1
|
Jiao P, Jia Q, Li S, Shan J, Xu W, Wang Y, Liu Y, Wang M, Song Y, Zhang Y, Yu Y, Wang M, Cai X. Distinct Neural Activities in Hippocampal Subregions Revealed Using a High-Performance Wireless Microsystem with PtNPs/PEDOT:PSS-Enhanced Microelectrode Arrays. BIOSENSORS 2025; 15:262. [PMID: 40277574 PMCID: PMC12026308 DOI: 10.3390/bios15040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
Wireless microsystems for neural signal recording have emerged as a solution to overcome the limitations of tethered systems, which restrict the mobility of subjects and introduce noise interference. However, existing microsystems often face data throughput, signal processing, and long-distance wireless transmission challenges. This study presents a high-performance wireless microsystem capable of 32-channel, 30 kHz real-time recording, featuring Field Programmable Gate Array (FPGA)-based signal processing to reduce transmission load. The microsystem is integrated with platinum nanoparticles/poly (3,4-ethylenedioxythiophene) polystyrene sulfonate-enhanced microelectrode arrays for improved signal quality. A custom NeuroWireless platform was developed for seamless data reception and storage. Experimental validation in rats demonstrated the microsystem's ability to detect spikes and local field potentials from the hippocampal CA1 and CA2 subregions. Comparative analysis of the neural signals revealed distinct activity patterns between these subregions. The wireless microsystem achieves high accuracy and throughput over distances up to 30 m, demonstrating its resilience and potential for neuroscience research. This work provides a compact, adaptable solution for multi-channel neural signal detection and offers a foundation for future applications in brain-computer interfaces.
Collapse
Affiliation(s)
- Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuqi Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Shan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchuan Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (P.J.); (Q.J.); (S.L.); (J.S.); (W.X.); (Y.W.); (Y.L.); (M.W.); (Y.S.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Habibollahi M, Jiang D, Lancashire HT, Demosthenous A. Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:954-975. [PMID: 39018210 DOI: 10.1109/tbcas.2024.3430038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing in-situ control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.
Collapse
|
3
|
Liu F, Habibollahi M, Wu Y, Neshatvar N, Zhang J, Zinno C, Akouissi O, Bernini F, Alibrandi L, Gabisonia K, Lionetti V, Carpaneto J, Lancashire H, Jiang D, Micera S, Demosthenous A. A multi-channel stimulator with an active electrode array implant for vagal-cardiac neuromodulation studies. Bioelectron Med 2024; 10:16. [PMID: 38970083 PMCID: PMC11227238 DOI: 10.1186/s42234-024-00148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. METHODS This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. RESULTS The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 µA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. CONCLUSIONS The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation.
Collapse
Affiliation(s)
- Fangqi Liu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Maryam Habibollahi
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Yu Wu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Nazanin Neshatvar
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Jiaxing Zhang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ciro Zinno
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | | | - Fabio Bernini
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | - Lisa Alibrandi
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | | | | | - Jacopo Carpaneto
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Henry Lancashire
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Silvestro Micera
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
4
|
Bryson JB, Kourgiantaki A, Jiang D, Demosthenous A, Greensmith L. An optogenetic cell therapy to restore control of target muscles in an aggressive mouse model of amyotrophic lateral sclerosis. eLife 2024; 12:RP88250. [PMID: 38236205 PMCID: PMC10945574 DOI: 10.7554/elife.88250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Breakdown of neuromuscular junctions (NMJs) is an early pathological hallmark of amyotrophic lateral sclerosis (ALS) that blocks neuromuscular transmission, leading to muscle weakness, paralysis and, ultimately, premature death. Currently, no therapies exist that can prevent progressive motor neuron degeneration, muscle denervation, or paralysis in ALS. Here, we report important advances in the development of an optogenetic, neural replacement strategy that can effectively restore innervation of severely affected skeletal muscles in the aggressive SOD1G93A mouse model of ALS, thus providing an interface to selectively control the function of targeted muscles using optical stimulation. We also identify a specific approach to confer complete survival of allogeneic replacement motor neurons. Furthermore, we demonstrate that an optical stimulation training paradigm can prevent atrophy of reinnervated muscle fibers and results in a tenfold increase in optically evoked contractile force. Together, these advances pave the way for an assistive therapy that could benefit all ALS patients.
Collapse
Affiliation(s)
- J Barney Bryson
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexandra Kourgiantaki
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Su K, Qiu Z, Xu J. A 14-Bit, 12 V-to-100 V Voltage Compliance Electrical Stimulator with Redundant Digital Calibration. MICROMACHINES 2023; 14:2001. [PMID: 38004858 PMCID: PMC10672756 DOI: 10.3390/mi14112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Electrical stimulation is an important technique for modulating the functions of the nervous system through electrical stimulus. To implement a more competitive prototype that can tackle the domain-specific difficulties of existing electrical stimulators, three key techniques are proposed in this work. Firstly, a load-adaptive power saving technique called over-voltage detection is implemented to automatically adjust the supply voltage. Secondly, redundant digital calibration (RDC) is proposed to improve current accuracy and ensure safety during long-term electrical stimulation without costing too much circuit area and power. Thirdly, a flexible waveform generator is designed to provide arbitrary stimulus waveforms for particular applications. Measurement results show the stimulator can adjust the supply voltage from 12 V to 100 V automatically, and the measured effective resolution of the stimulation current reaches 14 bits in a full range of 6.5 mA. Without applying charge balancing techniques, the average mismatch between the cathodic and anodic current pulses in biphasic stimulus is 0.0427%. The proposed electrical stimulator can generate arbitrary stimulus waveforms, including sine, triangle, rectangle, etc., and it is supposed to be competitive for implantable and wearable devices.
Collapse
Affiliation(s)
- Kangyu Su
- College of Information and Electronics Engineering, Zhejiang University, Hangzhou 310027, China; (K.S.); (Z.Q.)
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Zhang Qiu
- College of Information and Electronics Engineering, Zhejiang University, Hangzhou 310027, China; (K.S.); (Z.Q.)
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Jian Xu
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| |
Collapse
|
6
|
Kang W, Lee J, Choi W, Kim J, Kim J, Park SM. Fully Implantable Neurostimulation System for Long-Term Behavioral Animal Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3711-3721. [PMID: 37708012 DOI: 10.1109/tnsre.2023.3315371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Spinal cord stimulation (SCS) is an emerging therapeutic option for patients with neuropathic pain due to spinal cord injury (SCI). Numerous studies on pain relief effects with SCS have been conducted and demonstrated promising results while the mechanisms of analgesic effect during SCS remain unclear. However, an experimental system that enables large-scale long-term animal studies is still an unmet need for those mechanistic studies. This study proposed a fully wireless neurostimulation system that can efficiently support a long-term animal study for neuropathic pain relief. The developed system consists of an implantable stimulator, an animal cage with an external charging coil, and a wireless communication interface. The proposed device has the feature of remotely controlling stimulation parameters via radio-frequency (RF) communication and wirelessly charging via magnetic induction in freely moving rats. Users can program stimulation parameters such as pulse width, intensity, and duration through an interface on a computer. The stimulator was packaged with biocompatible epoxy to ensure long-term durability under in vivo conditions. Animal experiments using SCI rats were conducted to demonstrate the functionality of the device, including long-term usability and therapeutic effects. The developed system can be tailored to individual user needs with commercially available components, thus providing a cost-effective solution for large-scale long-term animal studies on neuropathic pain relief.
Collapse
|