators or neurodegenerative diseases on ion channel kinetics.
Collapse
|
10
|
Broccard FD, Joshi S, Wang J, Cauwenberghs G. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems. J Neural Eng 2017; 14:041002. [PMID: 28573983 DOI: 10.1088/1741-2552/aa67a9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. APPROACH This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. MAIN RESULTS Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. SIGNIFICANCE Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a computational tool for investigating fundamental questions related to neural dynamics, the sophistication of current neuromorphic systems now allows direct interfaces with large neuronal networks and circuits, resulting in potentially interesting clinical applications for neuroengineering systems, neuroprosthetics and neurorehabilitation.
Collapse
Affiliation(s)
- Frédéric D Broccard
- Institute for Neural Computation, UC San Diego, United States of America. Department of Bioengineering, UC San Diego, United States of America
| | | | | | | |
Collapse
|
11
|
|
12
|
Pani D, Meloni P, Tuveri G, Palumbo F, Massobrio P, Raffo L. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks. Front Neurosci 2017; 11:90. [PMID: 28293163 PMCID: PMC5328944 DOI: 10.3389/fnins.2017.00090] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/10/2017] [Indexed: 11/17/2022] Open
Abstract
In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments.
Collapse
Affiliation(s)
- Danilo Pani
- EOLab - Microelectronics and Bioengineering Lab, Department of Electrical and Electronic Engineering, University of Cagliari Cagliari, Italy
| | - Paolo Meloni
- EOLab - Microelectronics and Bioengineering Lab, Department of Electrical and Electronic Engineering, University of Cagliari Cagliari, Italy
| | - Giuseppe Tuveri
- EOLab - Microelectronics and Bioengineering Lab, Department of Electrical and Electronic Engineering, University of Cagliari Cagliari, Italy
| | - Francesca Palumbo
- Information Engineering Unit, PolComIng Department, University of Sassari Sassari, Italy
| | - Paolo Massobrio
- Neuroengineering and Bio-nano Technology Lab, Dibris, University of Genova Genova, Italy
| | - Luigi Raffo
- EOLab - Microelectronics and Bioengineering Lab, Department of Electrical and Electronic Engineering, University of Cagliari Cagliari, Italy
| |
Collapse
|
13
|
Haghiri S, Ahmadi A, Saif M. Complete Neuron-Astrocyte Interaction Model: Digital Multiplierless Design and Networking Mechanism. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:117-127. [PMID: 27662685 DOI: 10.1109/tbcas.2016.2583920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease. This paper presents a modified complete neuron-astrocyte interaction model that is more suitable for efficient and large scale biological neural network realization on digital platforms. Simulation results show that the modified complete interaction model can reproduce biological-like behavior of the original neuron-astrocyte mechanism. The modified interaction model is investigated in terms of digital realization feasibility and cost targeting a low cost hardware implementation. Networking behavior of this interaction is investigated and compared between two cases: i) the neuron spiking mechanism without astrocyte effects, and ii) the effect of astrocyte in regulating the neurons behavior and synaptic transmission via controlling the LTP and LTD processes. Hardware implementation on FPGA shows that the modified model mimics the main mechanism of neuron-astrocyte communication with higher performance and considerably lower hardware overhead cost compared with the original interaction model.
Collapse
|
14
|
Hayati M, Nouri M, Haghiri S, Abbott D. A Digital Realization of Astrocyte and Neural Glial Interactions. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:518-529. [PMID: 26390499 DOI: 10.1109/tbcas.2015.2450837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms.
Collapse
|
15
|
Behdad R, Binczak S, Dmitrichev AS, Nekorkin VI, Bilbault JM. Artificial Electrical Morris-Lecar Neuron. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:1875-1884. [PMID: 25314713 DOI: 10.1109/tnnls.2014.2360072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, an experimental electronic neuron based on a complete Morris-Lecar model is presented, which is able to become an experimental unit tool to study collective association of coupled neurons. The circuit design is given according to the ionic currents of this model. The experimental results are compared with the theoretical prediction, leading to a good agreement between them, which therefore validate the circuit. The use of some parts of the circuit is also possible for other neurons models, namely for those based on ionic currents.
Collapse
|
16
|
Abstract
Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using "virtual receptors" (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-to-trial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to real-world computing problems.
Collapse
|
17
|
Cassidy AS, Georgiou J, Andreou AG. Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Neural Netw 2013; 45:4-26. [PMID: 23886551 DOI: 10.1016/j.neunet.2013.05.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
Abstract
We present a design framework for neuromorphic architectures in the nano-CMOS era. Our approach to the design of spiking neurons and STDP learning circuits relies on parallel computational structures where neurons are abstracted as digital arithmetic logic units and communication processors. Using this approach, we have developed arrays of silicon neurons that scale to millions of neurons in a single state-of-the-art Field Programmable Gate Array (FPGA). We demonstrate the validity of the design methodology through the implementation of cortical development in a circuit of spiking neurons, STDP synapses, and neural architecture optimization.
Collapse
Affiliation(s)
- Andrew S Cassidy
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
18
|
Yu T, Sejnowski TJ, Cauwenberghs G. Biophysical Neural Spiking, Bursting, and Excitability Dynamics in Reconfigurable Analog VLSI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2011; 5:420-9. [PMID: 22227949 PMCID: PMC3251010 DOI: 10.1109/tbcas.2011.2169794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We study a range of neural dynamics under variations in biophysical parameters underlying extended Morris-Lecar and Hodgkin-Huxley models in three gating variables. The extended models are implemented in NeuroDyn, a four neuron, twelve synapse continuous-time analog VLSI programmable neural emulation platform with generalized channel kinetics and biophysical membrane dynamics. The dynamics exhibit a wide range of time scales extending beyond 100 ms neglected in typical silicon models of tonic spiking neurons. Circuit simulations and measurements show transition from tonic spiking to tonic bursting dynamics through variation of a single conductance parameter governing calcium recovery. We similarly demonstrate transition from graded to all-or-none neural excitability in the onset of spiking dynamics through the variation of channel kinetic parameters governing the speed of potassium activation. Other combinations of variations in conductance and channel kinetic parameters give rise to phasic spiking and spike frequency adaptation dynamics. The NeuroDyn chip consumes 1.29 mW and occupies 3 mm × 3 mm in 0.5 μm CMOS, supporting emerging developments in neuromorphic silicon-neuron interfaces.
Collapse
Affiliation(s)
- Theodore Yu
- Department of Electrical and Computer Engineering, Jacobs School of Engineering and Institute of Neural Computation, University of California San Diego, La Jolla, CA 92093 USA
| | - Terrence J. Sejnowski
- Division of Biological Sciences and Institute of Neural Computation, University of California San Diego, La Jolla, CA 92093 USA and also with the Howard Hughes Medical Institute, Salk Institute, La Jolla, CA 92037 USA
| | - Gert Cauwenberghs
- Department of Bioengineering, Jacobs School of Engineering and Institute of Neural Computation, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|