1
|
Wang W, Su W, Han J, Song W, Li X, Xu C, Sun Y, Wang L. Microfluidic platforms for monitoring cardiomyocyte electromechanical activity. MICROSYSTEMS & NANOENGINEERING 2025; 11:4. [PMID: 39788940 PMCID: PMC11718118 DOI: 10.1038/s41378-024-00751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases account for ~40% of global deaths annually. This situation has revealed the urgent need for the investigation and development of corresponding drugs for pathogenesis due to the complexity of research methods and detection techniques. An in vitro cardiomyocyte model is commonly used for cardiac drug screening and disease modeling since it can respond to microphysiological environmental variations through mechanoelectric feedback. Microfluidic platforms are capable of accurate fluid control and integration with analysis and detection techniques. Therefore, various microfluidic platforms (i.e., heart-on-a-chip) have been applied for the reconstruction of the physiological environment and detection of signals from cardiomyocytes. They have demonstrated advantages in mimicking the cardiovascular structure and function in vitro and in monitoring electromechanical signals. This review presents a summary of the methods and technologies used to monitor the contractility and electrophysiological signals of cardiomyocytes within microfluidic platforms. Then, applications in common cardiac drug screening and cardiovascular disease modeling are presented, followed by design strategies for enhancing physiology studies. Finally, we discuss prospects in the tissue engineering and sensing techniques of microfluidic platforms.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Junlei Han
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada.
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353, Jinan, China.
- Shandong Institute of Mechanical Design and Research, 250353, Jinan, China.
| |
Collapse
|
2
|
Lee D, Jung D, Jiang F, Junek GV, Park J, Liu H, Kong Y, Wang A, Kim Y, Choi KS, Wang J, Wang H. A Multi-Functional CMOS Biosensor Array With On-Chip DEP-Assisted Sensing for Rapid Low-Concentration Analyte Detection and Close-Loop Particle Manipulation With No External Electrodes. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1214-1226. [PMID: 38096094 DOI: 10.1109/tbcas.2023.3343068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This article presents a fully-integrated dielectrophoresis (DEP)-assisted multi-functional CMOS biosensor array chip with 4096 working electrodes (WEs), 12288 photodiodes (PDs), reference electrodes (REs), and counter electrodes (CEs), while each WE and photodiode can be reconfigured to support on-chip DEP actuation, electrochemical potentiostat, optical shadow imaging, and complex impedance sensing. The proposed CMOS biosensor is an example of an actuation-assisted label-free biosensor for the rapid sensing of low-concentration analytes. The DEP actuator of the proposed CMOS biosensor does not require any external electrode. Instead, on-chip WE pairs can be re-used for DEP actuation to simplify the sensor array design. The CMOS biosensor is implemented in a standard 130-nm BiCMOS process. Theoretical analyses and finite element method (FEM) simulations of the on-chip DEP operations are conducted as proof of concept. Biological assay measurements (DEP actuation/electrochemical potentiostat/impedance sensing) with E.coli bacteria and microbeads (optical shadow imaging) demonstrate rapid detection of low-concentration analytes and simultaneous manipulation and detection of large particles. The on-chip DEP operations draw the analytes closer to the sensor electrode surface, which overcomes the diffusion limit and accelerates low-concentration analyte sensing. Moreover, the DEP-based movement of large particles can be readily detected by on-chip photodiode arrays to achieve close-loop manipulation and sensing of particles and droplets. These show the unique advantages of the DEP-assisted multi-functional biosensor.
Collapse
|
3
|
Mulberry G, White KA, Crocker MA, Kim BN. A 512-Ch Dual-Mode Microchip for Simultaneous Measurements of Electrophysiological and Neurochemical Activities. BIOSENSORS 2023; 13:bios13050502. [PMID: 37232863 DOI: 10.3390/bios13050502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
In the study of the brain, large and high-density microelectrode arrays have been widely used to study the behavior of neurotransmission. CMOS technology has facilitated these devices by enabling the integration of high-performance amplifiers directly on-chip. Usually, these large arrays measure only the voltage spikes resulting from action potentials traveling along firing neuronal cells. However, at synapses, communication between neurons occurs by the release of neurotransmitters, which cannot be measured on typical CMOS electrophysiology devices. Development of electrochemical amplifiers has resulted in the measurement of neurotransmitter exocytosis down to the level of a single vesicle. To effectively monitor the complete picture of neurotransmission, measurement of both action potentials and neurotransmitter activity is needed. Current efforts have not resulted in a device that is capable of the simultaneous measurement of action potential and neurotransmitter release at the same spatiotemporal resolution needed for a comprehensive study of neurotransmission. In this paper, we present a true dual-mode CMOS device that fully integrates 256-ch electrophysiology amplifiers and 256-ch electrochemical amplifiers, along with an on-chip 512 electrode microelectrode array capable of simultaneous measurement from all 512 channels.
Collapse
Affiliation(s)
- Geoffrey Mulberry
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Kevin A White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Matthew A Crocker
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Brian N Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Wang AY, Sheng Y, Li W, Jung D, Junek GV, Liu H, Park J, Lee D, Wang M, Maharjan S, Kumashi S, Hao J, Zhang YS, Eggan K, Wang H. A Multimodal and Multifunctional CMOS Cellular Interfacing Array for Digital Physiology and Pathology Featuring an Ultra Dense Pixel Array and Reconfigurable Sampling Rate. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1057-1074. [PMID: 36417722 DOI: 10.1109/tbcas.2022.3224064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The article presents a fully integrated multimodal and multifunctional CMOS biosensing/actuating array chip and system for multi-dimensional cellular/tissue characterization. The CMOS chip supports up to 1,568 simultaneous parallel readout channels across 21,952 individually addressable multimodal pixels with 13 μm × 13 μm 2-D pixel pitch along with 1,568 Pt reference electrodes. These features allow the CMOS array chip to perform multimodal physiological measurements on living cell/tissue samples with both high throughput and single-cell resolution. Each pixel supports three sensing and one actuating modalities, each reconfigurable for different functionalities, in the form of full array (FA) or fast scan (FS) voltage recording schemes, bright/dim optical detection, 2-/4-point impedance sensing (ZS), and biphasic current stimulation (BCS) with adjustable stimulation area for single-cell or tissue-level stimulation. Each multi-modal pixel contains an 8.84 μm × 11 μm Pt electrode, 4.16 μm × 7.2 μm photodiode (PD), and in-pixel circuits for PD measurements and pixel selection. The chip is fabricated in a standard 130nm BiCMOS process as a proof of concept. The on-chip electrodes are constructed by unique design and in-house post-CMOS fabrication processes, including a critical Al shorting of all pixels during fabrication and Al etching after fabrication that ensures a high-yield planar electrode array on CMOS with high biocompatibility and long-term measurement reliability. For demonstration, extensive biological testing is performed with human and mouse progenitor cells, in which multidimensional biophysiological data are acquired for comprehensive cellular characterization.
Collapse
|
5
|
Short WD, Olutoye OO, Padon BW, Parikh UM, Colchado D, Vangapandu H, Shams S, Chi T, Jung JP, Balaji S. Advances in non-invasive biosensing measures to monitor wound healing progression. Front Bioeng Biotechnol 2022; 10:952198. [PMID: 36213059 PMCID: PMC9539744 DOI: 10.3389/fbioe.2022.952198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed.
Collapse
Affiliation(s)
- Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Benjamin W. Padon
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Umang M. Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Daniel Colchado
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Hima Vangapandu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Shayan Shams
- Department of Applied Data Science, San Jose State University, San Jose, CA, United States
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Taiyun Chi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Swathi Balaji,
| |
Collapse
|
6
|
Hu K, Ho J, Rosenstein JK. Super-Resolution Electrochemical Impedance Imaging With a 512 × 256 CMOS Sensor Array. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:502-510. [PMID: 35709108 DOI: 10.1109/tbcas.2022.3183856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Super-resolution imaging is a family of techniques in which multiple lower-resolution images can be merged to produce a single image at higher resolution. While super-resolution is often applied to optical systems, it can also be used with other imaging modalities. Here we demonstrate a 512 × 256 CMOS sensor array for micro-scale super-resolution electrochemical impedance spectroscopy (SR-EIS) imaging. The system is implemented in standard 180 nm CMOS technology with a 10 μm × 10 μm pixel size. The sensor array is designed to measure the mutual capacitance between programmable sets of pixel pairs. Multiple spatially-resolved impedance images can then be computationally combined to generate a super-resolution impedance image. We use finite-element electrostatic simulations to support the proposed measurement approach and discuss straightforward algorithms for super-resolution image reconstruction. We present experimental measurements of sub-cellular permittivity distribution within single green algae cells, showing the sensor's capability to produce microscale impedance images with sub-pixel resolution.
Collapse
|
7
|
Bounik R, Cardes F, Ulusan H, Modena MM, Hierlemann A. Impedance Imaging of Cells and Tissues: Design and Applications. BME FRONTIERS 2022; 2022:1-21. [PMID: 35761901 PMCID: PMC7612906 DOI: 10.34133/2022/9857485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their label-free and noninvasive nature, impedance measurements have attracted increasing interest in biological research. Advances in microfabrication and integrated-circuit technology have opened a route to using large-scale microelectrode arrays for real-time, high-spatiotemporal-resolution impedance measurements of biological samples. In this review, we discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in in vitro applications. We first introduce how electrode configurations and the frequency range of the impedance analysis determine the information that can be extracted. We then delve into relevant circuit topologies that can be used to implement impedance measurements and their characteristic features, such as resolution and data-acquisition time. Afterwards, we detail design considerations for the implementation of new impedance-imaging devices. We conclude by discussing future fields of application of impedance imaging in biomedical research, in particular applications where optical imaging is not possible, such as monitoring of ex vivo tissue slices or microelectrode-based brain implants.
Collapse
Affiliation(s)
- Raziyeh Bounik
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Fernando Cardes
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Hasan Ulusan
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Mario M. Modena
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| |
Collapse
|
8
|
Osouli Tabrizi H, Panahi A, Forouhi S, Sadighbayan D, Soheili F, Haji Hosseini Khani MR, Magierowski S, Ghafar-Zadeh E. Oral Cells-On-Chip: Design, Modeling and Experimental Results. Bioengineering (Basel) 2022; 9:218. [PMID: 35621496 PMCID: PMC9137814 DOI: 10.3390/bioengineering9050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Recent advances in periodontal studies have attracted the attention of researchers to the relation between oral cells and gum diseases, which is a real threat to overall human health. Among various microfabrication technologies, Complementary Metal Oxide Semiconductors (CMOSs) enable the development of low-cost integrated sensors and circuits for rapid and accurate assessment of living cells that can be employed for the early detection and control of periodontal diseases. This paper presents a CMOS capacitive sensing platform that can be considered as an alternative for the analysis of salivatory cells such as oral neutrophils. This platform consists of two sensing electrodes connected to a read-out capacitive circuitry designed and fabricated on the same chip using Austria Mikro Systeme (AMS) 0.35 µm CMOS process. A graphical user interface (GUI) was also developed to interact with the capacitive read-out system and the computer to monitor the capacitance changes due to the presence of saliva cells on top of the chip. Thanks to the wide input dynamic range (IDR) of more than 400 femto farad (fF) and high resolution of 416 atto farad (aF), the experimental and simulation results demonstrate the functionality and applicability of the proposed sensor for monitoring cells in a small volume of 1 µL saliva samples. As per these results, the hydrophilic adhesion of oral cells on the chip varies the capacitance of interdigitated electrodes (IDEs). These capacitance changes then give an assessment of the oral cells existing in the sample. In this paper, the simulation and experimental results set a new stage for emerging sensing platforms for testing oral samples.
Collapse
Affiliation(s)
- Hamed Osouli Tabrizi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Abbas Panahi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Saghi Forouhi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Fatemeh Soheili
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Mohammad Reza Haji Hosseini Khani
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
| | - Sebastian Magierowski
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
9
|
Hu K, Incandela J, Lian X, Larkin JW, Rosenstein JK. A 13.1 mm 2 512 x 256 Multimodal CMOS Array for Spatiochemical Imaging of Bacterial Biofilms. PROCEEDINGS OF THE ... CUSTOM INTEGRATED CIRCUITS CONFERENCE. CUSTOM INTEGRATED CIRCUITS CONFERENCE 2022; 2022:10.1109/cicc53496.2022.9772787. [PMID: 37159606 PMCID: PMC10164437 DOI: 10.1109/cicc53496.2022.9772787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
|
10
|
Lee T, Kim MK, Lee HJ, Je M. A Multimodal Neural-Recording IC With Reconfigurable Analog Front-Ends for Improved Availability and Usability for Recording Channels. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:185-199. [PMID: 35085092 DOI: 10.1109/tbcas.2022.3146324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we present an 8-channel reconfigurable multimodal neural-recording IC, which provides improved availability and usability of recording channels in various experiment scenarios. Each recording channel changes its configuration depending on whether the channel is assigned to record voltage or current signal. As a result, although the total number of channels is fixed by design, the channels utilized for voltage and current recording can be set freely and optimally for given experiment targets, scenarios, and circumstances, maximizing the availability and usability of recording channels.The proposed concept was demonstrated by fabricating the IC using a standard 180-nm CMOS process.Using the IC, we successfully performed an in vivo experiment from the hippocampal area of a mouse brain. The measured input noise of the reconfigurable front-end is 4.75 μVrms at voltage-recording mode and 7.4 pArms at current-recording mode while consuming 5.72 μW/channel.
Collapse
|
11
|
Fan Y, Zhang L, Zhang Q, Bao G, Chi T. An Integrated Microheater Array With Closed-Loop Temperature Regulation Based on Ferromagnetic Resonance of Magnetic Nanoparticles. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1236-1249. [PMID: 34905494 DOI: 10.1109/tbcas.2021.3135431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic nanoparticles (MNP) can generate localized heat in response to an external alternating magnetic field, a unique capability that has enabled a wide range of biomedical applications. Compared with other heating mechanisms such as dielectric heating and ohmic heating, MNP-based magnetic heating offers superior material specificity and minimal damage to the surrounding environment since most biological systems are non-magnetic. This paper presents a first-of-its-kind fully integrated magnetic microheater array based on the ferromagnetic resonance of MNP at Gigahertz (GHz) microwave frequencies. Each microheater pixel consists of a stacked oscillator to actuate MNP with a high magnetic field intensity and an electro-thermal feedback loop for precise temperature regulation. The four-stacked/five-stacked oscillator achieves >19.5/26.5 Vpp measured RF output swing from 1.18 to 2.62 GHz while only occupying a single inductor footprint, which eliminates the need for additional RF power amplifiers for compact pixel size (0.6 mm × 0.7 mm) and high dc-to-RF energy efficiency (45%). The electro-thermal feedback loop senses the local temperature and enables closed-loop temperature regulation by controlling the biasing voltage of the stacked oscillator, achieving a measured maximum/RMS temperature error of 0.53/0.29 °C. In the localized heating demonstration, two PDMS membranes mixed with and without MNP are attached to the microheater array chip, respectively, and their surface temperatures are monitored by an infrared (IR) camera. Only the area above the inductor (∼0.03 mm2) is efficiently heated up to 43 °C for the MNP-PDMS membrane, while the baseline temperature stays <37.8 °C for the PDMS membrane without MNP.
Collapse
|
12
|
Wu Y, Jiang D, Demosthenous A. A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1186-1195. [PMID: 34982691 DOI: 10.1109/tbcas.2021.3139996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents a low power integrated multi-channel stimulator for a cardiac neuroprosthesis designed to restore the parasympathetic control after heart transplantation. The proposed stimulator is based on time-to-current conversion. It replaces the conventional current mode digital-to-analog converter (DAC) that uses tens of microamps for biasing, with a novel capacitor time-based DAC (CT-DAC) offering about 10-bit current amplitude resolution with a bias current of only 250 nA. A stimulator chip was designed in a 0.18 μm CMOS high-voltage (HV) technology. It consists of 16 independent channels, each capable of delivering up to 550 μA stimulus current with a HV output stage that can be operated up to 20 V. The stimulator chip performance was evaluated using both RC equivalent load and a microelectrode array in saline solution. It is power efficient, provides high-resolution current amplitude stimulation, and has good charge balance. The design is suitable for multi-channel neural stimulation applications.
Collapse
|
13
|
Zhu C, Maldonado J, Sengupta K. CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1250-1267. [PMID: 34914597 DOI: 10.1109/tbcas.2021.3136165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The importance of point-of-care (POC) bio-molecular diagnostics capable of rapid analysis has become abundantly evident after the outbreak of the Covid-19 pandemic. While sensing interfaces for both protein and nucleic-acid based assays have been demonstrated with chip-scale systems, sample preparation in compact form factor has often been a major bottleneck in enabling end-to-end POC diagnostics. Miniaturization of an end-to-end system requires addressing the front-end sample processing, without which, the goal for low-cost POC diagnostics remain elusive. In this paper, we address bulk fluid processing with AC-osmotic based electrokinetic fluid flows that can be fully controlled, processed and automated by CMOS ICs, fabricated in TSMC 65 nm LP process. Here, we combine bulk fluid flow control with bio-molecular sensing, cell manipulation, cytometry, and separation-all of which are controlled with silicon chips for an all-in-one bio-sensing device. We show CMOS controlled pneumatic-free bulk fluid flow with fluid velocities reaching up to 160 μm/s within a microfluidic channel of 100 × 50 μm 2 of cross-sectional area. We incorporate electrode arrays to allow precise control and focused cell flows ( ±2 μm precision) for robust cytometry, and for subsequent separation. We also incorporate a 16-element impedance spectroscopy receiver array for cell and label-free protein sensing. The massive scalability of CMOS-driven microfluidics, manipulation, and sensing can lead to a new design space and a new class of miniaturized sensing technologies.
Collapse
|
14
|
Schmid W, Fan Y, Chi T, Golanov E, Regnier-Golanov AS, Austerman RJ, Podell K, Cherukuri P, Bentley T, Steele CT, Schodrof S, Aazhang B, Britz GW. Review of wearable technologies and machine learning methodologies for systematic detection of mild traumatic brain injuries. J Neural Eng 2021; 18. [PMID: 34330120 DOI: 10.1088/1741-2552/ac1982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mild traumatic brain injuries (mTBIs) are the most common type of brain injury. Timely diagnosis of mTBI is crucial in making 'go/no-go' decision in order to prevent repeated injury, avoid strenuous activities which may prolong recovery, and assure capabilities of high-level performance of the subject. If undiagnosed, mTBI may lead to various short- and long-term abnormalities, which include, but are not limited to impaired cognitive function, fatigue, depression, irritability, and headaches. Existing screening and diagnostic tools to detect acute andearly-stagemTBIs have insufficient sensitivity and specificity. This results in uncertainty in clinical decision-making regarding diagnosis and returning to activity or requiring further medical treatment. Therefore, it is important to identify relevant physiological biomarkers that can be integrated into a mutually complementary set and provide a combination of data modalities for improved on-site diagnostic sensitivity of mTBI. In recent years, the processing power, signal fidelity, and the number of recording channels and modalities of wearable healthcare devices have improved tremendously and generated an enormous amount of data. During the same period, there have been incredible advances in machine learning tools and data processing methodologies. These achievements are enabling clinicians and engineers to develop and implement multiparametric high-precision diagnostic tools for mTBI. In this review, we first assess clinical challenges in the diagnosis of acute mTBI, and then consider recording modalities and hardware implementation of various sensing technologies used to assess physiological biomarkers that may be related to mTBI. Finally, we discuss the state of the art in machine learning-based detection of mTBI and consider how a more diverse list of quantitative physiological biomarker features may improve current data-driven approaches in providing mTBI patients timely diagnosis and treatment.
Collapse
Affiliation(s)
- William Schmid
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Yingying Fan
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Taiyun Chi
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Eugene Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | | | - Ryan J Austerman
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Kenneth Podell
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, United States of America
| | - Paul Cherukuri
- Institute of Biosciences and Bioengineering (IBB), Rice University, Houston, TX 77005, United States of America
| | - Timothy Bentley
- Office of Naval Research, Arlington, VA 22203, United States of America
| | - Christopher T Steele
- Military Operational Medicine Research Program, US Army Medical Research and Development Command, Fort Detrick, MD 21702, United States of America
| | - Sarah Schodrof
- Department of Athletics-Sports Medicine, Rice University, Houston, TX 77005, United States of America
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering and Neuroengineering Initiative (NEI), Rice University, Houston, TX 77005, United States of America
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
| |
Collapse
|
15
|
Kumashi S, Jung D, Park J, Tejedor-Sanz S, Grijalva S, Wang A, Li S, Cho HC, Ajo-Franklin C, Wang H. A CMOS Multi-Modal Electrochemical and Impedance Cellular Sensing Array for Massively Paralleled Exoelectrogen Screening. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:221-234. [PMID: 33760741 DOI: 10.1109/tbcas.2021.3068710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The paper presents a 256-pixel CMOS sensor array with in-pixel dual electrochemical and impedance detection modalities for rapid, multi-dimensional characterization of exoelectrogens. The CMOS IC has 16 parallel readout channels, allowing it to perform multiple measurements with a high throughput and enable the chip to handle different samples simultaneously. The chip contains a total of 2 × 256 working electrodes of size 44 μm × 52 μm, along with 16 reference electrodes of dimensions 56 μm × 399 μm and 32 counter electrodes of dimensions 399 μm × 106 μm, which together facilitate the high resolution screening of the test samples. The chip was fabricated in a standard 130nm BiCMOS process. The on-chip electrodes are subjected to additional fabrication processes, including a critical Al-etch step that ensures the excellent biocompatibility and long-term reliability of the CMOS sensor array in bio-environment. The electrochemical sensing modality is verified by detecting the electroactive analyte NaFeEDTA and the exoelectrogenic Shewanella oneidensis MR-1 bacteria, illustrating the chip's ability to quantify the generated electrochemical current and distinguish between different analyte concentrations. The impedance measurements with the HEK-293 cancer cells cultured on-chip successfully capture the cell-to-surface adhesion information between the electrodes and the cancer cells. The reported CMOS sensor array outperforms the conventional discrete setups for exoelectrogen characterization in terms of spatial resolution and speed, which demonstrates the chip's potential to radically accelerate synthetic biology engineering.
Collapse
|
16
|
Shaik FA, Ihida S, Ikeuchi Y, Tixier-Mita A, Toshiyoshi H. TFT sensor array for real-time cellular characterization, stimulation, impedance measurement and optical imaging of in-vitro neural cells. Biosens Bioelectron 2020; 169:112546. [PMID: 32911315 DOI: 10.1016/j.bios.2020.112546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022]
Abstract
Real-time in-vitro multi-modality characterization of neuronal cell ensemble involves highly complex interdependent phenomena and processes. Although a variety of microelectrode arrays (MEAs) have been reported, diagnosis techniques are limited in term of sensing area, optical transparency, resolution and number of modalities. This paper presents an optically transparent thin-film-transistor (TFT) array biosensor chip for neuronal ensemble investigation, in which TFT electrodes are used for six modalities including extracellular voltage recording of both action potential (AP) and local field potential (LFP), current or voltage stimulation, chemical stimulation, electrical impedance measurement, and optical imaging. The sensor incorporates a large sensing area (15.6 mm × 15.6 mm) with a 200 × 150 array of indium-tin-oxide (ITO) electrodes placed at a 50 μm or 100 μm pixel pitch and with 10 ms temporal resolution; these performances are comparable to the state-of-the-art MEA devices. The TFT electrode array is designed based on the switch matrix architecture. The reliability and stability of TFTs are examined by measuring their electrical characteristics. Impedance spectroscopy function is verified by mapping the neuron position and the status (cells alive or dead, contamination) on the electrodes, which facilitates the biochemical studies in electrical domain that adds quantitative views to visual observation of cells through the optical microscopy. An in-vitro neuron culture is studied using electrophysiological, electrochemical, and optical characterization. Detailed signal analysis is demonstrated to prove the capability of bioassay.
Collapse
Affiliation(s)
- Faruk Azam Shaik
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan; UMR 8161, Faculty of Medicine, University of Lille, France.
| | - Satoshi Ihida
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan; Sharp Corporation, 1-2-3 Shibaura, Minato, Tokyo, 105-0023, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Agnès Tixier-Mita
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| | - Hiroshi Toshiyoshi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8505, Japan
| |
Collapse
|
17
|
Abbott J, Ye T, Krenek K, Qin L, Kim Y, Wu W, Gertner RS, Park H, Ham D. The Design of a CMOS Nanoelectrode Array with 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2020; 55:2567-2582. [PMID: 33762776 PMCID: PMC7983016 DOI: 10.1109/jssc.2020.3005816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
CMOS microelectrode arrays (MEAs) can record electrophysiological activities of a large number of neurons in parallel but only extracellularly with low signal-to-noise ratio. Patch clamp electrodes can perform intracellular recording with high signal-to-noise ratio but only from a few neurons in parallel. Recently we have developed and reported a neuroelectronic interface that combines the parallelism of the CMOS MEA and the intracellular sensitivity of the patch clamp. Here, we report the design and characterization of the CMOS integrated circuit (IC), a critical component of the neuroelectronic interface. Fabricated in 0.18-μm technology, the IC features an array of 4,096 platinum black (PtB) nanoelectrodes spaced at a 20 μm pitch on its surface and contains 4,096 active pixel circuits. Each active pixel circuit, consisting of a new switched-capacitor current injector--capable of injecting from ±15 pA to ±0.7 μA with a 5 pA resolution--and an operational amplifier, is highly configurable. When configured into current-clamp mode, the pixel intracellularly records membrane potentials including subthreshold activities with ∼23 μVrms input referred noise while injecting a current for simultaneous stimulation. When configured into voltage-clamp mode, the pixel becomes a switched-capacitor transimpedance amplifier with ∼1 pArms input referred noise, and intracellularly records ion channel currents while applying a voltage for simultaneous stimulation. Such voltage/current-clamp intracellular recording/stimulation is a feat only previously possible with the patch clamp method. At the same time, as an array, the IC overcomes the lack of parallelism of the patch clamp method, measuring thousands of mammalian neurons in parallel, with full-frame intracellular recording/stimulation at 9.4 kHz.
Collapse
Affiliation(s)
- Jeffrey Abbott
- John A. Paulson School of Engineering and Applied Sciences, the Department of Chemistry and Chemical Biology, and the Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Tianyang Ye
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Keith Krenek
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Ling Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA. He is now with Cavium Inc., Marlborough, MA 01752, USA
| | - Youbin Kim
- Harvard College, Cambridge, MA 02138 USA. He is now with University of California, Berkeley, CA 94720, USA
| | - Wenxuan Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Rona S Gertner
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hongkun Park
- Department of Chemistry and Chemical Biology and the Department of Physics, Harvard University, Cambridge, MA 02138 USA
| | - Donhee Ham
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Al-Rawhani MA, Hu C, Giagkoulovits C, Annese VF, Cheah BC, Beeley J, Velugotla S, Accarino C, Grant JP, Mitra S, Barrett MP, Cochran S, Cumming DRS. Multimodal Integrated Sensor Platform for Rapid Biomarker Detection. IEEE Trans Biomed Eng 2020; 67:614-623. [PMID: 31226063 DOI: 10.1109/tbme.2019.2919192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Precision metabolomics and quantification for cost-effective rapid diagnosis of disease are the key goals in personalized medicine and point-of-care testing. At present, patients are subjected to multiple test procedures requiring large laboratory equipment. Microelectronics has already made modern computing and communications possible by integration of complex functions within a single chip. As More than Moore technology increases in importance, integrated circuits for densely patterned sensor chips have grown in significance. Here, we present a versatile single complementary metal-oxide-semiconductor chip forming a platform to address personalized needs through on-chip multimodal optical and electrochemical detection that will reduce the number of tests that patients must take. The chip integrates interleaved sensing subsystems for quadruple-mode colorimetric, chemiluminescent, surface plasmon resonance, and hydrogen ion measurements. These subsystems include a photodiode array and a single photon avalanche diode array with some elements functionalized to introduce a surface plasmon resonance mode. The chip also includes an array of ion sensitive field-effect transistors. The sensor arrays are distributed uniformly over an active area on the chip surface in a scalable and modular design. Bio-functionalization of the physical sensors yields a highly selective simultaneous multiple-assay platform in a disposable format. We demonstrate its versatile capabilities through quantified bio-assays performed on-chip for glucose, cholesterol, urea, and urate, each within their naturally occurring physiological range.
Collapse
|
19
|
Tedjo W, Chen T. An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:20-35. [PMID: 31751250 DOI: 10.1109/tbcas.2019.2953579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical methods have been shown to be advantageous to life sciences by supporting studies and discoveries in metabolism activities, DNA analysis, and neurotransmitter signaling. Meanwhile, the integration of Microelectrode Array (MEA) and the accessibility of CMOS technology permit high-density electrochemical sensing method. This paper describes an electrochemical imaging system equipped with a custom CMOS microchip. The microchip holds a 3.6 mm × 3.6 mm sensing area containing 16,064 Pt MEA, the associated 16,064 integrated read channels, and digital control circuits. The novel three-electrode system geometry with a 27.5 μm spatial pitch enables cellular level chemical gradient imaging of bio-samples. The noise level of the on-chip read channel array allows amperometric detection of neurotransmitters such as norepinephrine (NE) with concentrations from 4 μM to 512 μM with 4.7 pA/μM sensitivity (R2 = 0.98). Electrochemical response to dissolved oxygen (DO) concentration was also characterized by deoxygenated deionized water containing 5% to 80% of the ambient oxygen concentrations with 86 pA/mg/L sensitivity (R2 = 0.89). The system also demonstrated selectivity to different target analytes using cyclic voltammetry method to simultaneously detect NE and uric acid. Also, a custom indium tin oxide with deposited Au glass electrode was integrated into the microfluidic system to enable pH measurement, ensuring the viability of bio-samples during experiments. Electrochemical images confirm the spatiotemporal performance at four frames per second while maintaining the sensitivity to target analytes. Finally, the overall system is controlled and continuously monitored by a MATLAB-based custom user interface, which is optimized for real-time high spatiotemporal resolution chemical imaging.
Collapse
|
20
|
Park JS, Grijalva SI, Jung D, Li S, Junek GV, Chi T, Cho HC, Wang H. Intracellular cardiomyocytes potential recording by planar electrode array and fibroblasts co-culturing on multi-modal CMOS chip. Biosens Bioelectron 2019; 144:111626. [DOI: 10.1016/j.bios.2019.111626] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 01/19/2023]
|
21
|
Miccoli B, Lopez CM, Goikoetxea E, Putzeys J, Sekeri M, Krylychkina O, Chang SW, Firrincieli A, Andrei A, Reumers V, Braeken D. High-Density Electrical Recording and Impedance Imaging With a Multi-Modal CMOS Multi-Electrode Array Chip. Front Neurosci 2019; 13:641. [PMID: 31293372 PMCID: PMC6603149 DOI: 10.3389/fnins.2019.00641] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
Multi-electrode arrays, both active or passive, emerged as ideal technologies to unveil intricated electrophysiological dynamics of cells and tissues. Active MEAs, designed using complementary metal oxide semiconductor technology (CMOS), stand over passive devices thanks to the possibility of achieving single-cell resolution, the reduced electrode size, the reduced crosstalk and the higher functionality and portability. Nevertheless, most of the reported CMOS MEA systems mainly rely on a single operational modality, which strongly hampers the applicability range of a single device. This can be a limiting factor considering that most biological and electrophysiological dynamics are often based on the synergy of multiple and complex mechanisms acting from different angles on the same phenomena. Here, we designed a CMOS MEA chip with 16,384 titanium nitride electrodes, 6 independent operational modalities and 1,024 parallel recording channels for neuro-electrophysiological studies. Sixteen independent active areas are patterned on the chip surface forming a 4 × 4 matrix, each one including 1,024 electrodes. Electrodes of four different sizes are present on the chip surface, ranging from 2.5 × 3.5 μm2 up to 11 × 11.0 μm2, with 15 μm pitch. In this paper, we exploited the impedance monitoring and voltage recording modalities not only to monitor the growth and development of primary rat hippocampal neurons, but also to assess their electrophysiological activity over time showing a mean spike amplitude of 144.8 ± 84.6 μV. Fixed frequency (1 kHz) and high sampling rate (30 kHz) impedance measurements were used to evaluate the cellular adhesion and growth on the chip surface. Thanks to the high-density configuration of the electrodes, as well as their dimension and pitch, the chip can appreciate the evolutions of the cell culture morphology starting from the moment of the seeding up to mature culture conditions. The measurements were confirmed by fluorescent staining. The effect of the different electrode sizes on the spike amplitudes and noise were also discussed. The multi-modality of the presented CMOS MEA allows for the simultaneous assessment of different physiological properties of the cultured neurons. Therefore, it can pave the way both to answer complex fundamental neuroscience questions as well as to aid the current drug-development paradigm.
Collapse
|
22
|
Nabovati G, Ghafar-Zadeh E, Letourneau A, Sawan M. Smart Cell Culture Monitoring and Drug Test Platform Using CMOS Capacitive Sensor Array. IEEE Trans Biomed Eng 2019; 66:1094-1104. [DOI: 10.1109/tbme.2018.2866830] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Mulberry G, White KA, Kim BN. Analysis of Simple Half-Shared Transimpedance Amplifier for Picoampere Biosensor Measurements. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:387-395. [PMID: 30716048 DOI: 10.1109/tbcas.2019.2897287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-throughput recordings of small current are becoming more common in biosensor applications, including in vivo dopamine measurements, single-cell electrophysiology, photoplethysmography, pulse oximetry, and nanopore recordings. Thus, a highly scalable transimpedance amplifier design is in demand. Half-shared amplifier design is one way to improve the scalability by sharing the non-inverting side of the operational amplifier design for many inverting halves. This method reduces silicon area and power by nearly half compared to using independent operational amplifiers. In this paper, we analyze the scalability of a simple half-shared amplifier structure while investigating the tradeoff of increasing the number of inverting half amplifiers sharing a single non-inverting half. A transimpedance amplifier is designed using the half-shared structure to minimize the size per amplifier. The transimpedance amplifier is based on a current integration of a capacitor. The noise analysis of the integration amplifier is a challenging task because it does not reach a steady-state, thus, being a non-stationary circuit. For frequency analysis, a conversion method is discussed to estimate the noise characteristic in the simulation. The array design of 1024 transimpedance amplifiers is fabricated using a standard 0.35 μm process and is tested to confirm the validity of above analysis. The amplifier array exhibits high linearity in transimpedance gain (7.00 mV/pA for high gain and 0.86 mV/pA for low gain), low mismatch of 1.65 mV across the entire 1024 amplifier array, and extremely low noise. The technique will be crucial in enabling the fabrication of larger arrays to enable higher throughput measurement tools for biosensor applications.
Collapse
|
24
|
Wang A, Jung D, Park J, Junek G, Wang H. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation. IEEE Trans Nanobioscience 2019; 18:248-252. [PMID: 30892229 DOI: 10.1109/tnb.2019.2905509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrochemical interfaces with low-impedance, high biocompatibility, and long-term stability are of paramount importance for microelectrode arrays (MEAs), that are widely used in numerous cellular sensing/stimulation applications, e.g., brain interface, electroceuticals, neuroprosthetics, drug discovery, chemical screening, and fundamental biological research. It is becoming increasingly critical since sensing/actuations at sub-cellular resolution necessitate ultra-miniaturized electrodes, which exhibit exacerbated electrochemical interfaces, especially on interfacial impedance. This paper reports the first comprehensive characterization and interfacial electrochemical impedance spectroscopy (EIS) of the ultra-miniaturized electrodes for different electrode sizes ( 8×8 μm2 , 16×16 μm2 , and 32×32 μm2 ) and a wide material collection (Au, Pt, TiN, and ITO). Equivalent electrochemical interfacial circuit models with interface capacitance, charge transfer resistance, and solution resistance are obtained for all the electrode designs based on their EIS measurements. The results can potentially guide the designs of ultra-miniaturized MEAs for future bioelectronics systems.
Collapse
|
25
|
White KA, Mulberry G, Smith J, Lindau M, Minch BA, Sugaya K, Kim BN. Single-Cell Recording of Vesicle Release From Human Neuroblastoma Cells Using 1024-ch Monolithic CMOS Bioelectronics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1345-1355. [PMID: 30059319 PMCID: PMC6361518 DOI: 10.1109/tbcas.2018.2861220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human neuroblastoma cells, SH-SY5Y, are often used as a neuronal model to study Parkinson's disease and dopamine release in the substantia nigra, a midbrain region that plays an important role in motor control. Using amperometric single-cell recordings of single vesicle release events, we can study molecular manipulations of dopamine release and gain a better understanding of the mechanisms of neurological diseases. However, single-cell analysis of neurotransmitter release using traditional techniques yields results with very low throughput. In this paper, we will discuss a monolithically-integrated CMOS sensor array that has the low-noise performance, fine temporal resolution, and 1024 parallel channels to observe dopamine release from many single cells with single-vesicle resolution. The measured noise levels of our transimpedance amplifier are 415, 622, and 1083 [Formula: see text], at sampling rates of 10, 20, and 30 kS/s, respectively, without additional filtering. Post-CMOS processing is used to monolithically integrate 1024 on-chip gold electrodes, with an individual electrode size of 15 μm × 15 μm, directly on 1024 transimpedance amplifiers in the CMOS device. SU-8 traps are fabricated on individual electrodes to allow single cells to be interrogated and to reject multicellular clumps. Dopamine secretions from 76 cells are simultaneously recorded by loading the CMOS device with SH-SY5Y cells. In the 42-s measurement, a total of 7147 single vesicle release events are monitored. The study shows the CMOS device's capability of recording vesicle secretion at a single-cell level, with 1024 parallel channels, to provide detailed information on the dynamics of dopamine release at a single-vesicle resolution.
Collapse
Affiliation(s)
- Kevin A. White
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816 USA ()
| | - Geoffrey Mulberry
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816 USA ()
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA ()
| | - Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA ()
| | | | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA ()
| | - Brian N. Kim
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816 USA ()
| |
Collapse
|
26
|
Widdershoven F, Cossettini A, Laborde C, Bandiziol A, van Swinderen PP, Lemay SG, Selmi L. A CMOS Pixelated Nanocapacitor Biosensor Platform for High-Frequency Impedance Spectroscopy and Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1369-1382. [PMID: 30059320 DOI: 10.1109/tbcas.2018.2861558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe the realization of a fully electronic label-free temperature-controlled biosensing platform aimed to overcome the Debye screening limit over a wide range of electrolyte salt concentrations. It is based on an improved version of a 90-nm CMOS-integrated circuit featuring a nanocapacitor array, readout and A/D conversion circuitry, and a field programmable gate array (FPGA)-based interface board with NIOS II soft processor. We describe chip's processing, mounting, microfluidics, temperature control system, as well as the calibration and compensation procedures to reduce systematic errors, which altogether make up a complete quantitative sensor platform. Capacitance spectra recorded up to 70 MHz are shown and successfully compared to predictions by finite element method (FEM) numerical simulations in the Poisson-Drift-Diffusion formalism. They demonstrate the ability of the chip to reach high upper frequency of operation, thus overcoming the low-frequency Debye screening limit at nearly physiological salt concentrations in the electrolyte, and allowing for detection of events occurring beyond the extent of the electrical double layer. Furthermore, calibrated multifrequency measurements enable quantitative recording of capacitance spectra, whose features can reveal new properties of the analytes. The scalability of the electrode dimensions, interelectrode pitch, and size of the array make this sensing approach of quite general applicability, even in a non-bio context (e.g., gas sensing).
Collapse
|
27
|
Park JS, Grijalva SI, Aziz MK, Chi T, Li S, Sayegh MN, Wang A, Cho HC, Wang H. Multi-parametric cell profiling with a CMOS quad-modality cellular interfacing array for label-free fully automated drug screening. LAB ON A CHIP 2018; 18:3037-3050. [PMID: 30168827 PMCID: PMC8513687 DOI: 10.1039/c8lc00156a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cells are complex systems with concurrent multi-physical responses, and cell physiological signals are often encoded with spatiotemporal dynamics and further coupled with multiple cellular activities. However, most existing electronic sensors are only single-modality and cannot capture multi-parametric cellular responses. In this paper, a 1024-pixel CMOS quad-modality cellular interfacing array that enables multi-parametric cell profiling for drug development is presented. The quad-modality CMOS array features cellular impedance characterization, optical detection, extracellular potential recording, and biphasic current stimulation. The fibroblast transparency and surface adhesion are jointly monitored by cellular impedance and optical sensing modalities for comprehensive cell growth evaluation. Simultaneous current stimulation and opto-mechanical monitoring based on cardiomyocytes are demonstrated without any stimulation/sensing dead-zone. Furthermore, drug dose-dependent multi-parametric feature extractions in cardiomyocytes from their extracellular potentials and opto-mechanical signals are presented. The CMOS array demonstrates great potential for fully automated drug screening and drug safety assessments, which may substantially reduce the drug screening time and cost in future new drug development.
Collapse
Affiliation(s)
- Jong Seok Park
- The School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
An alternative approach for cell-culture end-point protocols is proposed herein. This new technique is suitable for real-time remote sensing. It is based on Electrical Cell-substrate Impedance Spectroscopy (ECIS) and employs the Oscillation-Based Test (OBT) method. Simple and straightforward circuit blocks form the basis of the proposed measurement system. Oscillation parameters – frequency and amplitude – constitute the outcome, directly correlated with the culture status. A user can remotely track the evolution of cell cultures in real time over the complete experiment through a web tool continuously displaying the acquired data. Experiments carried out with commercial electrodes and a well-established cell line (AA8) are described, obtaining the cell number in real time from growth assays. The electrodes have been electrically characterized along the design flow in order to predict the system performance and the sensitivity curves. Curves for 1-week cell growth are reported. The obtained experimental results validate the proposed OBT for cell-culture characterization. Furthermore, the proposed electrode model provides a good approximation for the cell number and the time evolution of the studied cultures.
Collapse
|