1
|
Eom K, Lee HS, Park M, Yang SM, Choe JC, Hwang SW, Suh YW, Lee HM. Development of Ocular Muscle Stimulation Systems and Optimization of Electrical Stimulus Parameters for Paralytic Strabismus Treatment. IEEE Trans Biomed Eng 2025; 72:515-527. [PMID: 39283777 DOI: 10.1109/tbme.2024.3460814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Paralysis of the extraocular muscles can lead to complications such as strabismus, diplopia, and loss of stereopsis. Current surgical treatments aim to mitigate these issues by resecting the paralyzed muscle or transposing the other recti muscles to the paralyzed muscle, but they do not fully improve the patient's quality of life. Electrical stimulation shows promise, while requiring further in vivo experiments and research on various stimulation parameters. In this study, we conducted experiments on rabbits to stimulate the superior rectus (SR) muscles using different parameters and stimulation waveforms. To provide various types of electrical stimulation, we developed the ocular muscle stimulation systems capable of both current controlled stimulation (CCS) and high-frequency stimulation (HFS), along with the chip that enables energy-efficient and safe switched-capacitor stimulation (SCS). We also developed electrodes for easy implantation and employed safe and efficient stimulation methods including CCS, SCS, and HFS. The in vivo animal experiments on normal and paralyzed SR muscles of rabbits showed that eyeball abduction angles were proportional to the current and pulse width of the stimulation. With the decaying exponential stimuli of the SCS system, eyeball abductions were 2.58× and 5.65× larger for normal and paralyzed muscles, respectively, compared to the rectangular stimulus of CCS. HFS achieved 0.92× and 0.26× abduction for normal and paralyzed muscles, respectively, with half energy compared to CCS. In addition, the continuous changes in eyeball abduction angle in response to varying stimulation intensity over time were observed.
Collapse
|
2
|
Habibollahi M, Jiang D, Lancashire HT, Demosthenous A. Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:954-975. [PMID: 39018210 DOI: 10.1109/tbcas.2024.3430038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing in-situ control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.
Collapse
|
3
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
4
|
Lee SY, Liao ZX, Feng IT, Lee HY, Lin CC. Charge-Mode Neural Stimulator With a Capacitor-Reuse Residual Charge Detector and Active Charge Balancing for Epileptic Seizure Suppression. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1065-1078. [PMID: 38512739 DOI: 10.1109/tbcas.2024.3380055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
This study proposes a charge-mode neural stimulator for electrical stimulation systems that utilizes a capacitor-reuse technique with a residual charge detector and achieves active charge balancing simultaneously. The design is mainly used for epilepsy suppression systems to achieve real-time symptom relief during seizures. A charge-mode stimulator is adopted in consideration of the complexity of circuit design, the high voltage tolerance of transistors, and system integration requirements in the future. The residual charge detector allows users to understand the current stimulus situation, enabling them to make optimal adjustments to the stimulation parameters. On the basis of the information on actual stimulation charge, active charge balancing can effectively prevent the accumulation of mismatched charges on electrode impedance. The capacitor- and phase-reuse techniques help realize high integration of the overall stimulator circuit in consideration of the commonality of the use of a capacitor and charging/discharging phase in the stimulation circuit and charge detector. The proposed charge-mode neural stimulator is implemented in a TSMC 0.18 µm 1P6M CMOS process with a core area of 0.2127 mm2. Measurement results demonstrate the accuracy of the stimulation's functionality and the programmable stimulus parameters. The effectiveness of the proposed charge-mode neural stimulator for epileptic seizure suppression is verified through animal experiments.
Collapse
|
5
|
Liu F, Habibollahi M, Wu Y, Neshatvar N, Zhang J, Zinno C, Akouissi O, Bernini F, Alibrandi L, Gabisonia K, Lionetti V, Carpaneto J, Lancashire H, Jiang D, Micera S, Demosthenous A. A multi-channel stimulator with an active electrode array implant for vagal-cardiac neuromodulation studies. Bioelectron Med 2024; 10:16. [PMID: 38970083 PMCID: PMC11227238 DOI: 10.1186/s42234-024-00148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. METHODS This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. RESULTS The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 µA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. CONCLUSIONS The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation.
Collapse
Affiliation(s)
- Fangqi Liu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Maryam Habibollahi
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Yu Wu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Nazanin Neshatvar
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Jiaxing Zhang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ciro Zinno
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | | | - Fabio Bernini
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | - Lisa Alibrandi
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | | | | | - Jacopo Carpaneto
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Henry Lancashire
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Silvestro Micera
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
6
|
Moganti GLK, Siva Praneeth VN, Vanjari SRK. A Hybrid Bipolar Active Charge Balancing Technique with Adaptive Electrode Tissue Interface (ETI) Impedance Variations for Facial Paralysis Patients. SENSORS 2022; 22:s22051756. [PMID: 35270902 PMCID: PMC8915109 DOI: 10.3390/s22051756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/01/2022]
Abstract
Functional electrical stimulation (FES) is a safe, effective, and general approach for treating various neurological disorders. However, in the case of FES usage for implantable applications, charge balancing is a significant challenge due to variations in the fabrication process and electrode tissue interface (ETI) impedance. In general, an active charge balancing approach is being used for this purpose, which has limitations of additional power consumption for residual voltage calibration and undesired neurological responses. To overcome these limitations, this paper presents a reconfigurable calibration circuit to address both ETI variations and charge balancing issues. This reconfigurable calibration circuit works in two modes: An impedance measurement mode (IMM) for treating ETI variations and a hybrid charge balancing mode (HCBM) for handling charge balance issues. The IMM predicts the desired stimulation currents by measuring the ETI. The HCBM is a hybrid combination of electrode shorting, offset regulation, and pulse modulation that takes the best features of each of these techniques and applies them in appropriate situations. From the results, it is proved that the proposed IMM configuration and HCBM configuration have an optimal power consumption of less than 44 μW with a power ratio ranging from 1.74 to 5.5 percent when compared to conventional approaches.
Collapse
Affiliation(s)
- Ganesh Lakshmana Kumar Moganti
- Department of Electrical Engineering, Indian Institute of Technology (IIT) Hyderabad, Kandi 502285, India;
- School of Electronics Engineering, VIT-AP University, Amaravati 522237, India;
| | - V. N. Siva Praneeth
- School of Electronics Engineering, VIT-AP University, Amaravati 522237, India;
| | - Siva Rama Krishna Vanjari
- Department of Electrical Engineering, Indian Institute of Technology (IIT) Hyderabad, Kandi 502285, India;
- Correspondence:
| |
Collapse
|
7
|
Wu Y, Jiang D, Demosthenous A. A Multi-Channel Stimulator With High-Resolution Time-to-Current Conversion for Vagal-Cardiac Neuromodulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1186-1195. [PMID: 34982691 DOI: 10.1109/tbcas.2021.3139996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents a low power integrated multi-channel stimulator for a cardiac neuroprosthesis designed to restore the parasympathetic control after heart transplantation. The proposed stimulator is based on time-to-current conversion. It replaces the conventional current mode digital-to-analog converter (DAC) that uses tens of microamps for biasing, with a novel capacitor time-based DAC (CT-DAC) offering about 10-bit current amplitude resolution with a bias current of only 250 nA. A stimulator chip was designed in a 0.18 μm CMOS high-voltage (HV) technology. It consists of 16 independent channels, each capable of delivering up to 550 μA stimulus current with a HV output stage that can be operated up to 20 V. The stimulator chip performance was evaluated using both RC equivalent load and a microelectrode array in saline solution. It is power efficient, provides high-resolution current amplitude stimulation, and has good charge balance. The design is suitable for multi-channel neural stimulation applications.
Collapse
|
8
|
Jiang D, Liu F, Lancashire HT, Perkins TA, Schormans M, Vanhoestenberghe A, Donaldson NDN, Demosthenous A. A Versatile Hermetically Sealed Microelectronic Implant for Peripheral Nerve Stimulation Applications. Front Neurosci 2021; 15:681021. [PMID: 34366773 PMCID: PMC8339274 DOI: 10.3389/fnins.2021.681021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
This article presents a versatile neurostimulation platform featuring a fully implantable multi-channel neural stimulator for chronic experimental studies with freely moving large animal models involving peripheral nerves. The implant is hermetically sealed in a ceramic enclosure and encapsulated in medical grade silicone rubber, and then underwent active tests at accelerated aging conditions at 100°C for 15 consecutive days. The stimulator microelectronics are implemented in a 0.6-μm CMOS technology, with a crosstalk reduction scheme to minimize cross-channel interference, and high-speed power and data telemetry for battery-less operation. A wearable transmitter equipped with a Bluetooth Low Energy radio link, and a custom graphical user interface provide real-time, remotely controlled stimulation. Three parallel stimulators provide independent stimulation on three channels, where each stimulator supports six stimulating sites and two return sites through multiplexing, hence the implant can facilitate stimulation at up to 36 different electrode pairs. The design of the electronics, method of hermetic packaging and electrical performance as well as in vitro testing with electrodes in saline are presented.
Collapse
Affiliation(s)
- Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Fangqi Liu
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Henry T Lancashire
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Timothy A Perkins
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Matthew Schormans
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Anne Vanhoestenberghe
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Division of Surgery and Interventional Science, Aspire Centre for Rehabilitation Engineering and Assistive Technology, University College London, London, United Kingdom
| | - Nicholas De N Donaldson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| |
Collapse
|
9
|
Yen TY, Ker MD. Design of Dual-Mode Stimulus Chip With Built-In High Voltage Generator for Biomedical Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:961-970. [PMID: 32746341 DOI: 10.1109/tbcas.2020.2999398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a dual-mode stimulus chip with a built-in high voltage generator was proposed to offer a broad-range current or voltage stimulus patterns for biomedical applications. With an on-chip and built-in high voltage generator, this stimulus chip could generate the required high voltage supply without additional supply voltage. With a nearly 20 V operating voltage, the overstress and reliability issues of the stimulus circuits were thoroughly considered and carefully addressed in this work. This stimulus system only requires an area of 0.22 mm2 per single channel and is fully on-chip implemented without any additional external components. The dual-mode stimulus chip was fabricated in a 0.25-μm 2.5V/5V/12V CMOS (complementary metal-oxide-semiconductor) process, which can generate the biphasic current or voltage stimulus pulses. The current level of stimulus is up to 5 mA, and the voltage level of stimulus can be up to 10 V. Moreover, this chip has been successfully applied to stimulate a guinea pig in an animal experiment. The proposed dual-mode stimulus system has been verified in electrical tests and also demonstrated its stimulation function in animal experiments.
Collapse
|
10
|
Urso A, Giagka V, van Dongen M, Serdijn WA. An Ultra High-Frequency 8-Channel Neurostimulator Circuit With [Formula: see text] Peak Power Efficiency. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:882-892. [PMID: 31170080 DOI: 10.1109/tbcas.2019.2920294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In order to recruit neurons in excitable tissue, constant current neural stimulators are commonly used. Recently, ultra high-frequency (UHF) stimulation has been proposed and proven to have the same efficacy as constant-current stimulation. UHF stimulation uses a fundamentally different way of activating the tissue: each stimulation phase is made of a burst of current pulses with adjustable amplitude injected into the tissue at a high (e.g., [Formula: see text]) frequency. This paper presents the design, integrated circuit (IC) implementation, and measurement results of a power efficient multichannel UHF neural stimulator. The core of the neurostimulator is based on our previously proposed architecture of an inductor-based buck-boost dc-dc converter without the external output capacitor. The ultimate goal of this work is to increase the power efficiency of the UHF stimulator for multiple-channel operation, while keeping the number of external components minimal. To this end, a number of novel approaches were employed in the integrated circuit design domain. More specifically, a novel zero-current detection scheme is proposed. It allows to remove the freewheel diode typically used in dc-dc converters to prevent current to flow back from the load to the inductor. Furthermore, a gate-driver circuit is implemented which allows the use of thin gate-oxide transistors as high-voltage switches. By doing so, and exploiting the fundamental working principle of the proposed current-controlled UHF stimulator, the need for a high-voltage supply is eliminated and the stimulator is powered up from a [Formula: see text] input voltage. Both the current detection technique and the gate driving circuit of the current implementation allow to boost the power efficiency up to [Formula: see text] when compared to previous UHF stimulator works. A peak power efficiency of [Formula: see text] is achieved, while 8 independent channels with 16 fully configurable electrodes are used. The circuit is implemented in a [Formula: see text] HV process, and the total chip area is [Formula: see text].
Collapse
|