1
|
Isaksen JL, Arildsen B, Lind C, Nørregaard M, Vernooy K, Schotten U, Jespersen T, Betz K, Hermans ANL, Kanters JK, Linz D. Raw photoplethysmogram waveforms versus peak-to-peak intervals for machine learning detection of atrial fibrillation: Does waveform matter? COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108537. [PMID: 39644781 DOI: 10.1016/j.cmpb.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Machine learning-based analysis can accurately detect atrial fibrillation (AF) from photoplethysmograms (PPGs), however the computational requirements for analyzing raw PPG waveforms can be significant. The analysis of PPG-derived peak-to-peak intervals may offer a more feasible solution for smartphone deployment, provided the diagnostic utility is comparable. AIMS To compare raw PPG waveforms and PPG-derived peak-to-peak intervals as input signals for machine learning detection of AF. METHODS We developed specialized neural networks for raw waveform and peak-to-peak interval analyses and trained them on 7,704 PPGs from 106 patients from the TeleCheck-AF project. We evaluated the neural networks on 48,912 PPGs from 416 patients from the VIRTUAL-SAFARI project. We recorded computational requirements, sensitivity, positive predictive value (PPV), and F1 score. RESULTS With 1.6 million trainable parameters, the waveform model was more than 100 times as complex as the interval model (15,513 parameters) and required 19 times more computational power. In external validation, metrics were comparable between the interval and waveform models. For the interval model vs. the waveform model, sensitivity was 91.7 % vs. 81.9 % (p=0.4), PPV was 80.5 % vs. 84.5 % (p=0.3), and F1 score was 85.6 % vs. 81.3 % (p=0.5), respectively. CONCLUSION PPG-derived peak-to-peak intervals and PPG waveforms were equivalent as input signals to neural networks in terms of accurate AF detection. The reduced computational requirements of the interval model make it a more suitable option for deployment on digital end-user devices such as smartphones.
Collapse
Affiliation(s)
- Jonas L Isaksen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Denmark.
| | - Bolette Arildsen
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Cathrine Lind
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Malene Nørregaard
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Kevin Vernooy
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Konstanze Betz
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; Department of Internal Medicine, Eifelklinik St. Brigida GmbH & CO KG., Simmerath, Germany
| | - Astrid N L Hermans
- Department of Cardiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Denmark; Center for Biosignal Research, University of California, San Francisco, CA, USA
| | - Dominik Linz
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, University of Copenhagen, Denmark; Department of Internal Medicine, Eifelklinik St. Brigida GmbH & CO KG., Simmerath, Germany
| |
Collapse
|
2
|
Qananwah Q, Ababneh M, Dagamseh A. Cardiac arrhythmias classification using photoplethysmography database. Sci Rep 2024; 14:3355. [PMID: 38336980 PMCID: PMC10858029 DOI: 10.1038/s41598-024-53142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Worldwide, Cardiovascular Diseases (CVDs) are the leading cause of death. Patients at high cardiovascular risk require long-term follow-up for early CVDs detection. Generally, cardiac arrhythmia detection through the electrocardiogram (ECG) signal has been the basis of many studies. This technique does not provide sufficient information in addition to a high false alarm potential. In addition, the electrodes used to record the ECG signal are not suitable for long-term monitoring. Recently, the photoplethysmogram (PPG) signal has attracted great interest among scientists as it provides a non-invasive, inexpensive, and convenient source of information related to cardiac activity. In this paper, the PPG signal (online database Physio Net Challenge 2015) is used to classify different cardiac arrhythmias, namely, tachycardia, bradycardia, ventricular tachycardia, and ventricular flutter/fibrillation. The PPG signals are pre-processed and analyzed utilizing various signal-processing techniques to eliminate noise and artifacts, which forms a stage of signal preparation prior to the feature extraction process. A set of 41 PPG features is used for cardiac arrhythmias' classification through the application of four machine-learning techniques, namely, Decision Trees (DT), Support Vector Machines (SVM), K-Nearest Neighbors (KNNs), and Ensembles. Principal Component Analysis (PCA) technique is used for dimensionality reduction and feature extraction while preserving the most important information in the data. The results show a high-throughput evaluation with an accuracy of 98.4% for the KNN technique with a sensitivity of 98.3%, 95%, 96.8%, and 99.7% for bradycardia, tachycardia, ventricular flutter/fibrillation, and ventricular tachycardia, respectively. The outcomes of this work provide a tool to correlate the properties of the PPG signal with cardiac arrhythmias and thus the early diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Qasem Qananwah
- Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, P.O.Box 21163, Irbid, Jordan.
| | - Marwa Ababneh
- Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
| | - Ahmad Dagamseh
- Department of Electronics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
3
|
Raj R, Kumar US, Maik V. Enhanced premature ventricular contraction pulse detection and classification using deep convolutional neural network. Phys Eng Sci Med 2023; 46:1677-1691. [PMID: 37721684 DOI: 10.1007/s13246-023-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Access to accurate and precise monitoring systems for cardiac arrhythmia could contribute significantly to preventing damage and subsequent heart disorders. The present research concentrates on using photoplethysmography (PPG) and arterial blood pressure (ABP) with deep convolutional neural networks (CNN) for the classification and detection of fetal cardiac arrhythmia or premature ventricular contractions (PMVCs). The framework for the study entails (Icentia 11k) a public dataset of ECG signals consisting of different cardiac abnormalities. Following this, the weights obtained from the Icentia 11k dataset are transferred to the proposed CNN. Finally, fine-tuning was carried out to improve the accuracy of classification. Results obtained showcase the capacity of the proposed method to detect and classify PMVCs into three types: Normal, P1, and P2 with an accuracy of 99.9%, 99.8%, and 99.5%.
Collapse
Affiliation(s)
- Remya Raj
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India.
| | - Ushus S Kumar
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Ramapuram, Chennai, India
| | - Vivek Maik
- Principal Scientist, Indian Institute of Technology, Madras, Chennai, India
| |
Collapse
|
4
|
Charlton PH, Allen J, Bailón R, Baker S, Behar JA, Chen F, Clifford GD, Clifton DA, Davies HJ, Ding C, Ding X, Dunn J, Elgendi M, Ferdoushi M, Franklin D, Gil E, Hassan MF, Hernesniemi J, Hu X, Ji N, Khan Y, Kontaxis S, Korhonen I, Kyriacou PA, Laguna P, Lázaro J, Lee C, Levy J, Li Y, Liu C, Liu J, Lu L, Mandic DP, Marozas V, Mejía-Mejía E, Mukkamala R, Nitzan M, Pereira T, Poon CCY, Ramella-Roman JC, Saarinen H, Shandhi MMH, Shin H, Stansby G, Tamura T, Vehkaoja A, Wang WK, Zhang YT, Zhao N, Zheng D, Zhu T. The 2023 wearable photoplethysmography roadmap. Physiol Meas 2023; 44:111001. [PMID: 37494945 PMCID: PMC10686289 DOI: 10.1088/1361-6579/acead2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Stephanie Baker
- College of Science and Engineering, James Cook University, Cairns, 4878 Queensland, Australia
| | - Joachim A Behar
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guandong, People’s Republic of China
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - David A Clifton
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Harry J Davies
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Cheng Ding
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaorong Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27708-0187, United States of America
- Duke Clinical Research Institute, Durham, NC 27705-3976, United States of America
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8008, Switzerland
| | - Munia Ferdoushi
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Daniel Franklin
- Institute of Biomedical Engineering, Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, M5G 1M1, Canada
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Md Farhad Hassan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Jussi Hernesniemi
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Xiao Hu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Computer Sciences, College of Arts and Sciences, Emory University, Atlanta, GA 30322, United States of America
| | - Nan Ji
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
| | - Yasser Khan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Spyridon Kontaxis
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Ilkka Korhonen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Jesús Lázaro
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Chungkeun Lee
- Digital Health Devices Division, Medical Device Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Jeremy Levy
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
- Faculty of Electrical and Computer Engineering, Technion Institute of Technology, Haifa, 3200003, Israel
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Chengyu Liu
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Jing Liu
- Analog Devices Inc, San Jose, CA 95124, United States of America
| | - Lei Lu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Danilo P Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vaidotas Marozas
- Department of Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Biomedical Engineering Institute, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Elisa Mejía-Mejía
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Meir Nitzan
- Department of Physics/Electro-Optic Engineering, Lev Academic Center, 91160 Jerusalem, Israel
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Porto, 4200-465, Portugal
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | | | - Jessica C Ramella-Roman
- Department of Biomedical Engineering and Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33174, United States of America
| | - Harri Saarinen
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Md Mobashir Hasan Shandhi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Hangsik Shin
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Toshiyo Tamura
- Future Robotics Organization, Waseda University, Tokyo, 1698050, Japan
| | - Antti Vehkaoja
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- PulseOn Ltd, Espoo, 02150, Finland
| | - Will Ke Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Yuan-Ting Zhang
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People’s Republic of China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
| | - Tingting Zhu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
5
|
Neha, Sardana HK, Dahiya N, Dogra N, Kanawade R, Sharma YP, Kumar S. Automated myocardial infarction and angina detection using second derivative of photoplethysmography. Phys Eng Sci Med 2023; 46:1259-1269. [PMID: 37395927 DOI: 10.1007/s13246-023-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Photoplethysmography (PPG) based healthcare devices have gained enormous interest in the detection of cardiac abnormalities. Limited research has been implemented for myocardial infarction (MI) detection. Moreover, PPG-based detection of angina is still a research gap. PPG signals are not always informative. Therefore, this research work presents the use of PPG signals and their second derivative to evaluate myocardial infarction and angina using a novel set of morphological features. The obtained morphological features are fed onto the feed-forward artificial neural network for the identification of the type of MI and unstable angina (UA). The initial experiments have been carried out on non-ambulatory (public) subjects for feature extraction and later evaluated on ambulatory (self-generated) databases. The intended method attains accuracy, sensitivity, and specificity of 98%, 97%, 98% on the public database and 94%, 94%, 94% on the self-generated database. The result shows that the proposed set of features can detect MI and UA with significant accuracy.
Collapse
Affiliation(s)
- Neha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Central Scientific Instruments Organisation, Chandigarh, India
| | - H K Sardana
- Indian Institute of Information Technology, Raichur, India.
| | - N Dahiya
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - N Dogra
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - R Kanawade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- National Chemical Laboratory, Pune, India
| | - Y P Sharma
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Central Scientific Instruments Organisation, Chandigarh, India
| |
Collapse
|
6
|
Wrist photoplethysmography-based assessment of ectopic burden in hemodialysis patients. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Photoplethysmograph based arrhythmia detection using morphological features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
8
|
Yang W, Ouyang Q, Zhu Z, Wu Y, Fan M, Liao Y, Guo X, Xu Z, Zhang X, Zhang Y, Hu N, Zhang D. A biosensing system employing nonlinear dynamic analysis-assisted neural network for drug-induced cardiotoxicity assessment. Biosens Bioelectron 2023; 222:114923. [PMID: 36455375 DOI: 10.1016/j.bios.2022.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Preclinical investigation of drug-induced cardiotoxicity is of importance for drug development. To evaluate such cardiotoxicity, in vitro high-throughput interdigitated electrode-based recording of cardiomyocytes mechanical beating is widely used. To automatically analyze the features from the beating signals for drug-induced cardiotoxicity assessment, artificial neural network analysis is conventionally employed and signals are segmented into cycles and feature points are located in the cycles. However, signal segmentation and location of feature points for different signal shapes require design of specific algorithms. Consequently, this may lower the efficiency of research and the applications of such algorithms in signals with different morphologies are limited. Here, we present a biosensing system that employs nonlinear dynamic analysis-assisted neural network (NDANN) to avoid the signal segmentation process and directly extract features from beating signal time series. By processing beating time series with fixed time duration to avoid the signal segmentation process, this NDANN-based biosensing system can identify drug-induced cardiotoxicity with accuracy over 0.99. The individual drugs were classified with high accuracies over 0.94 and drug-induced cardiotoxicity levels were accurately predicted. We also evaluated the generalization performance of the NDANN-based biosensing system in assessing drug-induced cardiotoxicity through an independent dataset. This system achieved accuracy of 0.85-0.95 for different drug concentrations in identification of drug-induced cardiotoxicity. This result demonstrates that our NDANN-based biosensing system has the capacity of screening newly developed drugs, which is crucial in practical applications. This NDANN-based biosensing system can work as a new screening platform for drug-induced cardiotoxicity and improve the efficiency of bio-signal processing.
Collapse
Affiliation(s)
- Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Qiangqiang Ouyang
- First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhijing Zhu
- Key Laboratory of Novel Target and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou, 310015, China; School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China.
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Xinyu Guo
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Ning Hu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100, China.
| |
Collapse
|
9
|
Al Fahoum AS, Abu Al-Haija AO, Alshraideh HA. Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process. Bioengineering (Basel) 2023; 10:bioengineering10020249. [PMID: 36829743 PMCID: PMC9952145 DOI: 10.3390/bioengineering10020249] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
A low-cost, fast, dependable, repeatable, non-invasive, portable, and simple-to-use vascular screening tool for coronary artery diseases (CADs) is preferred. Photoplethysmography (PPG), a low-cost optical pulse wave technology, is one method with this potential. PPG signals come from changes in the amount of blood in the microvascular bed of tissue. Therefore, these signals can be used to figure out anomalies within the cardiovascular system. This work shows how to use PPG signals and feature selection-based classifiers to identify cardiorespiratory disorders based on the extraction of time-domain features. Data were collected from 360 healthy and cardiovascular disease patients. For analysis and identification, five types of cardiovascular disorders were considered. The categories of cardiovascular diseases were identified using a two-stage classification process. The first stage was utilized to differentiate between healthy and unhealthy subjects. Subjects who were found to be abnormal were then entered into the second stage classifier, which was used to determine the type of the disease. Seven different classifiers were employed to classify the dataset. Based on the subset of features found by the classifier, the Naïve Bayes classifier obtained the best test accuracy, with 94.44% for the first stage and 89.37% for the second stage. The results of this study show how vital the PPG signal is. Many time-domain parts of the PPG signal can be easily extracted and analyzed to find out if there are problems with the heart. The results were accurate and precise enough that they did not need to be looked at or analyzed further. The PPG classifier built on a simple microcontroller will work better than more expensive ones and will not make the patient nervous.
Collapse
Affiliation(s)
- Amjed S. Al Fahoum
- Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid 21163, Jordan
- Correspondence:
| | - Ansam Omar Abu Al-Haija
- Biomedical Systems and Informatics Engineering Department, Yarmouk University, Irbid 21163, Jordan
- Industrial Engineering Department, JUST, Irbid 22110, Jordan
| | | |
Collapse
|
10
|
Mohagheghian F, Han D, Peitzsch A, Nishita N, Ding E, Dickson EL, DiMezza D, Otabil EM, Noorishirazi K, Scott J, Lessard D, Wang Z, Whitcomb C, Tran KV, Fitzgibbons TP, McManus DD, Chon KH. Optimized Signal Quality Assessment for Photoplethysmogram Signals Using Feature Selection. IEEE Trans Biomed Eng 2022; 69:2982-2993. [PMID: 35275809 PMCID: PMC9478959 DOI: 10.1109/tbme.2022.3158582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE With the increasing use of wearable healthcare devices for remote patient monitoring, reliable signal quality assessment (SQA) is required to ensure the high accuracy of interpretation and diagnosis on the recorded data from patients. Photoplethysmographic (PPG) signals non-invasively measured by wearable devices are extensively used to provide information about the cardiovascular system and its associated diseases. In this study, we propose an approach to optimize the quality assessment of the PPG signals. METHODS We used an ensemble-based feature selection scheme to enhance the prediction performance of the classification model to assess the quality of the PPG signals. Our approach for feature and subset size selection yielded the best-suited feature subset, which was optimized to differentiate between the clean and artifact corrupted PPG segments. CONCLUSION A high discriminatory power was achieved between two classes on the test data by the proposed feature selection approach, which led to strong performance on all dependent and independent test datasets. We achieved accuracy, sensitivity, and specificity rates of higher than 0.93, 0.89, and 0.97, respectively, for dependent test datasets, independent of heartbeat type, i.e., atrial fibrillation (AF) or non-AF data including normal sinus rhythm (NSR), premature atrial contraction (PAC), and premature ventricular contraction (PVC). For independent test datasets, accuracy, sensitivity, and specificity rates were greater than 0.93, 0.89, and 0.97, respectively, on PPG data recorded from AF and non-AF subjects. These results were found to be more accurate than those of all of the contemporary methods cited in this work. SIGNIFICANCE As the results illustrate, the advantage of our proposed scheme is its robustness against dynamic variations in the PPG signal during long-term 14-day recordings accompanied with different types of physical activities and a diverse range of fluctuations and waveforms caused by different individual hemodynamic characteristics, and various types of recording devices. This robustness instills confidence in the application of the algorithm to various kinds of wearable devices as a reliable PPG signal quality assessment approach.
Collapse
|
11
|
Non-invasive detection of coronary artery disease from photoplethysmograph using lumped parameter modelling. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Sološenko A, Paliakaitė B, Marozas V, Sörnmo L. Training Convolutional Neural Networks on Simulated Photoplethysmography Data: Application to Bradycardia and Tachycardia Detection. Front Physiol 2022; 13:928098. [PMID: 35923223 PMCID: PMC9339964 DOI: 10.3389/fphys.2022.928098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: To develop a method for detection of bradycardia and ventricular tachycardia using the photoplethysmogram (PPG). Approach: The detector is based on a dual-branch convolutional neural network (CNN), whose input is the scalograms of the continuous wavelet transform computed in 5-s segments. Training and validation of the CNN is accomplished using simulated PPG signals generated from RR interval series extracted from public ECG databases. Manually annotated real PPG signals from the PhysioNet/CinC 2015 Challenge Database are used for performance evaluation. The performance is compared to that of a pulse-based reference detector. Results: The sensitivity/specificity were found to be 98.1%/97.9 and 76.6%/96.8% for the CNN-based detector, respectively, whereas the corresponding results for the pulse-based detector were 94.7%/99.8 and 67.1%/93.8%, respectively. Significance: The proposed detector may be useful for continuous, long-term monitoring of bradycardia and tachycardia using wearable devices, e.g., wrist-worn devices, especially in situations where sensitivity is favored over specificity. The study demonstrates that simulated PPG signals are suitable for training and validation of a CNN.
Collapse
Affiliation(s)
- Andrius Sološenko
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
- *Correspondence: Andrius Sološenko ,
| | - Birutė Paliakaitė
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
- Department of Electronics Engineering, Kaunas University of Technology, Kaunas, Lithuania
| | - Leif Sörnmo
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Sbrollini A, Tomassini S, Emaldi E, Marcantoni I, Morettini M, Dragoni AF, Burattini L. Multiclass Convolutional Neural Networks for Atrial Fibrillation Classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1288-1291. [PMID: 36086141 DOI: 10.1109/embc48229.2022.9871124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation (AF) is a common supraventricular arrhythmia. Its automatic identification by standard 12-lead electrocardiography (ECG) is still challenging. Recently, deep learning provided new instruments able to mimic the diagnostic ability of clinicians but only in case of binary classification (AF vs. normal sinus rhythm-NSR). However, binary classification is far from the real scenarios, where AF has to be discriminated also from several other physiological and pathological conditions. The aim of this work is to present a new AF multiclass classifier based on a convolutional neural network (CNN), able to discriminate AF from NSR, premature atrial contraction (PAC) and premature ventricular contraction (PVC). Overall, 2796 12-lead ECG recordings were selected from the open-source "PhysioNet/Computing in Cardiology Challenge 2021" database, to construct a dataset constituted by four balanced classes, namely AF class, PAC class, PVC class, and NSR class. Each lead of each ECG recording was decomposed into spectrogram by continuous wavelet transform and saved as 2D grayscale images, used to feed a 6-layers CNN. Considering the same CNN architecture, a multiclass classifiers (all classes) and three binary classifiers (AF class, PAC class, and PVC class vs. NSR class) were created and validated by a stratified shuffle split cross-validation of 10 splits. Performance was quantified in terms of area under the curve (AUC) of the receiver operating characteristic. Multiclass classifier performance was high (AF class: 96.6%; PAC class: 95.3%; PVC class: 92.8%; NSR class: 97.4%) and preferable to binary classifiers. Thus, our CNN AF multiclass classifier proved to be an efficient tool for AF discrimination from physiological and pathological confounders. Clinical Relevance-Our CNN AF multiclass classifier proved to be suitable for AF discrimination in real scenarios.
Collapse
|
14
|
Loh HW, Xu S, Faust O, Ooi CP, Barua PD, Chakraborty S, Tan RS, Molinari F, Acharya UR. Application of photoplethysmography signals for healthcare systems: An in-depth review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 216:106677. [PMID: 35139459 DOI: 10.1016/j.cmpb.2022.106677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Photoplethysmography (PPG) is a device that measures the amount of light absorbed by the blood vessel, blood, and tissues, which can, in turn, translate into various measurements such as the variation in blood flow volume, heart rate variability, blood pressure, etc. Hence, PPG signals can produce a wide variety of biological information that can be useful for the detection and diagnosis of various health problems. In this review, we are interested in the possible health disorders that can be detected using PPG signals. METHODS We applied PRISMA guidelines to systematically search various journal databases and identified 43 PPG studies that fit the criteria of this review. RESULTS Twenty-five health issues were identified from these studies that were classified into six categories: cardiac, blood pressure, sleep health, mental health, diabetes, and miscellaneous. Various routes were employed in these PPG studies to perform the diagnosis: machine learning, deep learning, and statistical routes. The studies were reviewed and summarized. CONCLUSIONS We identified limitations such as poor standardization of sampling frequencies and lack of publicly available PPG databases. We urge that future work should consider creating more publicly available databases so that a wide spectrum of health problems can be covered. We also want to promote the use of PPG signals as a potential precision medicine tool in both ambulatory and hospital settings.
Collapse
Affiliation(s)
- Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Shuting Xu
- Cogninet Australia, Sydney, New South Wales 2010, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Oliver Faust
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore
| | - Prabal Datta Barua
- Faculty of Engineering and Information Technology, University of Technology Sydney, Australia; School of Business (Information Systems), Faculty of Business, Education, Law and Arts, University of Southern Queensland, Australia
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; Centre for Advanced Modelling and Geospatial lnformation Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, 169609, Singapore; Duke-NUS Medical School, 169857, Singapore
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, Italy
| | - U Rajendra Acharya
- School of Science and Technology, Singapore University of Social Sciences, Singapore; School of Business (Information Systems), Faculty of Business, Education, Law and Arts, University of Southern Queensland, Australia; School of Engineering, Ngee Ann Polytechnic, 535 Clementi Road, 599489, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taiwan; Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
15
|
Liu Z, Zhou B, Jiang Z, Chen X, Li Y, Tang M, Miao F. Multiclass Arrhythmia Detection and Classification From Photoplethysmography Signals Using a Deep Convolutional Neural Network. J Am Heart Assoc 2022; 11:e023555. [PMID: 35322685 PMCID: PMC9075456 DOI: 10.1161/jaha.121.023555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Studies have reported the use of photoplethysmography signals to detect atrial fibrillation; however, the use of photoplethysmography signals in classifying multiclass arrhythmias has rarely been reported. Our study investigated the feasibility of using photoplethysmography signals and a deep convolutional neural network to classify multiclass arrhythmia types. Methods and Results ECG and photoplethysmography signals were collected simultaneously from a group of patients who underwent radiofrequency ablation for arrhythmias. A deep convolutional neural network was developed to classify multiple rhythms based on 10‐second photoplethysmography waveforms. Classification performance was evaluated by calculating the area under the microaverage receiver operating characteristic curve, overall accuracy, sensitivity, specificity, and positive and negative predictive values against annotations on the rhythm of arrhythmias provided by 2 cardiologists consulting the ECG results. A total of 228 patients were included; 118 217 pairs of 10‐second photoplethysmography and ECG waveforms were used. When validated against an independent test data set (23 384 photoplethysmography waveforms from 45 patients), the DCNN achieved an overall accuracy of 85.0% for 6 rhythm types (sinus rhythm, premature ventricular contraction, premature atrial contraction, ventricular tachycardia, supraventricular tachycardia, and atrial fibrillation); the microaverage area under the microaverage receiver operating characteristic curve was 0.978; the average sensitivity, specificity, and positive and negative predictive values were 75.8%, 96.9%, 75.2%, and 97.0%, respectively. Conclusions This study demonstrated the feasibility of classifying multiclass arrhythmias from photoplethysmography signals using deep learning techniques. The approach is attractive for population‐based screening and may hold promise for the long‐term surveillance and management of arrhythmia. Registration URL: www.chictr.org.cn. Identifier: ChiCTR2000031170.
Collapse
Affiliation(s)
- Zengding Liu
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China.,University of Chinese Academy of Sciences Beijing China
| | - Bin Zhou
- Department of Cardiology Laboratory of Heart Center Zhujiang HospitalSouthern Medical University Guangzhou China.,Fuwai HospitalNational Center for Cardiovascular DiseaseState Key Lab of Cardiovascular DiseaseNational Clinical Research Center of Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Zhiming Jiang
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Xi Chen
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Ye Li
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China.,Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Min Tang
- Fuwai HospitalNational Center for Cardiovascular DiseaseState Key Lab of Cardiovascular DiseaseNational Clinical Research Center of Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Fen Miao
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| |
Collapse
|
16
|
Lee S, Chu Y, Ryu J, Park YJ, Yang S, Koh SB. Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Med J 2022; 63:S93-S107. [PMID: 35040610 PMCID: PMC8790582 DOI: 10.3349/ymj.2022.63.s93] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Several artificial intelligence (AI) models for the detection and prediction of cardiovascular-related diseases, including arrhythmias, diabetes, and sleep apnea, have been reported. This systematic review and meta-analysis aimed to identify AI models developed for or applicable to wearable and mobile devices for diverse cardiovascular-related diseases. MATERIALS AND METHODS The searched databases included Medline, Embase, and Cochrane Library. For AI models for atrial fibrillation (AF) detection, a meta-analysis of diagnostic accuracy was performed to summarize sensitivity and specificity. RESULTS A total of 102 studies were included in the qualitative review. There were AI models for the detection of arrythmia (n=62), followed by sleep apnea (n=11), peripheral vascular diseases (n=6), diabetes mellitus (n=5), hyper/hypotension (n=5), valvular heart disease (n=4), heart failure (n=3), myocardial infarction and cardiac arrest (n=2), and others (n=4). For quantitative analysis of 26 studies reporting AI models for AF detection, meta-analyzed sensitivity was 94.80% and specificity was 96.96%. Deep neural networks showed superior performance [meta-analyzed area under receiver operating characteristics curve (AUROC) of 0.981] compared to conventional machine learning algorithms (meta-analyzed AUROC of 0.961). However, AI models tested with proprietary dataset (meta-analyzed AUROC of 0.972) or data acquired from wearable devices (meta-analyzed AUROC of 0.977) showed inferior performance than those with public dataset (meta-analyzed AUROC of 0.986) or data from in-hospital devices (meta-analyzed AUROC of 0.983). CONCLUSION This review found that AI models for diverse cardiovascular-related diseases are being developed, and that they are gradually developing into a form that is suitable for wearable and mobile devices.
Collapse
Affiliation(s)
- Solam Lee
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yuseong Chu
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | - Jiseung Ryu
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | - Young Jun Park
- Division of Cardiology, Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sejung Yang
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea.
| | - Sang Baek Koh
- Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
17
|
Arrhythmia detection and classification using ECG and PPG techniques: a review. Phys Eng Sci Med 2021; 44:1027-1048. [PMID: 34727361 DOI: 10.1007/s13246-021-01072-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
Electrocardiogram (ECG) and photoplethysmograph (PPG) are non-invasive techniques that provide electrical and hemodynamic information of the heart, respectively. This information is advantageous in the diagnosis of various cardiac abnormalities. Arrhythmia is the most common cardiovascular disease, manifested as single or multiple irregular heartbeats. However, due to the continuous manual observation, it becomes troublesome for experts sometimes to identify the paroxysmal nature of arrhythmia correctly. Moreover, due to advancements in technology, there is an inclination towards wearable sensors which monitor such patients continuously. Thus, there is a need for automatic detection techniques for the identification of arrhythmia. In the presented work, ECG and PPG-based state-of-the-art methods have been described, including preprocessing, feature extraction, and classification techniques for the detection of various arrhythmias. Additionally, this review exhibits various wearable sensors used in the literature and public databases available for the evaluation of results. The study also highlights the limitations of the current techniques and pragmatic solutions to improvise the ongoing effort.
Collapse
|
18
|
Shao D, Liu C, Tsow F. Noncontact Physiological Measurement Using a Camera: A Technical Review and Future Directions. ACS Sens 2021; 6:321-334. [PMID: 33434004 DOI: 10.1021/acssensors.0c02042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using a camera as an optical sensor to monitor physiological parameters has garnered considerable research interest in biomedical engineering in recent decades. Researchers have explored the use of a camera for monitoring a variety of physiological waveforms, together with the vital signs carried by these waveforms. Most of the obtained waveforms are related to the human respiratory and cardiovascular systems, and in addition of being indicative of overall health, they can also detect early signs of certain diseases. While using a camera for noncontact physiological signal monitoring offers the advantages of low cost and operational ease, it also has the disadvantages such as vulnerability to motion and lack of burden-free calibration solutions in some use cases. This study presents an overview of the existing camera-based methods that have been reported in recent years. It introduces the physiological principles behind these methods, signal acquisition approaches, various types of acquired signals, data processing algorithms, and application scenarios of these methods. It also discusses the technological gaps between the camera-based methods and traditional medical techniques, which are mostly contact-based. Furthermore, we present the manner in which noncontact physiological signal monitoring use has been extended, particularly over the recent years, to more day-to-day aspects of individuals' lives, so as to go beyond the more conventional use case scenarios. We also report on the development of novel approaches that facilitate easier measurement of less often monitored and recorded physiological signals. These have the potential of ushering a host of new medical and lifestyle applications. We hope this study can provide useful information to the researchers in the noncontact physiological signal measurement community.
Collapse
Affiliation(s)
- Dangdang Shao
- Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, China
| | - Francis Tsow
- Biodesign Institute, Arizona State University, Tempe, Arizona 518116, United States
| |
Collapse
|
19
|
Singha Roy M, Roy B, Gupta R, Das Sharma K. On-Device Reliability Assessment and Prediction of Missing Photoplethysmographic Data Using Deep Neural Networks. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:1323-1332. [PMID: 33026985 DOI: 10.1109/tbcas.2020.3028935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoplethysmographic (PPG) measurements from ambulatory subjects may suffer from unreliability due to body movements and missing data segments due to loosening of sensor. This paper describes an on-device reliability assessment from PPG measurements using a stack denoising autoencoder (SDAE) and multilayer perceptron neural network (MLPNN). The missing segments were predicted by a personalized convolutional neural network (CNN) and long-short term memory (LSTM) model using a short history of the same channel data. Forty sets of volunteers' data, consisting of equal share of healthy and cardiovascular subjects were used for validation and testing. The PPG reliability assessment model (PRAM) achieved over 95% accuracy for correctly identifying acceptable PPG beats out of total 5000 using expert annotated data. Disagreement with experts' annotation was nearly 3.5%. The missing segment prediction model (MSPM) achieved a root mean square error (RMSE) of 0.22, and mean absolute error (MAE) of 0.11 for 40 missing beats prediction using only four beat history from the same channel PPG. The two models were integrated in a standalone device based on quad-core ARM Cortex-A53, 1.2 GHz, with 1 GB RAM, with 130 MB memory requirement and latency ∼0.35 s per beat prediction with a 30 s frame. The present method also provides improved performance with published works on PPG quality assessment and missing data prediction using two public datasets, CinC and MIMIC-II under PhysioNet.
Collapse
|
20
|
Han D, Bashar SK, Mohagheghian F, Ding E, Whitcomb C, McManus DD, Chon KH. Premature Atrial and Ventricular Contraction Detection using Photoplethysmographic Data from a Smartwatch. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5683. [PMID: 33028000 PMCID: PMC7582300 DOI: 10.3390/s20195683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
We developed an algorithm to detect premature atrial contraction (PAC) and premature ventricular contraction (PVC) using photoplethysmographic (PPG) data acquired from a smartwatch. Our PAC/PVC detection algorithm is composed of a sequence of algorithms that are combined to discriminate various arrhythmias. A novel vector resemblance method is used to enhance the PAC/PVC detection results of the Poincaré plot method. The new PAC/PVC detection algorithm with our automated motion and noise artifact detection approach yielded a sensitivity of 86% for atrial fibrillation (AF) subjects while the overall sensitivity was 67% when normal sinus rhythm (NSR) subjects were also included. The specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy values for the combined data consisting of both NSR and AF subjects were 97%, 81%, 94% and 92%, respectively, for PAC/PVC detection combined with our automated motion and noise artifact detection approach. Moreover, when AF detection was compared with and without PAC/PVC, the sensitivity and specificity increased from 94.55% to 98.18% and from 95.75% to 97.90%, respectively. For additional independent testing data, we used two datasets: a smartwatch PPG dataset that was collected in our ongoing clinical study, and a pulse oximetry PPG dataset from the Medical Information Mart for Intensive Care III database. The PAC/PVC classification results of the independent testing on these two other datasets are all above 92% for sensitivity, specificity, PPV, NPV, and accuracy. The proposed combined approach to detect PAC and PVC can ultimately lead to better accuracy in AF detection. This is one of the first studies involving detection of PAC and PVC using PPG recordings from a smartwatch. The proposed method can potentially be of clinical importance as this enhanced capability can lead to fewer false positive detections of AF, especially for those NSR subjects with frequent episodes of PAC/PVC.
Collapse
Affiliation(s)
- Dong Han
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| | - Syed Khairul Bashar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| | - Fahimeh Mohagheghian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| | - Eric Ding
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (C.W.); (D.D.M.)
| | - Cody Whitcomb
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (C.W.); (D.D.M.)
| | - David D. McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (C.W.); (D.D.M.)
| | - Ki H. Chon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| |
Collapse
|
21
|
Abstract
Atrial fibrillation (AF) is a major cause of morbidity and mortality globally, and much of this is driven by challenges in its timely diagnosis and treatment. Existing and emerging mobile technologies have been used to successfully identify AF in a variety of clinical and community settings, and while these technologies offer great promise for revolutionizing AF detection and screening, several major barriers may impede their effectiveness. The unclear clinical significance of device-detected AF, potential challenges in integrating patient-generated data into existing healthcare systems and clinical workflows, harm resulting from potential false positives, and identifying the appropriate scope of population-based screening efforts are all potential concerns that warrant further investigation. It is crucial for stakeholders such as healthcare providers, researchers, funding agencies, insurers, and engineers to actively work together in fulfilling the tremendous potential of mobile technologies to improve AF identification and management on a population level.
Collapse
Affiliation(s)
- Eric Y Ding
- From the Department of Population and Quantitative Health Sciences and Division of Cardiology, Department of Medicine, University of Massachusetts Medical School (E.Y.D., D.D.M.)
| | - Gregory M Marcus
- Division of Cardiology, Department of Medicine, University of California, San Francisco (G.M.M.)
| | - David D McManus
- From the Department of Population and Quantitative Health Sciences and Division of Cardiology, Department of Medicine, University of Massachusetts Medical School (E.Y.D., D.D.M.)
| |
Collapse
|
22
|
Chakraborty A, Sadhukhan D, Pal S, Mitra M. Automated myocardial infarction identification based on interbeat variability analysis of the photoplethysmographic data. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Goshvarpour A, Goshvarpour A. The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 43:10.1007/s13246-019-00825-7. [PMID: 31776972 DOI: 10.1007/s13246-019-00825-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
Abstract
Recently, developing an accurate automatic emotion recognition system using a minimum number of bio-signals has become a challenging issue in "affective computing." This study aimed to propose a reliable system by examining nonlinear dynamics of photoplethysmogram (PPG) and galvanic skin response (GSR). To address this goal, two strategies were adopted. First, the efficiency of each signal in valence/arousal based emotion categorization was examined. Then, the proficiency of a hybrid feature, by combining both GSR and PPG features was studied. Lyapunov exponents, lagged Poincare's measures, and approximate entropy were extracted to characterize the irregularity and chaotic behavior of the phase space. To discriminate two levels of arousal and two levels of the valence, a probabilistic neural network (PNN) with different sigma adjustment parameter was examined. The results showed that the phase space geometry and consequently, the signal dynamics are influenced by the emotional music video. Additionally, distinctive patterns of the phase space behavior were observed under the influence of different lags. For both signals, the most irregularity was observed during the high valence, and the least irregularity was seen during the low valence. Consequently, signals' irregularity is affected by the valence dimension. The results showed that the fusion has more potential for emotion recognition than that of using each signal separately. For sigma = 0.1, the highest recognition rate was 100% in a subject-dependent mode. In a subject-independent mode, the maximum accuracies of 88.57 and 86.8% were obtained for arousal and valence dimensions, respectively.
Collapse
Affiliation(s)
- Atefeh Goshvarpour
- Department of Biomedical Engineering, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Ateke Goshvarpour
- Department of Biomedical Engineering, Imam Reza International University, Mashhad, Razavi Khorasan, Iran.
- Imam Reza International University, Rezvan Campus (Female Students), Phalestine Sq., PO. BOX 91735-553, Mashhad, Razavi Khorasan, Iran.
| |
Collapse
|
24
|
Besleaga T, Badiani S, Lloyd G, Toschi N, Canichella A, Demosthenous A, Lambiase PD, Orini M. Non-Invasive Detection of Mechanical Alternans Utilizing Photoplethysmography. IEEE J Biomed Health Inform 2018; 23:2409-2416. [PMID: 30475736 DOI: 10.1109/jbhi.2018.2882550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND SIGNIFICANCE Mechanical alternans (MA) is a biomarker associated with mortality and life-threatening arrhythmias in heart failure patients. Despite showing prognostic value, its use is limited by the requirement of measuring the continuous blood pressure (BP), which is costly and impractical. OBJECTIVE To develop and test, for the first time, non-invasive MA surrogates based on photoplethysmography (PPG). METHODS Continuous BP and PPG were recorded during clinical procedures and tests in 35 patients. MA was induced either by ventricular pacing (Group A, N = 19) or exercise (Group B, N = 16). MA was categorized as sustained or intermittent if MA episodes were observed in at least 20 or between 12 and 20 consecutive beats, respectively. Eight features characterizing the pulse morphology were derived from the PPG, and MA surrogates were evaluated. RESULTS Sustained alternans was observed in 9 patients (47%) from Group A, whereas intermittent alternans was observed in 13 patients (68%) from Group A and in 10 patients (63%) from Group B. The PPG-based MA surrogate showing the highest accuracy, V'M, was based on the maximum of the first derivative of the PPG pulse. It detected both sustained and intermittent MA with 100% sensitivity and 100% specificity in Group A and intermittent MA with 100% sensitivity and 83% specificity in Group B. Furthermore, the magnitudes of MA and its PPG-based surrogate were linearly correlated (R2 = 0.83, p < 0.001). CONCLUSION MA can be accurately identified non-invasively through PPG analysis. This may have important clinical implications for risk stratification and remote monitoring.
Collapse
|
25
|
Detection of ventricular premature beats based on the pressure signals of a hemodialysis machine. Med Eng Phys 2017; 51:49-55. [PMID: 29229403 DOI: 10.1016/j.medengphy.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/21/2022]
Abstract
Monitoring of ventricular premature beats (VPBs), being abundant in hemodialysis patients, can provide information on cardiovascular instability and electrolyte imbalance. In this paper, we describe a method for VPB detection which explores the signals acquired from the arterial and the venous pressure sensors, located in the extracorporeal blood circuit of a hemodialysis machine. The pressure signals are mainly composed of a pump component and a cardiac component. The cardiac component, severely overshadowed by the pump component, is estimated from the pressure signals using an earlier described iterative method. A set of simple features is extracted, and linear discriminant analysis is performed to classify beats as either normal or ventricular premature. Performance is evaluated on signals from nine hemodialysis treatments, using leave-one-out crossvalidation. The simultaneously recorded and annotated photoplethysmographic signal serves as the reference signal, with a total of 149,686 normal beats and 3574 VPBs. The results show that VPBs can be reliably detected, quantified by a Youden's J statistic of 0.9, for average cardiac pulse pressures exceeding 1 mmHg; for lower pressures, the J statistic drops to 0.55. It is concluded that the cardiac pressure signal is suitable for VPB detection, provided that the average cardiac pulse pressure exceeds 1 mmHg.
Collapse
|
26
|
Timimi AAK, Ali MAM, Chellappan K. A Novel AMARS Technique for Baseline Wander Removal Applied to Photoplethysmogram. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:627-639. [PMID: 28489546 DOI: 10.1109/tbcas.2017.2649940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new digital filter, AMARS (aligning minima of alternating random signal) has been derived using trigonometry to regulate signal pulsations inline. The pulses are randomly presented in continuous signals comprising frequency band lower than the signal's mean rate. Frequency selective filters are conventionally employed to reject frequencies undesired by specific applications. However, these conventional filters only reduce the effects of the rejected range producing a signal superimposed by some baseline wander (BW). In this work, filters of different ranges and techniques were independently configured to preprocess a photoplethysmogram, an optical biosignal of blood volume dynamics, producing wave shapes with several BWs. The AMARS application effectively removed the encountered BWs to assemble similarly aligned trends. The removal implementation was found repeatable in both ear and finger photoplethysmograms, emphasizing the importance of BW removal in biosignal processing in retaining its structural, functional and physiological properties. We also believe that AMARS may be relevant to other biological and continuous signals modulated by similar types of baseline volatility.
Collapse
|
27
|
A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors. SENSORS 2017; 17:s17010158. [PMID: 28098831 PMCID: PMC5298731 DOI: 10.3390/s17010158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations’ vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway.
Collapse
|
28
|
Grigonytė E, Gil E, Laguna P, Sörnmo L. Relative peripheral blood volume changes induced by premature ectopic beats and their role in hemodialysis. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Modeling of the photoplethysmogram during atrial fibrillation. Comput Biol Med 2016; 81:130-138. [PMID: 28061368 DOI: 10.1016/j.compbiomed.2016.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
Abstract
A phenomenological model for simulating the photoplethysmogram (PPG) during atrial fibrillation (AF) is proposed. The simulated PPG is solely based on RR interval information, and, therefore, any annotated ECG database can be used to model sinus rhythm, AF, or rhythms with premature beats. A PPG pulse is modeled by a linear combination of a log-normal and two Gaussian waveforms. The model PPG is obtained by placing individual pulses according to the RR intervals so that a connected signal is created. The model is evaluated on synchronously recorded ECG and PPG signals from the MIMIC and the University of Queensland Vital Signs Dataset databases. The results show that the model PPG signals closely resemble real signal for sinus rhythm, premature beats, as well as for AF. The model is used to study the performance of a low-complexity RR interval-based AF detector on simulated PPG signals with five different pulse types generated using the MIT-BIH AF database at signal-to-noise ratios (SNRs) from 0 to 30dB. PPGs composed of pulses with a dicrotic notch tend to increase the rate of false alarms, especially at lower SNRs. The model is capable of generating simulated PPG signals from RR interval series with sinus rhythm, AF, and premature beats. Considering the lack of annotated, public PPG databases with arrhythmias, the simulation of realistic PPG signals based on annotated ECG signals is expected to facilitate the development and testing of PPG-specific AF detectors.
Collapse
|
30
|
Becerra-Luna B, Martínez-Memije R, Cartas-Rosado R, Infante-Vázquez O. [Increase in the effectiveness of identifying peaks and feet of the photoplethysmographic pulse to be reconstructed it using adaptive filtering]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 87:61-71. [PMID: 27956339 DOI: 10.1016/j.acmx.2016.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/09/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To improve the identification of peaks and feet in photoplethysmographic (PPG) pulses deformed by myokinetic noise, through the implementation of a modified fingertip and applying adaptive filtering. METHOD PPG signals were recordedfrom 10 healthy volunteers using two photoplethysmography systems placed on the index finger of each hand. Recordings lasted three minutes andwere done as follows: during the first minute, both handswere at rest, and for the lasting two minutes only the left hand was allowed to make quasi-periodicmovementsin order to add myokinetic noise. Two methodologies were employed to process the signals off-line. One consisted on using an adaptive filter based onthe Least Mean Square (LMS) algorithm, and the other includeda preprocessing stage in addition to the same LMS filter. Both filtering methods were compared and the one with the lowest error was chosen to assess the improvement in the identification of peaks and feet from PPG pulses. RESULTS Average percentage errorsobtained wereof 22.94% with the first filtering methodology, and 3.72% withthe second one. On identifying peaks and feet from PPG pulsesbefore filtering, error percentages obtained were of 24.26% and 48.39%, respectively, and once filtered error percentageslowered to 2.02% for peaks and 3.77% for feet. CONCLUSIONS The attenuation of myokinetic noise in PPG pulses through LMS filtering, plusa preprocessing stage, allows increasingthe effectiveness onthe identification of peaks and feet from PPG pulses, which are of great importance for medical assessment.
Collapse
Affiliation(s)
- Brayans Becerra-Luna
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México
| | - Raúl Martínez-Memije
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México
| | | | - Oscar Infante-Vázquez
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México.
| |
Collapse
|