1
|
Mercuri M, Sacco G, Hornung R, Visser H, Lorato I, Pisa S, Veltri P, Dolmans G. Enhanced Technique for Accurate Localization and Life-Sign Detection of Human Subjects Using Beam-Steering Radar Architectures. IEEE Trans Biomed Eng 2025; 72:552-564. [PMID: 39292576 DOI: 10.1109/tbme.2024.3463199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
In this work, we propose a signal processing technique for beam-steering radar architectures allowing concurrent two-dimensional (2-D) localization and vital signs monitoring of human subjects. We demonstrated it by using a single-input single-output (SISO) frequency-modulated continuous wave (FMCW) radar which integrates two frequency-scanning antennas (FSAs). This method is capable of isolating the Doppler signal generated by each single subject from the contributions of all the reflections in the monitored environment. This allows determining the number of individuals in the room and accurately measuring their vital signs parameters (respiration and heart rates) and 2-D positions (range and azimuth information). The spectral analysis, the data matrix generation and the signal processing technique are detailed and discussed. Experimental results demonstrated the feasibility of the proposed approach, showing the ability in determining the number of subjects present in the room, in accurately measuring and tracking over time their vital signs parameters, and in 2-D localization with errors within the limits of the radar range and angular resolutions. Practical applications arise for healthcare, Hospital 4.0, Internet of Medical Things (IoMT), ambient assisted living, smart buildings and through-wall sensing.
Collapse
|
2
|
Yoon S, Baek S, Choi I, Kim S, Koo B, Baek Y, Jung J, Park S, Kim M. Enhanced Vital Parameter Estimation Using Short-Range Radars with Advanced Motion Compensation and Super-Resolution Techniques. SENSORS (BASEL, SWITZERLAND) 2024; 24:6765. [PMID: 39460245 PMCID: PMC11511147 DOI: 10.3390/s24206765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Various short-range radars, such as impulse-radio ultra-wideband (IR-UWB) and frequency-modulated continuous-wave (FMCW) radars, are currently employed to monitor vital signs, including respiratory and cardiac rates (RRs and CRs). However, these methods do not consider the motion of an individual, which can distort the phase of the reflected signal, leading to inaccurate estimation of RR and CR because of a smeared spectrum. Therefore, motion compensation (MOCOM) is crucial for accurately estimating these vital rates. This paper proposes an efficient method incorporating MOCOM to estimate RR and CR with super-resolution accuracy. The proposed method effectively models the radar signal phase and compensates for motion. Additionally, applying the super-resolution technique to RR and CR separately further increases the estimation accuracy. Experimental results from the IR-UWB and FMCW radars demonstrate that the proposed method successfully estimates RRs and CRs even in the presence of body movement.
Collapse
Affiliation(s)
- Sewon Yoon
- Department of Electronic Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea; (S.Y.); (S.P.)
| | - Seungjae Baek
- Department of Maritime ICT & Mobility Research, Korea Institute of Ocean Science & Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea;
| | - Inoh Choi
- Department of Smart Mobility Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Soobum Kim
- Radsys, 22, 12 Maegok-ro, Dasa-eup, Dalseong-gun, Daegu 42908, Republic of Korea;
| | - Bontae Koo
- Intelligent Semiconductor Research Division, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea; (B.K.); (Y.B.)
| | - Youngseok Baek
- Intelligent Semiconductor Research Division, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea; (B.K.); (Y.B.)
| | - Jooho Jung
- The Institute of Security Convergence Technology, Konkuk University, 268, Chungwon-daero, Chungju-si 27478, Republic of Korea;
| | - Sanghong Park
- Department of Electronic Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea; (S.Y.); (S.P.)
| | - Min Kim
- Department of Maritime ICT & Mobility Research, Korea Institute of Ocean Science & Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea;
| |
Collapse
|
3
|
Li Z, Chen K, Xie Y. A Deep Learning Method for Human Sleeping Pose Estimation with Millimeter Wave Radar. SENSORS (BASEL, SWITZERLAND) 2024; 24:5900. [PMID: 39338645 PMCID: PMC11435949 DOI: 10.3390/s24185900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Recognizing sleep posture is crucial for the monitoring of people with sleeping disorders. Existing contact-based systems might interfere with sleeping, while camera-based systems may raise privacy concerns. In contrast, radar-based sensors offer a promising solution with high penetration ability and the capability to detect vital bio-signals. This study propose a deep learning method for human sleep pose recognition from signals acquired from single-antenna Frequency-Modulated Continuous Wave (FMCW) radar device. To capture both frequency features and sequential features, we introduce ResTCN, an effective architecture combining Residual blocks and Temporal Convolution Network (TCN) to recognize different sleeping postures, from augmented statistical motion features of the radar time series. We rigorously evaluated our method with an experimentally acquired data set which contains sleeping radar sequences from 16 volunteers. We report a classification accuracy of 82.74% on average, which outperforms the state-of-the-art methods.
Collapse
Affiliation(s)
- Zisheng Li
- Shenzhen lnstitute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ken Chen
- Shenzhen lnstitute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yaoqin Xie
- Shenzhen lnstitute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
4
|
Liebetruth M, Kehe K, Steinritz D, Sammito S. Systematic Literature Review Regarding Heart Rate and Respiratory Rate Measurement by Means of Radar Technology. SENSORS (BASEL, SWITZERLAND) 2024; 24:1003. [PMID: 38339721 PMCID: PMC10857015 DOI: 10.3390/s24031003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The use of radar technology for non-contact measurement of vital parameters is increasingly being examined in scientific studies. Based on a systematic literature search in the PubMed, German National Library, Austrian Library Network (Union Catalog), Swiss National Library and Common Library Network databases, the accuracy of heart rate and/or respiratory rate measurements by means of radar technology was analyzed. In 37% of the included studies on the measurement of the respiratory rate and in 48% of those on the measurement of the heart rate, the maximum deviation was 5%. For a tolerated deviation of 10%, the corresponding percentages were 85% and 87%, respectively. However, the quantitative comparability of the results available in the current literature is very limited due to a variety of variables. The elimination of the problem of confounding variables and the continuation of the tendency to focus on the algorithm applied will continue to constitute a central topic of radar-based vital parameter measurement. Promising fields of application of research can be found in particular in areas that require non-contact measurements. This includes infection events, emergency medicine, disaster situations and major catastrophic incidents.
Collapse
Affiliation(s)
- Magdalena Liebetruth
- German Air Force Centre of Aerospace Medicine, 51147 Cologne, Germany
- Department of Occupational Medicine, Faculty of Medicine, Otto von Guericke University of Magdeburg, 39120 Magdeburg, Germany
| | - Kai Kehe
- Bundeswehr Medical Service Headquarter, Department A-VI Public Health, 56072 Koblenz, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Stefan Sammito
- German Air Force Centre of Aerospace Medicine, 51147 Cologne, Germany
- Department of Occupational Medicine, Faculty of Medicine, Otto von Guericke University of Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
5
|
Aminosharieh Najafi T, Affanni A, Rinaldo R, Zontone P. Driver Attention Assessment Using Physiological Measures from EEG, ECG, and EDA Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:2039. [PMID: 36850637 PMCID: PMC9961536 DOI: 10.3390/s23042039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this paper, we consider the evaluation of the mental attention state of individuals driving in a simulated environment. We tested a pool of subjects while driving on a highway and trying to overcome various obstacles placed along the course in both manual and autonomous driving scenarios. Most systems described in the literature use cameras to evaluate features such as blink rate and gaze direction. In this study, we instead analyse the subjects' Electrodermal activity (EDA) Skin Potential Response (SPR), their Electrocardiogram (ECG), and their Electroencephalogram (EEG). From these signals we extract a number of physiological measures, including eye blink rate and beta frequency band power from EEG, heart rate from ECG, and SPR features, then investigate their capability to assess the mental state and engagement level of the test subjects. In particular, and as confirmed by statistical tests, the signals reveal that in the manual scenario the subjects experienced a more challenged mental state and paid higher attention to driving tasks compared to the autonomous scenario. A different experiment in which subjects drove in three different setups, i.e., a manual driving scenario and two autonomous driving scenarios characterized by different vehicle settings, confirmed that manual driving is more mentally demanding than autonomous driving. Therefore, we can conclude that the proposed approach is an appropriate way to monitor driver attention.
Collapse
|
6
|
Ahmed S, Park J, Cho SH. Effects of Receiver Beamforming for Vital Sign Measurements Using FMCW Radar at Various Distances and Angles. SENSORS (BASEL, SWITZERLAND) 2022; 22:6877. [PMID: 36146226 PMCID: PMC9503483 DOI: 10.3390/s22186877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Short-range millimeter wave radar sensors provide a reliable, continuous and non-contact solution for vital sign extraction. Off-The-Shelf (OTS) radars often have a directional antenna (beam) pattern. The transmitted wave has a conical main lobe, and power of the received target echoes deteriorate as we move away from the center point of the lobe. While measuring vital signs, the human subject is often located at the center of the antenna lobe. Since beamforming can increase signal quality at the side (azimuth) angles, this paper aims to provide an experimental comparison of vital sign extraction with and without beamforming. The experimental confirmation that beamforming can decrease the error in the vital sign extraction through radar has so far not been performed by researchers. A simple, yet effective receiver beamformer was designed and a concurrent measurement with and without beamforming was made for the comparative analysis. Measurements were made at three different distances and five different arrival angles, and the preliminary results suggest that as the observation angle increases, the effectiveness of beamforming increases. At an extreme angle of 40 degrees, the beamforming showed above 20% improvement in heart rate estimation. Heart rate measurement error was reduced significantly in comparison with the breathing rate.
Collapse
|
7
|
Lauteslager T, Tommer M, Lande TS, Constandinou TG. Dynamic Microwave Imaging of the Cardiovascular System Using Ultra-Wideband Radar-on-Chip Devices. IEEE Trans Biomed Eng 2022; 69:2935-2946. [PMID: 35271437 DOI: 10.1109/tbme.2022.3158251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Microwave imaging has been investigated for medical applications such as stroke and breast imaging. Current systems typically rely on bench-top equipment to scan at a variety of antenna positions. For dynamic imaging of moving structures, such as the cardiovascular system, much higher imaging speeds are required than what has thus far been reported. Recent innovations in radar-on-chip technology allow for simultaneous high speed data collection at multiple antenna positions at a fraction of the cost of conventional microwave equipment, in a small and potentially portable system. The objective of the current work is to provide proof of concept of dynamic microwave imaging in the body, using radar-on-chip technology. METHODS Arrays of body-coupled antennas were used with nine simultaneously operated coherent ultra-wideband radar chips. Data were collected from the chest and thigh of a volunteer, with the objective of imaging the femoral artery and beating heart. In addition, data were collected from a phantom to validate system performance. Video data were constructed using beamforming. RESULTS The location of the femoral artery could successfully be resolved, and a distinct arterial pulse wave was discernable. Cardiac activity was imaged at locations corresponding to the heart, but image quality was insufficient to identify individual anatomical structures. Static and differential imaging of the femur bone proved unsuccessful. CONCLUSION Using radar chip technology and an imaging approach, cardiovascular activity was detected in the body, demonstrating first steps towards biomedical dynamic microwave imaging. The current portable and modular system design was found unsuitable for static in-body imaging. SIGNIFICANCE This first proof of concept demonstrates that radar-on-chip could enable cardiovascular imaging in a low-cost, small and portable system. Such a system could make medical imaging more accessible, particularly in ambulatory or long-term monitoring settings.
Collapse
Affiliation(s)
- Timo Lauteslager
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
| | | | - Tor S. Lande
- Department of Informatics, University of Oslo, Norway
| | - Timothy G. Constandinou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, U.K
| |
Collapse
|
8
|
Dang X, Zhang J, Hao Z. A Non-Contact Detection Method for Multi-Person Vital Signs Based on IR-UWB Radar. SENSORS (BASEL, SWITZERLAND) 2022; 22:6116. [PMID: 36015877 PMCID: PMC9412557 DOI: 10.3390/s22166116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
With the vigorous development of ubiquitous sensing technology, an increasing number of scholars pay attention to non-contact vital signs (e.g., Respiration Rate (RR) and Heart Rate (HR)) detection for physical health. Since Impulse Radio Ultra-Wide Band (IR-UWB) technology has good characteristics, such as non-invasive, high penetration, accurate ranging, low power, and low cost, it makes the technology more suitable for non-contact vital signs detection. Therefore, a non-contact multi-human vital signs detection method based on IR-UWB radar is proposed in this paper. By using this technique, the realm of multi-target detection is opened up to even more targets for subjects than the more conventional single target. We used an optimized algorithm CIR-SS based on the channel impulse response (CIR) smoothing spline method to solve the problem that existing algorithms cannot effectively separate and extract respiratory and heartbeat signals. Also in our study, the effectiveness of the algorithm was analyzed using the Bland-Altman consistency analysis statistical method with the algorithm's respiratory and heart rate estimation errors of 5.14% and 4.87%, respectively, indicating a high accuracy and precision. The experimental results showed that our proposed method provides a highly accurate, easy-to-implement, and highly robust solution in the field of non-contact multi-person vital signs detection.
Collapse
Affiliation(s)
- Xiaochao Dang
- College of Computer Science & Engineering, Northwest Normal University, Lanzhou 730071, China
- Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China
| | - Jinlong Zhang
- College of Computer Science & Engineering, Northwest Normal University, Lanzhou 730071, China
| | - Zhanjun Hao
- College of Computer Science & Engineering, Northwest Normal University, Lanzhou 730071, China
- Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China
| |
Collapse
|
9
|
Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. SENSORS 2022; 22:s22114198. [PMID: 35684817 PMCID: PMC9185422 DOI: 10.3390/s22114198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 12/21/2022]
Abstract
Continuous health monitoring in a vehicle enables the earlier detection of symptoms of cardiovascular diseases. In this work, we designed flexible and thin electrodes made of polyurethane for long-term electrocardiogram (ECG) monitoring while driving. We determined the time for reliable ECG recording to evaluate the effectiveness of the electrodes. We recorded data from 19 subjects under four scenarios: rest, city, highway, and rural. The recording time was five min for rest and 15 min for the other scenarios. The total recording (950 min) is publicly available under a CC BY-ND 4.0 license. We used the simultaneous truth and performance level estimation (STAPLE) algorithm to detect the position of R-waves. Then, we derived the RR intervals to compare the estimated heart rate with the ground truth, which we obtained from ECG electrodes on the chest. We calculated the signal-to-noise ratio (SNR) and averaged it for the different scenarios. Highway had the lowest SNR (-6.69 dB) and rural had the highest (-6.80 dB). The usable time of the steering wheel was 42.46% (city), 46.67% (highway), and 47.72% (rural). This indicates that steering-wheel-based ECG recording is feasible and delivers reliable recordings from about 45.62% of the driving time. In summary, the developed electrodes allow continuous in-vehicle heart rate monitoring, and our publicly available recordings provide the opportunity to apply more sophisticated data analytics.
Collapse
|
10
|
Iyer S, Zhao L, Mohan MP, Jimeno J, Siyal MY, Alphones A, Karim MF. mm-Wave Radar-Based Vital Signs Monitoring and Arrhythmia Detection Using Machine Learning. SENSORS 2022; 22:s22093106. [PMID: 35590796 PMCID: PMC9104941 DOI: 10.3390/s22093106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
A non-contact, non-invasive monitoring system to measure and estimate the heart and breathing rate of humans using a frequency-modulated continuous wave (FMCW) mm-wave radar at 77 GHz is presented. A novel diagnostic system is proposed which extracts heartbeat phase signals from the FMCW radar (reconstructed using Fourier series analysis) to test a three-layer artificial neural network model to predict the presence of arrhythmia in individuals. The effect of person orientation, distance of measurement and movement was analyzed with respect to a reference device based on statistical measures that include number of outliers, mean, mean squared error (MSE), mean absolute error (MAE), median absolute error (medAE), skewness, standard deviation (SD) and R-squared values. The individual oriented in front of the radar outperformed almost all other orientations for most distances with an expected d = 90 cm and d = 120 cm. Furthermore, it was found that the heart rate that was measured while walking and the breathing rate which was measured for a motionless individual generated results with the lowest SD and MSE. An artificial neural network (ANN) was trained using the MIT-BIH database with a training accuracy of 93.9 % and an R2 value = 0.876. The diagnostic tool was tested on 15 subjects and achieved a mean test accuracy of 75%.
Collapse
Affiliation(s)
- Srikrishna Iyer
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.I.); (M.P.M.); (M.Y.S.); (A.A.)
| | - Leo Zhao
- SCALE @ NTU Corp Lab, Nanyang Technological University, Singapore 639798, Singapore; (L.Z.); (J.J.)
- NCS Group, Singapore 469272, Singapore
| | - Manoj Prabhakar Mohan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.I.); (M.P.M.); (M.Y.S.); (A.A.)
| | - Joe Jimeno
- SCALE @ NTU Corp Lab, Nanyang Technological University, Singapore 639798, Singapore; (L.Z.); (J.J.)
- NCS Group, Singapore 469272, Singapore
| | - Mohammed Yakoob Siyal
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.I.); (M.P.M.); (M.Y.S.); (A.A.)
- SCALE @ NTU Corp Lab, Nanyang Technological University, Singapore 639798, Singapore; (L.Z.); (J.J.)
| | - Arokiaswami Alphones
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.I.); (M.P.M.); (M.Y.S.); (A.A.)
- SCALE @ NTU Corp Lab, Nanyang Technological University, Singapore 639798, Singapore; (L.Z.); (J.J.)
| | - Muhammad Faeyz Karim
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.I.); (M.P.M.); (M.Y.S.); (A.A.)
- SCALE @ NTU Corp Lab, Nanyang Technological University, Singapore 639798, Singapore; (L.Z.); (J.J.)
- Correspondence:
| |
Collapse
|
11
|
Movement Compensated Driver’s Respiratory Rate Extraction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In non-contact vital sign monitoring using radar, radar signal distorted by the surrounding unspecified factors is unsuitable for monitoring vital signs. In order to monitor vital signs accurately, it is essential to compensate for distortion of radar signals caused by surrounding environmental factors. In this paper, we propose a driver vital signal compensation method in driving situations, including the driver’s movements using a frequency-modulated continuous-wave (FMCW) radar. Driver’s movement is quantified from the radar signal and used to set a distortion signal compensation index to compensate for the signal distortion induced in the driving situation that the driver’s movement occurs. The experimental results show that the respiration rate estimated from the radar signal compensated through the proposed method is similar to the actual respiration rate than from the signal before calibration. These results confirm the possibility of using the proposed method in a non-statistic situation and effectiveness in estimating respiration rate reflecting human movement in monitoring vital signs using FMCW radar.
Collapse
|
12
|
Edanami K, Yao Y, Yen HT, Kurosawa M, Kirimoto T, Hakozaki Y, Matsui T, Sun G. Design and Evaluation of Digital Filters for Non-Contact Measuring of HRV using Medical Radar and Its Application in Bedside Patient Monitoring System. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6962-6965. [PMID: 34892705 DOI: 10.1109/embc46164.2021.9629643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A non-contact bedside monitoring system using medical radar is expected to be applied to clinical fields. Our previous studies have developed a monitoring system based on medical radar for measuring respiratory rate (RR) and heart rate (HR). Heart rate variability (HRV), which is essentially implemented in advanced monitoring system, such as prognosis prediction, is a more challenging biological information than the RR and HR. In this study, we designed a HRV measurement filter and proposed a method to evaluate the optimal cardiac signal extraction filter for HRV measurement. Because the cardiac component in the radar signal is much smaller than the respiratory component, it is necessary to extract the cardiac element from the radar output signal using digital filters. It depends on the characteristics of the filter whether the HRV information is kept in the extracted cardiac signal or not. A cardiac signal extraction filter that is not distorted in the time domain and does not miss the cardiac component must be adopted. Therefore, we focused on evaluating the interval between the R-peak of the electrocardiogram (ECG) and the radar-cardio peak of the cardiac signal measured by radar (R-radar interval). This is based on the fact that the time between heart depolarization and ventricular contraction is measured as the R-radar interval. A band-pass filter (BPF) with several bandwidths and a nonlinear filter, locally projective adaptive signal separation (LoPASS), were analyzed and compared. The optimal filter was quantitatively evaluated by analyzing the distribution and standard deviation of the R-radar intervals. The performance of this monitoring system was evaluated in elderly patient at the Yokohama Hospital, Japan.
Collapse
|
13
|
Vivaldi Antenna Arrays Feed by Frequency-Independent Phase Shifter for High Directivity and Gain Used in Microwave Sensing and Communication Applications. SENSORS 2021; 21:s21186091. [PMID: 34577298 PMCID: PMC8472483 DOI: 10.3390/s21186091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/17/2023]
Abstract
This paper describes a novel feed system for compact, wideband, high gain six-slot Vivaldi antenna arrays on a single substrate layer using a unique combination of power splitters based on binary T-junction power splitter topology, frequency-independent phase shifter, and a T-branch. The proposed antenna system consists of six Vivaldi antennas, three on the left, and three on the right arm. Each arm connects with T-junction power divider splitter topology, given that the right arm is linked through a frequency-independent phase shifter. Phase shifters ensure that the beam is symmetrical without splitting in a radiating plane so that highly directive radiation patterns occur. The optimal return losses (S-parameters) are well enriched by reforming Vivaldi’s feeding arms and optimizing Vivaldi slots and feeds. A novel feature of our design is that the antenna exhibits the arrangements of a T-junction power splitter with an out-of-phase feeding mechanism in one of the arms, followed by a T-branching feeding to even arrays of proper Vivaldi antenna arrangement contributing high realized gain and front-to-back ratio up to 14.12 dBi and 23.23 dB respectively applicable for not only ultra-wideband (UWB) application, also for sensing and position detecting. The high directivity over the entire UWB frequency band in both higher and lower frequency ranges ensures that the antenna can be used in microwave through-wall imaging along with resolution imaging for ground penetration radar (GPR) applications. The fabricated antenna parameters are in close agreement with the simulated and measured results and are deployed for the detection of targets inside the voids of the concrete brick.
Collapse
|
14
|
Survey and Synthesis of State of the Art in Driver Monitoring. SENSORS 2021; 21:s21165558. [PMID: 34450999 PMCID: PMC8402294 DOI: 10.3390/s21165558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
Road vehicle accidents are mostly due to human errors, and many such accidents could be avoided by continuously monitoring the driver. Driver monitoring (DM) is a topic of growing interest in the automotive industry, and it will remain relevant for all vehicles that are not fully autonomous, and thus for decades for the average vehicle owner. The present paper focuses on the first step of DM, which consists of characterizing the state of the driver. Since DM will be increasingly linked to driving automation (DA), this paper presents a clear view of the role of DM at each of the six SAE levels of DA. This paper surveys the state of the art of DM, and then synthesizes it, providing a unique, structured, polychotomous view of the many characterization techniques of DM. Informed by the survey, the paper characterizes the driver state along the five main dimensions—called here “(sub)states”—of drowsiness, mental workload, distraction, emotions, and under the influence. The polychotomous view of DM is presented through a pair of interlocked tables that relate these states to their indicators (e.g., the eye-blink rate) and the sensors that can access each of these indicators (e.g., a camera). The tables factor in not only the effects linked directly to the driver, but also those linked to the (driven) vehicle and the (driving) environment. They show, at a glance, to concerned researchers, equipment providers, and vehicle manufacturers (1) most of the options they have to implement various forms of advanced DM systems, and (2) fruitful areas for further research and innovation.
Collapse
|
15
|
Non-Invasive Driver Drowsiness Detection System. SENSORS 2021; 21:s21144833. [PMID: 34300572 PMCID: PMC8309856 DOI: 10.3390/s21144833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
Drowsiness when in command of a vehicle leads to a decline in cognitive performance that affects driver behavior, potentially causing accidents. Drowsiness-related road accidents lead to severe trauma, economic consequences, impact on others, physical injury and/or even death. Real-time and accurate driver drowsiness detection and warnings systems are necessary schemes to reduce tiredness-related driving accident rates. The research presented here aims at the classification of drowsy and non-drowsy driver states based on respiration rate detection by non-invasive, non-touch, impulsive radio ultra-wideband (IR-UWB) radar. Chest movements of 40 subjects were acquired for 5 m using a lab-placed IR-UWB radar system, and respiration per minute was extracted from the resulting signals. A structured dataset was obtained comprising respiration per minute, age and label (drowsy/non-drowsy). Different machine learning models, namely, Support Vector Machine, Decision Tree, Logistic regression, Gradient Boosting Machine, Extra Tree Classifier and Multilayer Perceptron were trained on the dataset, amongst which the Support Vector Machine shows the best accuracy of 87%. This research provides a ground truth for verification and assessment of UWB to be used effectively for driver drowsiness detection based on respiration.
Collapse
|
16
|
Piriyajitakonkij M, Warin P, Lakhan P, Leelaarporn P, Kumchaiseemak N, Suwajanakorn S, Pianpanit T, Niparnan N, Mukhopadhyay SC, Wilaiprasitporn T. SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB. IEEE J Biomed Health Inform 2021; 25:1305-1314. [PMID: 32960771 DOI: 10.1109/jbhi.2020.3025900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of 73.7 ±0.8 % significantly outperformed the mean accuracy of 59.9 ±0.7 % obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.
Collapse
|
17
|
Mercuri M, Lu Y, Polito S, Wieringa F, Liu YH, van der Veen AJ, Van Hoof C, Torfs T. Enabling Robust Radar-based Localization and Vital Signs Monitoring in Multipath Propagation Environments. IEEE Trans Biomed Eng 2021; 68:3228-3240. [PMID: 33729919 DOI: 10.1109/tbme.2021.3066876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Over the last two decades, radar-based contactless monitoring of vital signs (heartbeat and respiration rate) has raised increasing interest as an emerging and added value to health care. However, until now, the flaws caused by indoor multipath propagation formed a fundamental hurdle for the adoption of such technology in practical healthcare applications where reliability and robustness are crucial. Multipath reflections, originated from one person, combine with the direct signals and multipaths of other people and stationary objects, thus jeopardizing individual vital signs extraction and localization. This work focuses on tackling indoor multipath propagation. METHODS We describe a methodology, based on accurate models of the indoor multipaths and of the radar signals, that enables separating the undesired multipaths from desired signals of multiple individuals, removing a key obstacle to real-world contactless vital signs monitoring and localization. RESULTS We also demonstrated it by accurately measure individual heart rates, respiration rates, and absolute distances (range information) of paired volunteers in a challenging real-world office setting. CONCLUSION The approach, validated using a frequency-modulated continuous wave (FMCW) radar, was shown to function in an indoor environment where radar signals are severely affected by multipath reflections. SIGNIFICANCE Practical applications arise for health care, assisted living, geriatric and quarantine medicine, rescue and security purposes.
Collapse
|
18
|
Textile Antenna for Bio-Radar Embedded in a Car Seat. MATERIALS 2021; 14:ma14010213. [PMID: 33406756 PMCID: PMC7795423 DOI: 10.3390/ma14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/21/2022]
Abstract
A bio-radar system is presented for vital signs acquisition, using textile antennas manufactured with a continuous substrate that integrates the ground plane. Textile antennas were selected to be used in the RF (Radio Frequency) front-end, rather than those made of conventional materials, to further integrate the system in a car seat cover and thus streamline the industrial manufacturing process. The development of the novel substrate material is described in detail, as well as its characterization process. Then, the antenna design considerations are presented. The experiments to validate the textile antennas operation by acquiring the respiratory signal of six subjects with different body structures while seated in a car seat are presented. In conclusion, it was possible to prove that bio-radar systems can operate with textile-based antennas, providing accurate results of the extraction of vital signs.
Collapse
|
19
|
Lee WH, Kim SH, Na JY, Lim YH, Cho SH, Cho SH, Park HK. Non-contact Sleep/Wake Monitoring Using Impulse-Radio Ultrawideband Radar in Neonates. Front Pediatr 2021; 9:782623. [PMID: 34993163 PMCID: PMC8724301 DOI: 10.3389/fped.2021.782623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background: The gold standard for sleep monitoring, polysomnography (PSG), is too obtrusive and limited for practical use with tiny infants or in neonatal intensive care unit (NICU) settings. The ability of impulse-radio ultrawideband (IR-UWB) radar, a non-contact sensing technology, to assess vital signs and fine movement asymmetry in neonates was recently demonstrated. The purpose of this study was to investigate the possibility of quantitatively distinguishing and measuring sleep/wake states in neonates using IR-UWB radar and to compare its accuracy with behavioral observation-based sleep/wake analyses using video recordings. Methods: One preterm and three term neonates in the NICU were enrolled, and voluntary movements and vital signs were measured by radar at ages ranging from 2 to 27 days. Data from a video camcorder, amplitude-integrated electroencephalography (aEEG), and actigraphy were simultaneously recorded for reference. Radar signals were processed using a sleep/wake decision algorithm integrated with breathing signals and movement features. Results: The average recording time for the analysis was 13.0 (7.0-20.5) h across neonates. Compared with video analyses, the sleep/wake decision algorithm for neonates correctly classified 72.2% of sleep epochs and 80.6% of wake epochs and achieved a final Cohen's kappa coefficient of 0.49 (0.41-0.59) and an overall accuracy of 75.2%. Conclusions: IR-UWB radar can provide considerable accuracy regarding sleep/wake decisions in neonates, and although current performance is not yet sufficient, this study demonstrated the feasibility of its possible use in the NICU for the first time. This unobtrusive, non-contact radar technology is a promising method for monitoring sleep/wake states with vital signs in neonates.
Collapse
Affiliation(s)
- Won Hyuk Lee
- Department of Electronics and Computer Engineering, Hanyang University, Seoul, South Korea
| | - Seung Hyun Kim
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Young-Hyo Lim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Seok Hyun Cho
- Department of Otorhinolaryngology, Hanyang University College of Medicine, Seoul, South Korea
| | - Sung Ho Cho
- Department of Electronics and Computer Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Feasibility of non-contact cardiorespiratory monitoring using impulse-radio ultra-wideband radar in the neonatal intensive care unit. PLoS One 2020; 15:e0243939. [PMID: 33370375 PMCID: PMC7769476 DOI: 10.1371/journal.pone.0243939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background Current cardiorespiratory monitoring equipment can cause injuries and infections in neonates with fragile skin. Impulse-radio ultra-wideband (IR-UWB) radar was recently demonstrated to be an effective contactless vital sign monitor in adults. The purpose of this study was to assess heart rates (HRs) and respiratory rates (RRs) in the neonatal intensive care unit (NICU) using IR-UWB radar and to evaluate its accuracy and reliability compared to conventional electrocardiography (ECG)/impedance pneumography (IPG). Methods The HR and RR were recorded in 34 neonates between 3 and 72 days of age during minimal movement (51 measurements in total) using IR-UWB radar (HRRd, RRRd) and ECG/IPG (HRECG, RRIPG) simultaneously. The radar signals were processed in real time using algorithms for neonates. Radar and ECG/IPG measurements were compared using concordance correlation coefficients (CCCs) and Bland-Altman plots. Results From the 34 neonates, 12,530 HR samples and 3,504 RR samples were measured. Both the HR and RR measured using the two methods were highly concordant when the neonates had minimal movements (CCC = 0.95 between the RRRd and RRIPG, CCC = 0.97 between the HRRd and HRECG). In the Bland-Altman plot, the mean biases were 0.17 breaths/min (95% limit of agreement [LOA] -7.0–7.3) between the RRRd and RRIPG and -0.23 bpm (95% LOA -5.3–4.8) between the HRRd and HRECG. Moreover, the agreement for the HR and RR measurements between the two modalities was consistently high regardless of neonate weight. Conclusions A cardiorespiratory monitor using IR-UWB radar may provide accurate non-contact HR and RR estimates without wires and electrodes for neonates in the NICU.
Collapse
|
21
|
Sidikova M, Martinek R, Kawala-Sterniuk A, Ladrova M, Jaros R, Danys L, Simonik P. Vital Sign Monitoring in Car Seats Based on Electrocardiography, Ballistocardiography and Seismocardiography: A Review. SENSORS 2020; 20:s20195699. [PMID: 33036313 PMCID: PMC7582509 DOI: 10.3390/s20195699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
This paper focuses on a thorough summary of vital function measuring methods in vehicles. The focus of this paper is to summarize and compare already existing methods integrated into car seats with the implementation of inter alia capacitive electrocardiogram (cECG), mechanical motion analysis Ballistocardiography (BCG) and Seismocardiography (SCG). In addition, a comprehensive overview of other methods of vital sign monitoring, such as camera-based systems or steering wheel sensors, is also presented in this article. Furthermore, this work contains a very thorough background study on advanced signal processing methods and their potential application for the purpose of vital sign monitoring in cars, which is prone to various disturbances and artifacts occurrence that have to be eliminated.
Collapse
Affiliation(s)
- Michaela Sidikova
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70800 Ostrava, Czech Republic; (M.L.); (R.J.); (L.D.); (P.S.)
- Correspondence: (M.S.); (R.M.)
| | - Radek Martinek
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70800 Ostrava, Czech Republic; (M.L.); (R.J.); (L.D.); (P.S.)
- Correspondence: (M.S.); (R.M.)
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland;
| | - Martina Ladrova
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70800 Ostrava, Czech Republic; (M.L.); (R.J.); (L.D.); (P.S.)
| | - Rene Jaros
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70800 Ostrava, Czech Republic; (M.L.); (R.J.); (L.D.); (P.S.)
| | - Lukas Danys
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70800 Ostrava, Czech Republic; (M.L.); (R.J.); (L.D.); (P.S.)
| | - Petr Simonik
- Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70800 Ostrava, Czech Republic; (M.L.); (R.J.); (L.D.); (P.S.)
| |
Collapse
|
22
|
Adaptive Separation of Respiratory and Heartbeat Signals among Multiple People Based on Empirical Wavelet Transform Using UWB Radar. SENSORS 2020; 20:s20174913. [PMID: 32878041 PMCID: PMC7506741 DOI: 10.3390/s20174913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
The non-contact monitoring of vital signs by radar has great prospects in clinical monitoring. However, the accuracy of separated respiratory and heartbeat signals has not satisfied the clinical limits of agreement. This paper presents a study for automated separation of respiratory and heartbeat signals based on empirical wavelet transform (EWT) for multiple people. The initial boundary of the EWT was set according to the limited prior information of vital signs. Using the initial boundary, empirical wavelets with a tight frame were constructed to adaptively separate the respiratory signal, the heartbeat signal and interference due to unconscious body movement. To verify the validity of the proposed method, the vital signs of three volunteers were simultaneously measured by a stepped-frequency continuous wave ultra-wideband (UWB) radar and contact physiological sensors. Compared with the vital signs from contact sensors, the proposed method can separate the respiratory and heartbeat signals among multiple people and obtain the precise rate that satisfies clinical monitoring requirements using a UWB radar. The detection errors of respiratory and heartbeat rates by the proposed method were within ±0.3 bpm and ±2 bpm, respectively, which are much smaller than those obtained by the bandpass filtering, empirical mode decomposition (EMD) and wavelet transform (WT) methods. The proposed method is unsupervised and does not require reference signals. Moreover, the proposed method can obtain accurate respiratory and heartbeat signal rates even when the persons unconsciously move their bodies.
Collapse
|
23
|
Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges. SENSORS 2020; 20:s20123587. [PMID: 32630376 PMCID: PMC7349302 DOI: 10.3390/s20123587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022]
Abstract
In recent years there has been an increasing need for miniature, low-cost, commercially accessible, and user-friendly sensor solutions for wireless body area networks (WBAN), which has led to the adoption of new physical communication interfaces providing distinctive advantages over traditional wireless technologies. Ultra-wideband (UWB) and intrabody communication (IBC) have been the subject of intensive research in recent years due to their promising characteristics as means for short-range, low-power, and low-data-rate wireless interfaces for interconnection of various sensors and devices placed on, inside, or in the close vicinity of the human body. The need for safe and standardized solutions has resulted in the development of two relevant standards, IEEE 802.15.4 (for UWB) and IEEE 802.15.6 (for UWB and IBC), respectively. This paper presents an in-depth overview of recent studies and advances in the field of application of UWB and IBC technologies for wireless body sensor communication systems.
Collapse
|
24
|
Khan F, Ghaffar A, Khan N, Cho SH. An Overview of Signal Processing Techniques for Remote Health Monitoring Using Impulse Radio UWB Transceiver. SENSORS 2020; 20:s20092479. [PMID: 32349382 PMCID: PMC7248922 DOI: 10.3390/s20092479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/16/2022]
Abstract
Non-invasive remote health monitoring plays a vital role in epidemiological situations such as SARS outbreak (2003), MERS (2015) and the recently ongoing outbreak of COVID-19 because it is extremely risky to get close to the patient due to the spread of contagious infections. Non-invasive monitoring is also extremely necessary in situations where it is difficult to use complicated wired connections, such as ECG monitoring for infants, burn victims or during rescue missions when people are buried during building collapses/earthquakes. Due to the unique characteristics such as higher penetration capabilities, extremely precise ranging, low power requirement, low cost, simple hardware and robustness to multipath interferences, Impulse Radio Ultra Wideband (IR-UWB) technology is appropriate for non-invasive medical applications. IR-UWB sensors detect the macro as well as micro movement inside the human body due to its fine range resolution. The two vital signs, i.e., respiration rate and heart rate, can be measured by IR-UWB radar by measuring the change in the magnitude of signal due to displacement caused by human lungs, heart during respiration and heart beating. This paper reviews recent advances in IR- UWB radar sensor design for healthcare, such as vital signs measurements of a stationary human, vitals of a non-stationary human, vital signs of people in a vehicle, through the wall vitals measurement, neonate’s health monitoring, fall detection, sleep monitoring and medical imaging. Although we have covered many topics related to health monitoring using IR-UWB, this paper is mainly focused on signal processing techniques for measurement of vital signs, i.e., respiration and heart rate monitoring.
Collapse
Affiliation(s)
- Faheem Khan
- Department of Electronics and Computer Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (F.K.); (A.G.)
- Department of Electrical Engineering, Engineering University, Peshawar 25000, Pakistan;
| | - Asim Ghaffar
- Department of Electronics and Computer Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (F.K.); (A.G.)
| | - Naeem Khan
- Department of Electrical Engineering, Engineering University, Peshawar 25000, Pakistan;
| | - Sung Ho Cho
- Department of Electronics and Computer Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (F.K.); (A.G.)
- Correspondence:
| |
Collapse
|
25
|
Wang J, Warnecke JM, Haghi M, Deserno TM. Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2442. [PMID: 32344815 PMCID: PMC7249030 DOI: 10.3390/s20092442] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/18/2022]
Abstract
Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed retrospective literature systematically and summarized the up-to-date research on leveraging sensor technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently proposed sensor systems. Through this guide, potential sensor information can be derived from the biomedical data needed for respective purposes. The suggested locations for the corresponding sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors, through which some typical biosignals like heart rate and respiration rate are measured. To date, most research focuses on sensor technology development, and most application-driven research aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological parameters is still of interest.
Collapse
Affiliation(s)
- Ju Wang
- Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, D-38106 Braunschweig, Lower Saxony, Germany; (J.M.W.); (M.H.); (T.M.D.)
| | | | | | | |
Collapse
|
26
|
Malešević N, Petrović V, Belić M, Antfolk C, Mihajlović V, Janković M. Contactless Real-Time Heartbeat Detection via 24 GHz Continuous-Wave Doppler Radar Using Artificial Neural Networks. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2351. [PMID: 32326190 PMCID: PMC7219229 DOI: 10.3390/s20082351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 11/22/2022]
Abstract
The measurement of human vital signs is a highly important task in a variety of environments and applications. Most notably, the electrocardiogram (ECG) is a versatile signal that could indicate various physical and psychological conditions, from signs of life to complex mental states. The measurement of the ECG relies on electrodes attached to the skin to acquire the electrical activity of the heart, which imposes certain limitations. Recently, due to the advancement of wireless technology, it has become possible to pick up heart activity in a contactless manner. Among the possible ways to wirelessly obtain information related to heart activity, methods based on mm-wave radars proved to be the most accurate in detecting the small mechanical oscillations of the human chest resulting from heartbeats. In this paper, we presented a method based on a continuous-wave Doppler radar coupled with an artificial neural network (ANN) to detect heartbeats as individual events. To keep the method computationally simple, the ANN took the raw radar signal as input, while the output was minimally processed, ensuring low latency operation (<1 s). The performance of the proposed method was evaluated with respect to an ECG reference ("ground truth") in an experiment involving 21 healthy volunteers, who were sitting on a cushioned seat and were refrained from making excessive body movements. The results indicated that the presented approach is viable for the fast detection of individual heartbeats without heavy signal preprocessing.
Collapse
Affiliation(s)
- Nebojša Malešević
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Box 118, 221 00 Lund, Sweden;
| | - Vladimir Petrović
- School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia
| | - Minja Belić
- Novelic, Veljka Dugoševića 54/A3, 11000 Belgrade, Serbia; (M.B.); (V.M.)
| | - Christian Antfolk
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Box 118, 221 00 Lund, Sweden;
| | - Veljko Mihajlović
- Novelic, Veljka Dugoševića 54/A3, 11000 Belgrade, Serbia; (M.B.); (V.M.)
| | - Milica Janković
- School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia
| |
Collapse
|
27
|
Non-Contact Driver Respiration Rate Detection Technology Based on Suppression of Multipath Interference with Directional Antenna. INFORMATION 2020. [DOI: 10.3390/info11040192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-contact driver respiration rate detection is a challenging problem in the Internet of Vehicles, because the automobile environment is much narrower, and thus the multipath effect is greater. To overcome these challenges, a 2.4 GHz continuous wave forward-scattering radar respiratory detection system is proposed based on the theory that the radar cross-section (RCS) of the human body changes with human breathing. We also analyze the impact of the multipath effect in the vehicle on the received radar signal and compare the output signal captured by a directional antenna with that captured by an omnidirectional antenna in the proposed system. In addition, the mean value of the received signal’s envelope is used to judge whether the driver’s posture is reasonable. Finally, compared with the existing contact respiratory detection system, the actual test results demonstrate the effectiveness of the proposed FSR system, and the driver respiration rates obtained by the proposed system are consistent with those obtained by the contact respiratory detection system.
Collapse
|
28
|
Zainudin N, Abdul Latef T, Aridas NK, Yamada Y, Kamardin K, Abd Rahman NH. Increase of Input Resistance of a Normal-Mode Helical Antenna (NMHA) in Human Body Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E958. [PMID: 32053931 PMCID: PMC7071000 DOI: 10.3390/s20040958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022]
Abstract
In recent years, the development of healthcare monitoring devices requires high performance and compact in-body sensor antennas. A normal-mode helical antenna (NMHA) is one of the most suitable candidates that meets the criteria, especially with the ability to achieve high efficiency when the antenna structure is in self-resonant mode. It was reported that when the antenna was placed in a human body, the antenna efficiency was decreased due to the increase of its input resistance (Rin). However, the reason for Rin increase was not clarified. In this paper, the increase of Rin is ensured through experiments and the physical reasons are validated through electromagnetic simulations. In the simulation, the Rin is calculated by placing the NMHA inside a human's stomach, skin and fat. The dependency of Rin to conductivity (σ) is significant. Through current distribution calculation, it is verified that the reason of the increase in Rin is due to the decrease of antenna current. The effects of Rin to bandwidth (BW) and electrical field are also numerically clarified. Furthermore, by using the fabricated human body phantom, the measured Rin and bandwidth are also obtained. From the good agreement between the measured and simulated results, the condition of Rin increment is clarified.
Collapse
Affiliation(s)
- Norsiha Zainudin
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Tarik Abdul Latef
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Narendra Kumar Aridas
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Yoshihide Yamada
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia; (Y.Y.); (K.K.); (N.H.A.R.)
| | - Kamilia Kamardin
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia; (Y.Y.); (K.K.); (N.H.A.R.)
| | - Nurul Huda Abd Rahman
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia; (Y.Y.); (K.K.); (N.H.A.R.)
- Antenna Research Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
29
|
Kim DH. Lane Detection Method with Impulse Radio Ultra-Wideband Radar and Metal Lane Reflectors. SENSORS 2020; 20:s20010324. [PMID: 31935964 PMCID: PMC6982763 DOI: 10.3390/s20010324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 11/21/2022]
Abstract
An advanced driver-assistance system (ADAS), based on lane detection technology, detects dangerous situations through various sensors and either warns the driver or takes over direct control of the vehicle. At present, cameras are commonly used for lane detection; however, their performance varies widely depending on the lighting conditions. Consequently, many studies have focused on using radar for lane detection. However, when using radar, it is difficult to distinguish between the plain road surface and painted lane markers, necessitating the use of radar reflectors for guidance. Previous studies have used long-range radars which may receive interference signals from various objects, including other vehicles, pedestrians, and buildings, thereby hampering lane detection. Therefore, we propose a lane detection method that uses an impulse radio ultra-wideband radar with high-range resolution and metal lane markers installed at regular intervals on the road. Lane detection and departure is realized upon using the periodically reflected signals as well as vehicle speed data as inputs. For verification, a field test was conducted by attaching radar to a vehicle and installing metal lane markers on the road. Experimental scenarios were established by varying the position and movement of the vehicle, and it was demonstrated that the proposed method enables lane detection based on the data measured.
Collapse
Affiliation(s)
- Dae-Hyun Kim
- ICT Based Public Transportation Research Team, Korea Railroad Research Institute, Uiwang 16105, Korea
| |
Collapse
|
30
|
Lauteslager T, Tommer M, Lande TS, Constandinou TG. Coherent UWB Radar-on-Chip for In-Body Measurement of Cardiovascular Dynamics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:814-824. [PMID: 31199270 DOI: 10.1109/tbcas.2019.2922775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coherent ultra-wideband (UWB) radar-on-chip technology shows great promise for developing portable and low-cost medical imaging and monitoring devices. Particularly monitoring the mechanical functioning of the cardiovascular system is of interest, due to the ability of radar systems to track sub-mm motion inside the body at a high speed. For imaging applications, UWB radar systems are required, but there are still significant challenges with in-body sensing using low-power microwave equipment and wideband signals. Recently, it was shown for the first time, on a single subject, that the arterial pulse wave can be measured at various locations in the body, using a coherent UWB radar-on-chip technology. This paper provides more substantial evidence, in the form of new measurements and improved methods, to demonstrate that cardiovascular dynamics can be measured using radar-on-chip. Results across four participants were found to be robust and repeatable. Cardiovascular signals were recorded using radar-on-chip systems and electrocardiography (ECG). Through ECG-aligned averaging, the arterial pulse wave could be measured at a number of locations in the body. Pulse arrival time could be determined with high precision, and blood pressure pulse wave propagation through different arteries was demonstrated. In addition, cardiac dynamics were measured from the chest. This paper serves as a first step in developing a portable and low-cost device for long-term monitoring of the cardiovascular system and provides the fundamentals necessary for developing UWB radar-on-chip imaging systems.
Collapse
|
31
|
Physiological Driver Monitoring Using Capacitively Coupled and Radar Sensors. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unobtrusive monitoring of drivers’ physiological parameters is a topic gaining interest, potentially allowing to improve the performance of safety systems to prevent accidents, as well as to improve the driver’s experience or provide health-related services. In this article, two unobtrusive sensing techniques are evaluated: capacitively coupled sensing of the electrocardiogram and respiration, and radar-based sensing of heartbeat and respiration. A challenge for use of these techniques in vehicles are the vibrations and other disturbances that occur in vehicles to which they are inherently more sensitive than contact-based sensors. In this work, optimized sensor architectures and signal processing techniques are proposed that significantly improve the robustness to artefacts. Experimental results, conducted under real driving conditions on public roads, demonstrate the feasibility of the proposed approach. R peak sensitivities and positive predictivities higher than 98% both in highway and city traffic, heart rate mean absolute error of 1.02 bpm resp. 2.06 bpm in highway and city traffic and individual beat R-R interval 95% percentile error within ±27.3 ms are demonstrated. The radar experimental results show that respiration can be measured while driving and heartbeat can be recovered from vibration noise using an accelerometer-based motion reduction algorithm.
Collapse
|
32
|
Matic T, Sneler L, Herceg M. An Energy Efficient Multi-User Asynchronous Wireless Transmitter for Biomedical Signal Acquisition. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:619-630. [PMID: 31107660 DOI: 10.1109/tbcas.2019.2917690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The paper presents a novel transmitter architecture for short-range asynchronous wireless communication, applicable to simultaneous multi-user wireless acquisition of biological signals. The analog signal, provided from an analog biosensor, is transformed to time information using an Integral Pulse Frequency Modulator (IPFM) as a Time-Encoding Machine. The IPFM generates a time-encoded unipolar pulse train, maintaining the linear dependence of the output pulse distance on analog input voltage. The system enables continuous acquisition of the signals from multiple sensors in which each transmitter has unique feedback loop delay used for multi-user coding. IPFM pulses trigger the Impulse Radio Ultra-Wideband pulse generator directly, providing two ultra-wideband (UWB) pulses per each IPFM pulse. Due to the lack of internal clock signal and microprocessor-free multi-user coding, the circuitry satisfies the requirements of multi-user coding energy efficiency and size reduction, which are crucial demands in biomedical applications. The proposed Time-Encoded UWB (TE-UWB) transmitter is implemented in 0.18 [Formula: see text] CMOS technology. Measurement results of the IPFM transfer function for input voltage ranging from 0.15 to 1.5 V are presented, providing the dependence of the IPFM pulse time distance on analog input voltage and power consumption dependence on the input voltage level. For continuous monitoring operation, total power consumption of the transmitter circuitry for the maximum input voltage is 10.8 [Formula: see text], while for the lowest input voltage it increases to 40.48 [Formula: see text]. The circuit occupies 0.14 [Formula: see text].
Collapse
|
33
|
Leonhardt S, Leicht L, Teichmann D. Unobtrusive Vital Sign Monitoring in Automotive Environments-A Review. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3080. [PMID: 30217062 PMCID: PMC6163776 DOI: 10.3390/s18093080] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 01/16/2023]
Abstract
This review provides an overview of unobtrusive monitoring techniques that could be used to monitor some of the human vital signs (i.e., heart activity, breathing activity, temperature and potentially oxygen saturation) in a car seat. It will be shown that many techniques actually measure mechanical displacement, either on the body surface and/or inside the body. However, there are also techniques like capacitive electrocardiogram or bioimpedance that reflect electrical activity or passive electrical properties or thermal properties (infrared thermography). In addition, photopleythysmographic methods depend on optical properties (like scattering and absorption) of biological tissues and-mainly-blood. As all unobtrusive sensing modalities are always fragile and at risk of being contaminated by disturbances (like motion, rapidly changing environmental conditions, triboelectricity), the scope of the paper includes a survey on redundant sensor arrangements. Finally, this review also provides an overview of automotive demonstrators for vital sign monitoring.
Collapse
Affiliation(s)
- Steffen Leonhardt
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, D-52076 Aachen, Germany.
| | - Lennart Leicht
- Chair for Medical Information Technology, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, D-52076 Aachen, Germany.
| | - Daniel Teichmann
- Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology (M.I.T.), Boston, MA 02139, USA.
| |
Collapse
|