1
|
Eom K, Lee HS, Park M, Yang SM, Choe JC, Hwang SW, Suh YW, Lee HM. Development of Ocular Muscle Stimulation Systems and Optimization of Electrical Stimulus Parameters for Paralytic Strabismus Treatment. IEEE Trans Biomed Eng 2025; 72:515-527. [PMID: 39283777 DOI: 10.1109/tbme.2024.3460814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Paralysis of the extraocular muscles can lead to complications such as strabismus, diplopia, and loss of stereopsis. Current surgical treatments aim to mitigate these issues by resecting the paralyzed muscle or transposing the other recti muscles to the paralyzed muscle, but they do not fully improve the patient's quality of life. Electrical stimulation shows promise, while requiring further in vivo experiments and research on various stimulation parameters. In this study, we conducted experiments on rabbits to stimulate the superior rectus (SR) muscles using different parameters and stimulation waveforms. To provide various types of electrical stimulation, we developed the ocular muscle stimulation systems capable of both current controlled stimulation (CCS) and high-frequency stimulation (HFS), along with the chip that enables energy-efficient and safe switched-capacitor stimulation (SCS). We also developed electrodes for easy implantation and employed safe and efficient stimulation methods including CCS, SCS, and HFS. The in vivo animal experiments on normal and paralyzed SR muscles of rabbits showed that eyeball abduction angles were proportional to the current and pulse width of the stimulation. With the decaying exponential stimuli of the SCS system, eyeball abductions were 2.58× and 5.65× larger for normal and paralyzed muscles, respectively, compared to the rectangular stimulus of CCS. HFS achieved 0.92× and 0.26× abduction for normal and paralyzed muscles, respectively, with half energy compared to CCS. In addition, the continuous changes in eyeball abduction angle in response to varying stimulation intensity over time were observed.
Collapse
|
2
|
Chang H, Sun Y, Lu S, Lin D. A multistrategy differential evolution algorithm combined with Latin hypercube sampling applied to a brain-computer interface to improve the effect of node displacement. Sci Rep 2024; 14:20420. [PMID: 39227389 PMCID: PMC11372178 DOI: 10.1038/s41598-024-69222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Injection molding is a common plastic processing technique that allows melted plastic to be injected into a mold through pressure to form differently shaped plastic parts. In injection molding, in-mold electronics (IME) can include various circuit components, such as sensors, amplifiers, and filters. These components can be injected into the mold to form a whole within the melted plastic and can therefore be very easily integrated into the molded part. The brain-computer interface (BCI) is a direct connection pathway between a human or animal brain and an external device. Through BCIs, individuals can use their own brain signals to control these components, enabling more natural and intuitive interactions. In addition, brain-computer interfaces can also be used to assist in medical treatments, such as controlling prosthetic limbs or helping paralyzed patients regain mobility. Brain-computer interfaces can be realized in two ways: invasively and noninvasively, and in this paper, we adopt a noninvasive approach. First, a helmet model is designed according to head shape, and second, a printed circuit film is made to receive EEG signals and an IME injection mold for the helmet plastic parts. In the electronic film, conductive ink is printed to connect each component. However, improper parameterization during the injection molding process can lead to node displacements and residual stress changes in the molded part, which can damage the circuits in the electronic film and affect its performance. Therefore, in this paper, the use of the BCI molding process to ensure that the node displacement reaches the optimal value is studied. Second, the multistrategy differential evolutionary algorithm is used to optimize the injection molding parameters in the process of brain-computer interface formation. The relationship between the injection molding parameters and the actual target value is investigated through Latin hypercubic sampling, and the optimized parameters are compared with the target parameters to obtain the optimal parameter combination. Under the optimal parameters, the node displacement can be optimized from 0.585 to 0.027 mm, and the optimization rate can reach 95.38%. Ultimately, by detecting whether the voltage difference between the output inputs is within the permissible range, the reliability of the brain-computer interface after node displacement optimization can be evaluated.
Collapse
Affiliation(s)
- Hanjui Chang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China.
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China.
| | - Yue Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Shuzhou Lu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Daiyao Lin
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| |
Collapse
|
3
|
Song M, Huang Y, Visser HJ, Romme J, Liu YH. An Energy-Efficient and High-Data-Rate IR-UWB Transmitter for Intracortical Neural Sensing Interfaces. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2022; 57:3656-3668. [PMID: 36743394 PMCID: PMC7614137 DOI: 10.1109/jssc.2022.3212672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper presents an implantable impulse-radio ultra-wideband (IR-UWB) wireless telemetry system for intracortical neural sensing interfaces. A 3-dimensional (3-D) hybrid impulse modulation that comprises phase shift keying (PSK), pulse position modulation (PPM) and pulse amplitude modulation (PAM) is proposed to increase modulation order without significantly increasing the demodulation requirement, thus leading to a high data rate of 1.66 Gbps and an increased air-transmission range. Operating in 6 - 9 GHz UWB band, the presented transmitter (TX) supports the proposed hybrid modulation with a high energy efficiency of 5.8 pJ/bit and modulation quality (EVM< -21 dB). A low-noise injection-locked ring oscillator supports 8-PSK with a phase error of 2.6°. A calibration free delay generator realizes a 4-PPM with only 115 μW and avoids potential cross-modulation between PPM and PSK. A switch-cap power amplifier with an asynchronous pulse-shaping performs 4-PAM with high energy efficiency and linearity. The TX is implemented in 28 nm CMOS technology, occupying 0.155mm2 core area. The wireless module including a printed monopole antenna has a module area of only 1.05 cm2. The transmitter consumes in total 9.7 mW when transmitting -41.3 dBm/MHz output power. The wireless telemetry module has been validated ex-vivo with a 15-mm multi-layer porcine tissue, and achieves a communication (air) distance up to 15 cm, leading to at least 16× improvement in distance-moralized energy efficiency of 45 pJ/bit/meter compared to state-of-the-art.
Collapse
|
4
|
Zhao L, Annayev M, Oralkan O, Jia Y. An Ultrasonic Energy Harvesting IC Providing Adjustable Bias Voltage for Pre-Charged CMUT. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:842-851. [PMID: 35671313 DOI: 10.1109/tbcas.2022.3178581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic wireless power transmission (WPT) using pre-charged capacitive micromachined ultrasonic transducers (CMUT) is drawing great attention due to the easy integration of CMUT with CMOS techniques. Here, we present an integrated circuit (IC) that interfaces with a pre-charged CMUT device for ultrasonic energy harvesting. We implemented an adaptive high voltage charge pump (HVCP) in the proposed IC, which features low power, overvoltage stress (OVS) robustness, and a wide output range. The ultrasonic energy harvesting IC is fabricated in the 180 nm HV BCD process and occupies a 2 × 2.5 mm2 silicon area. The adaptive HVCP offers a 2× - 12× voltage conversion ratio (VCR), thereby providing a wide bias voltage range of 4 V-44 V for the pre-charged CMUT. Moreover, a VCR tunning finite state machine (FSM) implemented in the proposed IC can dynamically adjust the VCR to stabilize the HVCP output (i.e., the pre-charged CMUT bias voltage) to a target voltage in a closed-loop manner. Such a closed-loop control mechanism improves the tolerance of the proposed IC to the received power variation caused by misalignments, amount of transmitted power change, and/or load variation. Besides, the proposed ultrasonic energy harvesting IC has an average power consumption of 35 μW-554 μW corresponding to the HVCP output from 4 V-44 V. The CMUT device with a local surface acoustic intensity of 3.78 mW/mm2, which is well below the FDA limit for power flux (7.2 mW/mm2), can deliver sufficient power to the IC.
Collapse
|
5
|
Shi C, Song M, Gao Z, Bevilacqua A, Dolmans G, Liu YH. Galvanic-coupled Trans-dural Data Transfer for High-bandwidth Intra-cortical Neural Sensing. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2022; 70:4579-4589. [PMID: 36846311 PMCID: PMC7614244 DOI: 10.1109/tmtt.2022.3198100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A digital-impulse galvanic coupling as a new high-speed trans-dural (from cortex to the skull) data transmission method has been presented in this paper. The proposed wireless telemetry replaces the tethered wires connected in between implants on the cortex and above the skull, allowing the brain implant to be "free-floating" for minimizing brain tissue damage. Such trans-dural wireless telemetry must have a wide channel bandwidth for high-speed data transfer and a small form factor for minimum invasiveness. To investigate the propagation property of the channel, a finite element model is developed and a channel characterization based on a liquid phantom and porcine tissue is performed. The results show that the trans-dural channel has a wide frequency response of up to 250 MHz. Propagation loss due to micro-motion and misalignments is also investigated in this work. The result indicates that the proposed transmission method is relatively insensitive to misalignment. It has approximately 1 dB extra loss when there is a horizontal misalignment of 1mm. A pulse-based transmitter ASIC and a miniature PCB module are designed and validated ex-vivo with a 10-mm thick porcine tissue. This work demonstrates a high-speed and miniature in-body galvanic-coupled pulse-based communication with a data rate up to 250 Mbps with an energy efficiency of 2 pJ/bit, and has a small module area of only 26 mm2.
Collapse
|
6
|
Lee HS, Ahn J, Kang M, Lee HM. A Load-Insensitive Hybrid LSK Back Telemetry System With Slope-Based Demodulation for Inductively Powered Biomedical Devices. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:651-663. [PMID: 35853074 DOI: 10.1109/tbcas.2022.3192248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a hybrid load-shift keying (LSK) modulation for a load-insensitive back telemetry system to realize near-constant voltage changes in a primary coil (L1) against a wide range of load variations. The hybrid-LSK-enabled full-wave rectifier enables the sequential combination of open- and short-coil functions for hybrid-LSK modulation in addition to wireless power conversion operation. Load-insensitive L1 voltage changes can be demodulated using the proposed slope- based demodulator, which utilizes the threshold slope of L1 voltage changes over the back data pulse width, enabling robust data recovery regardless of the load conditions. The 0.56-mm2 0.18-μm standard CMOS hybrid-LSK prototype demonstrated that the variation of L1 voltage changes could be minimized to 60 mV under load changes between 50 Ω and 50 kΩ at coil separation distance of 10 mm, achieving 88.2% reduction compared to the conventional short-coil LSK with 510 mV variation. The proposed back telemetry system also achieved a bit error rate (BER) of < 9.1 × 10-10 under load ranges from 50 Ω to 50 kΩ and data rate of 1 Mbps, ensuring reliable back data recovery against load variations.
Collapse
|
7
|
Lee J, Bae B, Kim B, Lee B. Full-duplex enabled wireless power transfer system via textile for miniaturized IMD. Biomed Eng Lett 2022; 12:295-302. [PMID: 35875693 PMCID: PMC9288664 DOI: 10.1007/s13534-022-00237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022] Open
Abstract
Full-duplex (FD) enabled wireless power transfer (WPT) system via textile for miniaturized IMD is presented. By utilizing the battery-free near-field communication (NFC) method, the system realizes wireless power and data transmission without a bulky battery or energy harvester which can diminish the physical size of implantable medical device (IMD). Moreover, using textile as a medium of power transmission, the system overcomes the drawback and extends the limited effective range of the NFC method. In addition, as realizing simultaneous bidirectional data transmission over a single data channel, IMD has been further miniaturized. The proposed system including an external transmitter and the minimized IMD receiver supports 200 kbps and 50 kbps data rates for FSK downlink and LSK uplink telemetries at the same time with bit error rate (BER) of < \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$8{ } \times { }10^{ - 5}$$\end{document}8×10-5 and < \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4{ } \times { }10^{ - 5}$$\end{document}4×10-5, respectively. The measured power transfer efficiency (PTE) and DC-to-DC power delivered to load (PDL) are 5.77% and 64 mW at 0.5/60 cm of vertical/horizontal distance.
Collapse
Affiliation(s)
- Jaeho Lee
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Beomjun Bae
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Beomjin Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Byunghun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 South Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
8
|
Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat Commun 2021; 12:3141. [PMID: 34035237 PMCID: PMC8149822 DOI: 10.1038/s41467-021-23256-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
Ultra-compact wireless implantable medical devices are in great demand for healthcare applications, in particular for neural recording and stimulation. Current implantable technologies based on miniaturized micro-coils suffer from low wireless power transfer efficiency (PTE) and are not always compliant with the specific absorption rate imposed by the Federal Communications Commission. Moreover, current implantable devices are reliant on differential recording of voltage or current across space and require direct contact between electrode and tissue. Here, we show an ultra-compact dual-band smart nanoelectromechanical systems magnetoelectric (ME) antenna with a size of 250 × 174 µm2 that can efficiently perform wireless energy harvesting and sense ultra-small magnetic fields. The proposed ME antenna has a wireless PTE 1–2 orders of magnitude higher than any other reported miniaturized micro-coil, allowing the wireless IMDs to be compliant with the SAR limit. Furthermore, the antenna’s magnetic field detectivity of 300–500 pT allows the IMDs to record neural magnetic fields. Wireless implantable medical devices (IMDs) are hamstrung by both size and efficiency required for wireless power transfer. Here, Zaeimbashi et al. present a magnetoelectric nano-electromechanical systems that can harvest energy and sense weak magnetic fields like those arising from neural activity.
Collapse
|
9
|
A 3 pJ/bit free space optical interlink platform for self-powered tetherless sensing and opto-spintronic RF-to-optical transduction. Sci Rep 2021; 11:8504. [PMID: 33875725 PMCID: PMC8055909 DOI: 10.1038/s41598-021-87885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/30/2021] [Indexed: 11/27/2022] Open
Abstract
Tetherless sensors have long been positioned to enable next generation applications in biomedical, environmental, and industrial sectors. The main challenge in enabling these advancements is the realization of a device that is compact, robust over time, and highly efficient. This paper presents a tetherless optical tag which utilizes optical energy harvesting to realize scalable self-powered devices. Unlike previous demonstrations of optically coupled sensor nodes, the device presented here amplifies signals and encodes data on the same optical beam that provides its power. This optical interrogation modality results in a highly efficient data link. These optical tags support data rates up to 10 Mb/s with an energy consumption of ~ 3 pJ/bit. As a proof-of-concept application, the optical tag is combined with a spintronic microwave detector based on a magnetic tunnel junction (MTJ). We used this hybrid opto-spintronic system to perform self-powered transduction of RF waves at 1 GHz to optical frequencies at ~ 200 THz, while carrying an audio signal across (see Supplementary Data for audio files).
Collapse
|
10
|
Jia Y, Mirbozorgi SA, Zhang P, Inan OT, Li W, Ghovanloo M. A Dual-Band Wireless Power Transmission System for Evaluating mm-Sized Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:595-607. [PMID: 31071052 PMCID: PMC6728165 DOI: 10.1109/tbcas.2019.2915649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Distributed neural interfaces made of many mm-sized implantable medical devices (IMDs) are poised to play a key role in future brain-computer interfaces because of less damage to the surrounding tissue. Evaluating them wirelessly at preclinical stage (e.g., in a rodent model), however, is a major challenge due to weak coupling and significant losses, resulting in limited power delivery to the IMD within a nominal experimental arena, like a homecage, without surpassing the specific absorption rate limit. To address this problem, we present a dual-band EnerCage system with two multi-coil inductive links, which first deliver power at 13.56 MHz from the EnerCage (46 × 24 × 20 cm3) to a headstage (18 × 18 × 15 mm3, 4.8 g) that is carried by the animal via a 4-coil inductive link. Then, a 60 MHz 3-coil inductive link from the headstage powers up the small IMD (2.5 × 2.5 × 1.5 mm3, 15 mg), which in this case is a free floating, wirelessly powered, implantable optical stimulator (FF-WIOS). The power transfer efficiency and power delivered to the load (PDL) from EnerCage to the headstage at 7 cm height were 14.9%-22.7% and 122 mW; and from headstage to FF-WIOS at 5 mm depth were 18% and 2.7 mW, respectively. Bidirectional data connectivity between EnerCage-headstage was established via bluetooth low energy. Between headstage and FF-WIOS, on-off keying and load-shift-keying were used for downlink and uplink data, respectively. Moreover, a closed-loop power controller stabilized PDL to both the headstage and the FF-WIOS against misalignments.
Collapse
|
11
|
Jia Y, Mirbozorgi SA, Lee B, Khan W, Madi F, Inan OT, Weber A, Li W, Ghovanloo M. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:608-618. [PMID: 31135371 PMCID: PMC6707363 DOI: 10.1109/tbcas.2019.2918761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 μLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected μLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-μm standard CMOS process, charges a 10-μF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected μLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.
Collapse
|
12
|
Li W, Duan Y, Rabaey J. A 200-Mb/s Energy Efficient Transcranial Transmitter Using Inductive Coupling. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:435-443. [PMID: 30596584 DOI: 10.1109/tbcas.2018.2889802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper presents an energy efficient wireless transmitter (TX) for neural implants. It utilizes inductive coupling with de-Q'ed TX inductor to achieve 200 Mb/s throughput. An ultra-low power injection-locked phase lock loop with background frequency calibration generates a clean 200-MHz TX clock from a 10-MHz reference. The TX chip is fabricated in TSMC 65-nm CMOS process, and the [Formula: see text] coupled inductors are implemented on two-layer printed circuit boards. A custom receiver is fabricated in the same CMOS process to facilitate measurements. The prototype transceiver achieves 5e-11 bit error rate (BER) over the 11.8-mm-thick skull of an eight-week primordial piglet carcass and <1e-12 BER over 11-mm air gap. The entire TX chip consumes 300 μW from a single 0.5 V supply. The energy efficiency of the TX is 1.5 pJ/b.
Collapse
|
13
|
Feng P, Yeon P, Cheng Y, Ghovanloo M, Constandinou TG. Chip-Scale Coils for Millimeter-Sized Bio-Implants. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1088-1099. [PMID: 30040662 DOI: 10.1109/tbcas.2018.2853670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Next generation implantable neural interfaces are targeting devices with mm-scale form factors that are freely floating and completely wireless. Scalability to more recording (or stimulation) channels will be achieved through distributing multiple devices, instead of the current approach that uses a single centralized implant wired to individual electrodes or arrays. In this way, challenges associated with tethers, micromotion, and reliability of wiring is mitigated. This concept is now being applied to both central and peripheral nervous system interfaces. One key requirement, however, is to maximize specific absorption rate (SAR) constrained achievable wireless power transfer efficiency (PTE) of these inductive links with mm-sized receivers. Chip-scale coil structures for microsystem integration that can provide efficient near-field coupling are investigated. We develop near-optimal geometries for three specific coil structures: in-CMOS, above-CMOS (planar coil post-fabricated on a substrate), and around-CMOS (helical wirewound coil around substrate). We develop analytical and simulation models that have been validated in air and biological tissues by fabrications and experimental measurements. Specifically, we prototype structures that are constrained to a 4 mm 4 mm silicon substrate, i.e., the planar in-/above-CMOS coils have outer diameters 4 mm, whereas the around-CMOS coil has an inner diameter of 4 mm. The in-CMOS and above-CMOS coils have metal film thicknesses of 3- m aluminium and 25- m gold, respectively, whereas the around-CMOS coil is fabricated by winding a 25-m gold bonding wire around the substrate. The measured quality factors (Q) of the mm-scale Rx coils are 10.5 @450.3 MHz (in-CMOS), 24.61 @85 MHz (above-CMOS), and 26.23 @283 MHz (around-CMOS). Also, PTE of 2-coil links based on three types of chip-scale coils is measured in air and tissue environment to demonstrate tissue loss for bio-implants. The SAR-constrained maximum PTE measured (together with resonant frequencies, in tissue) are 1.64% @355.8 MHz (in-CMOS), 2.09% @82.9 MHz (above-CMOS), and 3.05% @318.8 MHz (around-CMOS).
Collapse
|