1
|
Zhang S, Li H, Jing Q, Shen W, Luo W, Dai R. Anesthesia decision analysis using a cloud-based big data platform. Eur J Med Res 2024; 29:201. [PMID: 38528564 DOI: 10.1186/s40001-024-01764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/01/2024] [Indexed: 03/27/2024] Open
Abstract
Big data technologies have proliferated since the dawn of the cloud-computing era. Traditional data storage, extraction, transformation, and analysis technologies have thus become unsuitable for the large volume, diversity, high processing speed, and low value density of big data in medical strategies, which require the development of novel big data application technologies. In this regard, we investigated the most recent big data platform breakthroughs in anesthesiology and designed an anesthesia decision model based on a cloud system for storing and analyzing massive amounts of data from anesthetic records. The presented Anesthesia Decision Analysis Platform performs distributed computing on medical records via several programming tools, and provides services such as keyword search, data filtering, and basic statistics to reduce inaccurate and subjective judgments by decision-makers. Importantly, it can potentially to improve anesthetic strategy and create individualized anesthesia decisions, lowering the likelihood of perioperative complications.
Collapse
Affiliation(s)
- Shuiting Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Anesthesia Medical Research, Center Central, South University, Changsha, 410008, Hunan, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Anesthesia Medical Research, Center Central, South University, Changsha, 410008, Hunan, China
| | - Qiancheng Jing
- Department of Otolaryngology Head and Neck Surgery, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, 410000, Hunan, China
| | - Weiyun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Anesthesia Medical Research, Center Central, South University, Changsha, 410008, Hunan, China
| | - Wei Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Anesthesia Medical Research, Center Central, South University, Changsha, 410008, Hunan, China
| | - Ruping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Anesthesia Medical Research, Center Central, South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
WeBrain: A web-based brainformatics platform of computational ecosystem for EEG big data analysis. Neuroimage 2021; 245:118713. [PMID: 34798231 DOI: 10.1016/j.neuroimage.2021.118713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023] Open
Abstract
The current evolution of 'cloud neuroscience' leads to more efforts with the large-scale EEG applications, by using EEG pipelines to handle the rapidly accumulating EEG data. However, there are a few specific cloud platforms that seek to address the cloud computational challenges of EEG big data analysis to benefit the EEG community. In response to the challenges, a WeBrain cloud platform (https://webrain.uestc.edu.cn/) is designed as a web-based brainformatics platform and computational ecosystem to enable large-scale EEG data storage, exploration and analysis using cloud high-performance computing (HPC) facilities. WeBrain connects researchers from different fields to EEG and multimodal tools that have become the norm in the field and the cloud processing power required to handle those large EEG datasets. This platform provides an easy-to-use system for novice users (even no computer programming skills) and provides satisfactory maintainability, sustainability and flexibility for IT administrators and tool developers. A range of resources are also available on https://webrain.uestc.edu.cn/, including documents, manuals, example datasets related to WeBrain, and collected links to open EEG datasets and tools. It is not necessary for users or administrators to install any software or system, and all that is needed is a modern web browser, which reduces the technical expertise required to use or manage WeBrain. The WeBrain platform is sponsored and driven by the China-Canada-Cuba international brain cooperation project (CCC-Axis, http://ccc-axis.org/), and we hope that WeBrain will be a promising cloud brainformatics platform for exploring brain information in large-scale EEG applications in the EEG community.
Collapse
|
3
|
PySpark-Based Optimization of Microwave Image Reconstruction Algorithm for Head Imaging Big Data on High-Performance Computing and Google Cloud Platform. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For processing large-scale medical imaging data, adopting high-performance computing and cloud-based resources are getting attention rapidly. Due to its low–cost and non-invasive nature, microwave technology is being investigated for breast and brain imaging. Microwave imaging via space-time algorithm and its extended versions are commonly used, as it provides high-quality images. However, due to intensive computation and sequential execution, these algorithms are not capable of producing images in an acceptable time. In this paper, a parallel microwave image reconstruction algorithm based on Apache Spark on high-performance computing and Google Cloud Platform is proposed. The input data is first converted to a resilient distributed data set and then distributed to multiple nodes on a cluster. The subset of pixel data is calculated in parallel on these nodes, and the results are retrieved to a master node for image reconstruction. Using Apache Spark, the performance of the parallel microwave image reconstruction algorithm is evaluated on high-performance computing and Google Cloud Platform, which shows an average speed increase of 28.56 times on four homogeneous computing nodes. Experimental results revealed that the proposed parallel microwave image reconstruction algorithm fully inherits the parallelism, resulting in fast reconstruction of images from radio frequency sensor’s data. This paper also illustrates that the proposed algorithm is generalized and can be deployed on any master-slave architecture.
Collapse
|
4
|
Yang J, Gohel S, Vachha B. Current methods and new directions in resting state fMRI. Clin Imaging 2020; 65:47-53. [PMID: 32353718 DOI: 10.1016/j.clinimag.2020.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Resting state functional connectivity magnetic resonance imaging (rsfcMRI) has become a key component of investigations of neurocognitive and psychiatric behaviors. Over the past two decades, several methods and paradigms have been adopted to utilize and interpret data from resting-state fluctuations in the brain. These findings have increased our understanding of changes in many disease states. As the amount of resting state data available for research increases with big datasets and data-sharing projects, it is important to review the established traditional analysis methods and recognize areas where research methodology can be adapted to better accommodate the scale and complexity of rsfcMRI analysis. In this paper, we review established methods of analysis as well as areas that have been receiving increasing attention such as dynamic rsfcMRI, independent vector analysis, multiband rsfcMRI and network of networks.
Collapse
Affiliation(s)
- Jackie Yang
- NYU Grossman School of Medicine, 550 1(st) Avenue, New York, NY 10016, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers University School of Health Professions, 65 Bergen Street, Newark, NJ 07107, USA
| | - Behroze Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA.
| |
Collapse
|
5
|
Li X, Guo N, Li Q. Functional Neuroimaging in the New Era of Big Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:393-401. [PMID: 31809864 PMCID: PMC6943787 DOI: 10.1016/j.gpb.2018.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/17/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022]
Abstract
The field of functional neuroimaging has substantially advanced as a big data science in the past decade, thanks to international collaborative projects and community efforts. Here we conducted a literature review on functional neuroimaging, with focus on three general challenges in big data tasks: data collection and sharing, data infrastructure construction, and data analysis methods. The review covers a wide range of literature types including perspectives, database descriptions, methodology developments, and technical details. We show how each of the challenges was proposed and addressed, and how these solutions formed the three core foundations for the functional neuroimaging as a big data science and helped to build the current data-rich and data-driven community. Furthermore, based on our review of recent literature on the upcoming challenges and opportunities toward future scientific discoveries, we envisioned that the functional neuroimaging community needs to advance from the current foundations to better data integration infrastructure, methodology development toward improved learning capability, and multi-discipline translational research framework for this new era of big data.
Collapse
Affiliation(s)
- Xiang Li
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ning Guo
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Quanzheng Li
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|