1
|
Lee SY, Hsieh YT, Lee HY, Chang SS, Chen JY. A Direct Current-Sensing VCO-Based 2nd-Order Continuous-Time Sigma-Delta Modulator for Biosensor Readout Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:288-298. [PMID: 37812555 DOI: 10.1109/tbcas.2023.3322901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A second-order voltage-controlled oscillator (VCO)-based continuous-time sigma-delta modulator (CTSDM) for current-sensing readout applications is proposed. Current signals from the sensor can directly be quantized by the proposed VCO-based CTSDM, which does not require any extra trans-impedance amplifiers. With the proportional-integral (PI) structure and a VCO phase integrator, the capability of second-order noise shaping is available to reduce the in-band quantization noise. The PI structure can be simply realized by a resistor in series with the integrating capacitor, which can reduce the architecture complexity and maintain the stability of the system. The current-steering digital-to-analog converter with tail and sink current sources is used on the feedback path for the subtraction of the current-type input signal. All the components of the circuit are scaling friendly and applicable to current-sensing readout applications in the Internet of Things (IoT). The proposed VCO-based CTSDM implemented in a 0.18-μm standard CMOS process has a measured signal-to-noise and distortion ratio (SNDR) of 74.6 dB at 10 kHz bandwidth and consumes 44.8 μw only under a supply voltage of 1.2 V, which can achieve a Figure-of-Merit (FoM) of 160.76 dB.
Collapse
|
2
|
Mulberry G, White KA, Crocker MA, Kim BN. A 512-Ch Dual-Mode Microchip for Simultaneous Measurements of Electrophysiological and Neurochemical Activities. BIOSENSORS 2023; 13:bios13050502. [PMID: 37232863 DOI: 10.3390/bios13050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In the study of the brain, large and high-density microelectrode arrays have been widely used to study the behavior of neurotransmission. CMOS technology has facilitated these devices by enabling the integration of high-performance amplifiers directly on-chip. Usually, these large arrays measure only the voltage spikes resulting from action potentials traveling along firing neuronal cells. However, at synapses, communication between neurons occurs by the release of neurotransmitters, which cannot be measured on typical CMOS electrophysiology devices. Development of electrochemical amplifiers has resulted in the measurement of neurotransmitter exocytosis down to the level of a single vesicle. To effectively monitor the complete picture of neurotransmission, measurement of both action potentials and neurotransmitter activity is needed. Current efforts have not resulted in a device that is capable of the simultaneous measurement of action potential and neurotransmitter release at the same spatiotemporal resolution needed for a comprehensive study of neurotransmission. In this paper, we present a true dual-mode CMOS device that fully integrates 256-ch electrophysiology amplifiers and 256-ch electrochemical amplifiers, along with an on-chip 512 electrode microelectrode array capable of simultaneous measurement from all 512 channels.
Collapse
Affiliation(s)
- Geoffrey Mulberry
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Kevin A White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Matthew A Crocker
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
3
|
Ying D, Tseng CY, Chen PW, Lo YH, Hall D. A 30.3 fA/√Hz Biosensing Current Front-End With 139 dB Cross-Scale Dynamic Range. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1368-1379. [PMID: 34727038 DOI: 10.1109/tbcas.2021.3124197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper presents an 8-channel array of low-noise (30.3 fA/√Hz) current sensing front-ends with on-chip microelectrode electrochemical sensors. The analog front-end (AFE) consists of a 1st-order continuous-time delta-sigma (CT ΔΣ) modulator that achieves 123 fA sensitivity over a 10 Hz bandwidth and 139 dB cross-scale dynamic range with a 2-bit programmable current reference. A digital predictor and tri-level pulse width modulated (PWM) current-steering DAC realize the equivalent performance of a multi-bit ΔΣ in an area- and power-efficient manner. The AFE consumes 50.3 µW and 0.11 mm2 per readout channel. The proposed platform was used to observe protein-ligand interactions in real-time using transient induced molecular electronic spectroscopy (TIMES), a label- and immobilization-free biosensing technique.
Collapse
|
4
|
Huang M, Dorta-Quiñones CI, Minch BA, Lindau M. On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC. Anal Chem 2021; 93:8027-8034. [PMID: 34038637 PMCID: PMC8650766 DOI: 10.1021/acs.analchem.1c01132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complementary metal-oxide-semiconductor (CMOS) microelectrode arrays integrate amplifier arrays with on-chip electrodes, offering high-throughput platforms for electrochemical sensing with high spatial and temporal resolution. Such devices have been developed for highly parallel constant voltage amperometric detection of transmitter release from multiple cells with single-vesicle resolution. Cyclic voltammetry (CV) is an electrochemical method that applies voltage waveforms, which provides additional information about electrode properties and about the nature of analytes. A 16-channel, 64-electrode-per-channel CMOS integrated circuit (IC) fabricated in a 0.5 μm CMOS process for CV is demonstrated. Each detector consists of only 11 transistors and an integration capacitor with a unit dimension of 0.0015 mm2. The device was postfabricated using Pt as the working electrode material with a shifted electrode design, which makes it possible to redefine the size and the location of working electrodes. The system incorporating cell-sized (8 μm radius) microelectrodes was validated with dopamine injection tests and CV measurements of potassium ferricyanide at a 1 V/s scanning rate. The cyclic voltammograms were in excellent agreement with theoretical predictions. The technology enables rigorous characterization of electrode performance for the application of CMOS microelectrode arrays in low-noise amperometric measurements of quantal transmitter release as well as other biosensing applications.
Collapse
Affiliation(s)
- Meng Huang
- School of Applied & Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Carlos I Dorta-Quiñones
- School of Electrical & Computer Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Bradley A Minch
- Franklin W. Olin College of Engineering, Needham, Massachusetts 02492, United States
| | - Manfred Lindau
- School of Applied & Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Yin H, Ashoori E, Mu X, Mason AJ. A Compact Low-Power Current-to-Digital Readout Circuit for Amperometric Electrochemical Sensors. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2020; 69:1972-1980. [PMID: 32292210 PMCID: PMC7156046 DOI: 10.1109/tim.2019.2922053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper introduces a novel compact low-power amperometric instrumentation design with current-to-digital output for electrochemical sensors. By incorporating the double layer capacitance of an electrochemical sensor's impedance model, our new design can maintain performance while dramatically reducing circuit complexity and size. Electrochemical experiments with potassium ferricyanide, show that the circuit output is in good agreement with results obtained using commercial amperometric instrumentation. A high level of linearity (R2 = 0.991) between the circuit output and the concentration of potassium ferricyanide was also demonstrated. Furthermore, we show that a CMOS implementation of the presented architecture could save 25.3% of area, and 47.6% of power compared to a traditional amperometric instrumentation structure. Thus, this new circuit structure is ideally suited for portable/wireless electrochemical sensing applications.
Collapse
Affiliation(s)
- Heyu Yin
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Ehsan Ashoori
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaoyi Mu
- Apple Inc., Cupertino, CA 95014, USA
| | - Andrew J Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Chen YC, Lu SY, Liao YT. A Microwatt Dual-Mode Electrochemical Sensing Current Readout With Current-Reducer Ramp Waveform Generation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1163-1174. [PMID: 31443051 DOI: 10.1109/tbcas.2019.2936373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electrochemical sensing chip with an integrated current-reducer pattern generator and a current-mirror based low-noise chopper-stabilization potentiostat circuit is presented. The pattern generator, utilizing the current reducer technique and pseudo resistors, creates a sub-Hz ramp signal for the cyclic voltammetric (CV) measurement without large-size passive components. The proposed design adopts the chopper-stabilization and low-noise biasing technique for the potentiostat and a counter-based time-to-digital converter to reduce the amplitude noise effects and to convert the sensing current signal to digital codes for further data processing. The design is fabricated using a 0.18-μm CMOS process and achieves a 41 pA current resolution in the current range of ±5 μA while maintaining the R2 linearity of 0.998. The system consumes 16 μW from a 1.2 V supply when a 5 μA sensing current is detected. The power efficiency of the readout interface is 0.31, and the sensing current dynamic range is 108 dB. The design is fully integrated into a single chip and is successfully tested in the dual-mode (CA/CV) measurements with commercial gold electrodes in a potassium ferricyanide solution in sub-millimolar concentrations.
Collapse
|
7
|
Shekar S, Jayant K, Rabadan MA, Tomer R, Yuste R, Shepard KL. A miniaturized multi-clamp CMOS amplifier for intracellular neural recording. NATURE ELECTRONICS 2019; 2:343-350. [PMID: 31850397 PMCID: PMC6913532 DOI: 10.1038/s41928-019-0285-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/17/2019] [Indexed: 05/28/2023]
Abstract
Intracellular electrophysiology is a foundational method in neuroscience and uses electrolyte-filled glass electrodes and benchtop amplifiers to measure and control transmembrane voltages and currents. Commercial amplifiers perform such recordings with high signal-to-noise ratios (SNRs) but are often expensive, bulky, and not easily scalable to many channels due to reliance on board-level integration of discrete components. Here, we present a monolithic complementary-metal-oxide-semiconductor (CMOS) multi-clamp amplifier integrated circuit capable of recording both voltages and currents with performance exceeding that of commercial benchtop instrumentation. Miniaturization enables high-bandwidth current mirroring, facilitating the synthesis of large-valued active resistors with lower noise than their passive equivalents. This enables the realization of compensation modules that can account for a wide range of electrode impedances. We validate the amplifier's operation electrically, in primary neuronal cultures, and in acute slices, using both high-impedance sharp and patch electrodes. This work provides a solution for low-cost, high-performance and scalable multi-clamp amplifiers.
Collapse
Affiliation(s)
- Siddharth Shekar
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Krishna Jayant
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
- NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - M Angeles Rabadan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
- NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Kenneth L Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
- NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| |
Collapse
|
8
|
Mulberry G, White KA, Kim BN. Analysis of Simple Half-Shared Transimpedance Amplifier for Picoampere Biosensor Measurements. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:387-395. [PMID: 30716048 DOI: 10.1109/tbcas.2019.2897287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-throughput recordings of small current are becoming more common in biosensor applications, including in vivo dopamine measurements, single-cell electrophysiology, photoplethysmography, pulse oximetry, and nanopore recordings. Thus, a highly scalable transimpedance amplifier design is in demand. Half-shared amplifier design is one way to improve the scalability by sharing the non-inverting side of the operational amplifier design for many inverting halves. This method reduces silicon area and power by nearly half compared to using independent operational amplifiers. In this paper, we analyze the scalability of a simple half-shared amplifier structure while investigating the tradeoff of increasing the number of inverting half amplifiers sharing a single non-inverting half. A transimpedance amplifier is designed using the half-shared structure to minimize the size per amplifier. The transimpedance amplifier is based on a current integration of a capacitor. The noise analysis of the integration amplifier is a challenging task because it does not reach a steady-state, thus, being a non-stationary circuit. For frequency analysis, a conversion method is discussed to estimate the noise characteristic in the simulation. The array design of 1024 transimpedance amplifiers is fabricated using a standard 0.35 μm process and is tested to confirm the validity of above analysis. The amplifier array exhibits high linearity in transimpedance gain (7.00 mV/pA for high gain and 0.86 mV/pA for low gain), low mismatch of 1.65 mV across the entire 1024 amplifier array, and extremely low noise. The technique will be crucial in enabling the fabrication of larger arrays to enable higher throughput measurement tools for biosensor applications.
Collapse
|
9
|
CMOS Interfaces for Internet-of-Wearables Electrochemical Sensors: Trends and Challenges. ELECTRONICS 2019. [DOI: 10.3390/electronics8020150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Smart wearables, among immediate future IoT devices, are creating a huge and fast growing market that will encompass all of the next decade by merging the user with the Cloud in a easy and natural way. Biological fluids, such as sweat, tears, saliva and urine offer the possibility to access molecular-level dynamics of the body in a non-invasive way and in real time, disclosing a wide range of applications: from sports tracking to military enhancement, from healthcare to safety at work, from body hacking to augmented social interactions. The term Internet of Wearables (IoW) is coined here to describe IoT devices composed by flexible smart transducers conformed around the human body and able to communicate wirelessly. In addition the biochemical transducer, an IoW-ready sensor must include a paired electronic interface, which should implement specific stimulation/acquisition cycles while being extremely compact and drain power in the microwatts range. Development of an effective readout interface is a key element for the success of an IoW device and application. This review focuses on the latest efforts in the field of Complementary Metal–Oxide–Semiconductor (CMOS) interfaces for electrochemical sensors, and analyses them under the light of the challenges of the IoW: cost, portability, integrability and connectivity.
Collapse
|
10
|
CMOS Current Feedback Operational Amplifier-Based Relaxation Generator for Capacity to Voltage Sensor Interface. SENSORS 2018; 18:s18124488. [PMID: 30567398 PMCID: PMC6308982 DOI: 10.3390/s18124488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 12/04/2022]
Abstract
This paper presents a simple relaxation generator, suitable for a sensor interface, operating as a transducer of capacitance to frequency/period. The proposed circuit employs a current feedback operational amplifier, fabricated in I3T25 0.35 μm ON Semiconductor CMOS process, and four passive elements including a grounded capacitor (the sensed parameter). It offers a low-impedance voltage output of the generated square wave. Additional frequency to DC voltage converter offers output information in the form of voltage. The experimental capacitance variation from 6.8 nF to 100 nF yields voltage change in the range from 21 mV to 106 mV with error below 5% and sensitivity 0.912 mV/nF evaluated over the full range of change. These values are in good agreement with simulation results obtained from the Mathcad model of frequency to DC voltage transducer passive circuit.
Collapse
|
11
|
Widdershoven F, Cossettini A, Laborde C, Bandiziol A, van Swinderen PP, Lemay SG, Selmi L. A CMOS Pixelated Nanocapacitor Biosensor Platform for High-Frequency Impedance Spectroscopy and Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1369-1382. [PMID: 30059320 DOI: 10.1109/tbcas.2018.2861558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe the realization of a fully electronic label-free temperature-controlled biosensing platform aimed to overcome the Debye screening limit over a wide range of electrolyte salt concentrations. It is based on an improved version of a 90-nm CMOS-integrated circuit featuring a nanocapacitor array, readout and A/D conversion circuitry, and a field programmable gate array (FPGA)-based interface board with NIOS II soft processor. We describe chip's processing, mounting, microfluidics, temperature control system, as well as the calibration and compensation procedures to reduce systematic errors, which altogether make up a complete quantitative sensor platform. Capacitance spectra recorded up to 70 MHz are shown and successfully compared to predictions by finite element method (FEM) numerical simulations in the Poisson-Drift-Diffusion formalism. They demonstrate the ability of the chip to reach high upper frequency of operation, thus overcoming the low-frequency Debye screening limit at nearly physiological salt concentrations in the electrolyte, and allowing for detection of events occurring beyond the extent of the electrical double layer. Furthermore, calibrated multifrequency measurements enable quantitative recording of capacitance spectra, whose features can reveal new properties of the analytes. The scalability of the electrode dimensions, interelectrode pitch, and size of the array make this sensing approach of quite general applicability, even in a non-bio context (e.g., gas sensing).
Collapse
|
12
|
Dorta-Quiñones CI, Huang M, Ruelas JC, Delacruz J, Apsel AB, Minch BA, Lindau M. A Bidirectional-Current CMOS Potentiostat for Fast-Scan Cyclic Voltammetry Detector Arrays. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:894-903. [PMID: 29994774 PMCID: PMC6131114 DOI: 10.1109/tbcas.2018.2828828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A potentiostat circuit for the application of bipolar electrode voltages and detection of bidirectional currents using a microelectrode array is presented. The potentiostat operates as a regulated-cascode amplifier for positive input currents, and as an active-input regulated-cascode mirror for negative input currents. This topology enables constant-potential amperometry and fast-scan cyclic voltammetry (FSCV) at microelectrode arrays for parallel recording of quantal release events, electrode impedance characterization, and high-throughput drug screening. A 64-channel FSCV detector array, fabricated in a 0.5-$\mu$m, 5-V CMOS process, is also demonstrated. Each detector occupies an area of 45 $\mu$m $\times$ 30 $\mu$m and consists of only 14 transistors and a 50-fF integrating capacitor. The system was validated using prerecorded input stimuli from actual FSCV measurements at a carbon-fiber microelectrode.
Collapse
Affiliation(s)
| | - Meng Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA ()
| | - John C. Ruelas
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA ()
| | - Joannalyn Delacruz
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA ()
| | - Alyssa B. Apsel
- School of Electrical and Computer Engineering,Cornell University, Ithaca, NY 14853 USA ()
| | - Bradley A. Minch
- Franklin W. Olin College of Engineering, Needham,MA 02492 USA ()
| | - Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA ()
| |
Collapse
|