1
|
Dessevres E, Valderrama M, Le Van Quyen M. Artificial intelligence for the detection of interictal epileptiform discharges in EEG signals. Rev Neurol (Paris) 2025; 181:411-419. [PMID: 40221359 DOI: 10.1016/j.neurol.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Over the past decades, the integration of modern technologies - such as electronic health records, cloud computing, and artificial intelligence (AI) - has revolutionized the collection, storage, and analysis of medical data in neurology. In epilepsy, Interictal Epileptiform Discharges (IEDs) are the most established biomarker, indicating an increased likelihood of seizures. Their detection traditionally relies on visual EEG assessment, a time-consuming and subjective process contributing to a high misdiagnosis rate. These limitations have spurred the development of automated AI-driven approaches aimed at improving accuracy and efficiency in IED detection. METHODS Research on automated IED detection began 45 years ago, spanning from morphological methods to deep learning techniques. In this review, we examine various IED detection approaches, evaluating their performance and limitations. RESULTS Traditional machine learning and deep learning methods have produced the most promising results to date, and their application in IED detection continues to grow. Today, AI-driven tools are increasingly integrated into clinical workflows, assisting clinicians in identifying abnormalities while reducing false-positive rates. DISCUSSION To optimize the clinical implementation of automated AI-based IED detection, it is essential to render the codes publicly available and to standardize the datasets and metrics. Establishing uniform benchmarks will enable objective model comparisons and help determine which approaches are best suited for clinical use.
Collapse
Affiliation(s)
- E Dessevres
- Laboratoire d'Imagerie Biomédicale (LIB) Inserm U1146, Sorbonne Université, UMR7371 CNRS, 15, Rue de l'École-de-Médecine, 75006 Paris, France
| | - M Valderrama
- Department of Biomedical Engineering, Universidad de Los Andes, 111711 Bogotá, Colombia
| | - M Le Van Quyen
- Laboratoire d'Imagerie Biomédicale (LIB) Inserm U1146, Sorbonne Université, UMR7371 CNRS, 15, Rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
2
|
Wu JCH, Liao NC, Yang TH, Hsieh CC, Huang JA, Pai YW, Huang YJ, Wu CL, Lu HHS. Deep-Learning-Based Automated Anomaly Detection of EEGs in Intensive Care Units. Bioengineering (Basel) 2024; 11:421. [PMID: 38790288 PMCID: PMC11118603 DOI: 10.3390/bioengineering11050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
An intensive care unit (ICU) is a special ward in the hospital for patients who require intensive care. It is equipped with many instruments monitoring patients' vital signs and supported by the medical staff. However, continuous monitoring demands a massive workload of medical care. To ease the burden, we aim to develop an automatic detection model to monitor when brain anomalies occur. In this study, we focus on electroencephalography (EEG), which monitors the brain electroactivity of patients continuously. It is mainly for the diagnosis of brain malfunction. We propose the gated-recurrent-unit-based (GRU-based) model for detecting brain anomalies; it predicts whether the spike or sharp wave happens within a short time window. Based on the banana montage setting, the proposed model exploits characteristics of multiple channels simultaneously to detect anomalies. It is trained, validated, and tested on separated EEG data and achieves more than 90% testing performance on sensitivity, specificity, and balanced accuracy. The proposed anomaly detection model detects the existence of a spike or sharp wave precisely; it will notify the ICU medical staff, who can provide immediate follow-up treatment. Consequently, it can reduce the medical workload in the ICU significantly.
Collapse
Affiliation(s)
- Jacky Chung-Hao Wu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (J.C.-H.W.); (T.-H.Y.); (C.-C.H.)
| | - Nien-Chen Liao
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (N.-C.L.); (Y.-J.H.)
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (J.-A.H.); (Y.-W.P.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ta-Hsin Yang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (J.C.-H.W.); (T.-H.Y.); (C.-C.H.)
| | - Chen-Cheng Hsieh
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (J.C.-H.W.); (T.-H.Y.); (C.-C.H.)
| | - Jin-An Huang
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (J.-A.H.); (Y.-W.P.)
- Department of Health Business Administration, Hungkuang University, Taichung 433304, Taiwan
| | - Yen-Wei Pai
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (J.-A.H.); (Y.-W.P.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yi-Jhen Huang
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (N.-C.L.); (Y.-J.H.)
| | - Chieh-Liang Wu
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (N.-C.L.); (Y.-J.H.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Henry Horng-Shing Lu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (J.C.-H.W.); (T.-H.Y.); (C.-C.H.)
- Department of Statistics and Data Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Abdi-Sargezeh B, Shirani S, Sanei S, Took CC, Geman O, Alarcon G, Valentin A. A review of signal processing and machine learning techniques for interictal epileptiform discharge detection. Comput Biol Med 2024; 168:107782. [PMID: 38070202 DOI: 10.1016/j.compbiomed.2023.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Brain interictal epileptiform discharges (IEDs), as one of the hallmarks of epileptic brain, are transient events captured by electroencephalogram (EEG). IEDs are generated by seizure networks, and they occur between seizures (interictal periods). The development of a robust method for IED detection could be highly informative for clinical treatment procedures and epileptic patient management. Since 1972, different machine learning techniques, from template matching to deep learning, have been developed to automatically detect IEDs from scalp EEG (scEEG) and intracranial EEG (iEEG). While the scEEG signals suffer from low information details and high attenuation of IEDs due to the high skull electrical impedance, the iEEG signals recorded using implanted electrodes enjoy higher details and are more suitable for identifying the IEDs. In this review paper, we group IED detection techniques into six categories: (1) template matching, (2) feature representation (mimetic, time-frequency, and nonlinear features), (3) matrix decomposition, (4) tensor factorization, (5) neural networks, and (6) estimation of the iEEG from the concurrent scEEG followed by detection and classification. The methods are compared quantitatively (e.g., in terms of accuracy, sensitivity, and specificity), and their general advantages and limitations are described. Finally, current limitations and possible future research paths related to this field are mentioned.
Collapse
Affiliation(s)
- Bahman Abdi-Sargezeh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| | - Sepehr Shirani
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Saeid Sanei
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Clive Cheong Took
- Department of Electronic Engineering, Royal Holloway, University of London, London, UK
| | - Oana Geman
- Computer, Electronics and Automation Department, University Stefan cel Mare, Suceava, Romania
| | - Gonzalo Alarcon
- Department of Clinical Neurophysiology, Royal Manchester Children's Hospital, Manchester, UK
| | - Antonio Valentin
- Department of Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Shi Z, Liao Z, Tabata H. Enhancing Performance of Convolutional Neural Network-Based Epileptic Electroencephalogram Diagnosis by Asymmetric Stochastic Resonance. IEEE J Biomed Health Inform 2023; 27:4228-4239. [PMID: 37267135 DOI: 10.1109/jbhi.2023.3282251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epilepsy is a chronic disorder that leads to transient neurological dysfunction and is clinically diagnosed primarily by electroencephalography. Several intelligent systems have been proposed to automatically detect seizures, among which deep convolutional neural networks (CNNs) have shown better performance than traditional machine-learning algorithms. Owing to artifacts and noise, the raw electroencephalogram (EEG) must be preprocessed to improve the signal-to-noise ratio prior to being fed into the CNN classifier. However, because of the spectrum overlapping of uncontrollable noise with EEG, traditional filters cause information loss in EEG; thus, the potential of classifiers cannot be fully exploited. In this study, we propose a stochastic resonance-effect-based EEG preprocessing module composed of three asymmetrical overdamped bistable systems in parallel. By setting different asymmetries for the three parallel units, the inherent noise can be transferred to the different spectral components of the EEG through the asymmetric stochastic resonance effect. In this process, the proposed preprocessing module not only avoids the loss of information of EEG but also provides a CNN with high-quality EEG of diversified frequency information to enhance its performance. By combining the proposed preprocessing module with a residual neural network, we developed an intelligent diagnostic system for predicting seizure onset. The developed system achieved an average sensitivity of 98.96% on the CHB-MIT dataset and 95.45% on the Siena dataset, with a false prediction rate of 0.048/h and 0.033/h, respectively. In addition, a comparative analysis demonstrated the superiority of the developed diagnostic system with the proposed preprocessing module over other existing methods.
Collapse
|
5
|
Chan HL, Ouyang Y, Huang PJ, Li HT, Chang CW, Chang BL, Hsu WY, Wu T. Deep neural networks for the detection of temporal-lobe epileptiform discharges from scalp electroencephalograms. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Alhudhaif A. A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach. PeerJ Comput Sci 2021; 7:e523. [PMID: 34084928 PMCID: PMC8157152 DOI: 10.7717/peerj-cs.523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brain signals (EEG-Electroencephalography) are a gold standard frequently used in epilepsy prediction. It is crucial to predict epilepsy, which is common in the community. Early diagnosis is essential to reduce the treatment process of the disease and to keep the process healthier. METHODS In this study, a five-classes dataset was used: EEG signals from different individuals, healthy EEG signals from tumor document, EEG signal with epilepsy, EEG signal with eyes closed, and EEG signal with eyes open. Four different methods have been proposed to classify five classes of EEG signals. In the first approach, the EEG signal was first divided into four different bands (beta, alpha, theta, and delta), and then 25 time-domain features were extracted from each band, and the main EEG signal and these extracted features were combined to obtain 125-time domain features (feature extraction). Using the Random Forests classifier, EEG activities were classified into five classes. In the second approach, each One-Against-One (OVO) approach with 125 attributes was split into ten parts, pairwise, and then each piece was classified with the Random Forests classifier. The majority voting scheme was used to combine decisions from the ten classifiers. In the third proposed method, each One-Against-All (OVA) approach with 125 attributes was divided into five parts, and then each piece was classified with the Random Forests classifier. The majority voting scheme was used to combine decisions from the five classifiers. In the fourth proposed approach, each One-Against-All (OVA) approach with 125 attributes was divided into five parts. Since each piece obtained had an imbalanced data distribution, an adaptive synthetic (ADASYN) sampling approach was used to stabilize each piece. Then, each balanced piece was classified with the Random Forests classifier. To combine the decisions obtanied from each classifier, the majority voting scheme has been used. RESULTS The first approach achieved 71.90% classification success in classifying five-class EEG signals. The second approach achieved a classification success of 91.08% in classifying five-class EEG signals. The third method achieved 89% success, while the fourth proposed approach achieved 91.72% success. The results obtained show that the proposed fourth approach (the combination of the ADASYN sampling approach and Random Forest Classifier) achieved the best success in classifying five class EEG signals. This proposed method could be used in the detection of epilepsy events in the EEG signals.
Collapse
|
7
|
da Silva Lourenço C, Tjepkema-Cloostermans MC, van Putten MJAM. Machine learning for detection of interictal epileptiform discharges. Clin Neurophysiol 2021; 132:1433-1443. [PMID: 34023625 DOI: 10.1016/j.clinph.2021.02.403] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022]
Abstract
The electroencephalogram (EEG) is a fundamental tool in the diagnosis and classification of epilepsy. In particular, Interictal Epileptiform Discharges (IEDs) reflect an increased likelihood of seizures and are routinely assessed by visual analysis of the EEG. Visual assessment is, however, time consuming and prone to subjectivity, leading to a high misdiagnosis rate and motivating the development of automated approaches. Research towards automating IED detection started 45 years ago. Approaches range from mimetic methods to deep learning techniques. We review different approaches to IED detection, discussing their performance and limitations. Traditional machine learning and deep learning methods have yielded the best results so far and their application in the field is still growing. Standardization of datasets and outcome measures is necessary to compare models more objectively and decide which should be implemented in a clinical setting.
Collapse
Affiliation(s)
- Catarina da Silva Lourenço
- Department of Clinical Neurophysiology, Institute for Technical Medicine, University of Twente, Technical Medical Centre, Enschede, the Netherlands.
| | - Marleen C Tjepkema-Cloostermans
- Department of Clinical Neurophysiology, Institute for Technical Medicine, University of Twente, Technical Medical Centre, Enschede, the Netherlands; Neurocentrum, Medisch Spectrum Twente MST, Enschede, the Netherlands.
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Institute for Technical Medicine, University of Twente, Technical Medical Centre, Enschede, the Netherlands; Neurocentrum, Medisch Spectrum Twente MST, Enschede, the Netherlands.
| |
Collapse
|
8
|
Furui A, Onishi R, Takeuchi A, Akiyama T, Tsuji T. Non-Gaussianity Detection of EEG Signals Based on a Multivariate Scale Mixture Model for Diagnosis of Epileptic Seizures. IEEE Trans Biomed Eng 2020; 68:515-525. [PMID: 32746048 DOI: 10.1109/tbme.2020.3006246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The detection of epileptic seizures from scalp electroencephalogram (EEG) signals can facilitate early diagnosis and treatment. Previous studies suggested that the Gaussianity of EEG distributions changes depending on the presence or absence of seizures; however, no general EEG signal models can explain such changes in distributions within a unified scheme. METHODS This article describes the formulation of a stochastic EEG model based on a multivariate scale mixture distribution that can represent changes in non-Gaussianity caused by stochastic fluctuations in EEG. In addition, we propose an EEG analysis method by combining the model with a filter bank and introduce a feature representing the non-Gaussianity latent in each EEG frequency band. RESULTS We applied the proposed method to multichannel EEG data from twenty patients with focal epilepsy. The results showed a significant increase in the proposed feature during epileptic seizures, particularly in the high-frequency band. The feature calculated in the high-frequency band allowed highly accurate classification of seizure and non-seizure segments [area under the receiver operating characteristic curve (AUC) = 0.881] using only a simple threshold. CONCLUSION This article proposed a multivariate scale mixture distribution-based stochastic EEG model capable of representing non-Gaussianity associated with epileptic seizures. Experiments using simulated and real EEG data demonstrated the validity of the model and its applicability to epileptic seizure detection. SIGNIFICANCE The stochastic fluctuations of EEG quantified by the proposed model can help detect epileptic seizures with high accuracy.
Collapse
|
9
|
Monitoring the level of hypnosis using a hierarchical SVM system. J Clin Monit Comput 2020; 34:331-338. [PMID: 30982945 DOI: 10.1007/s10877-019-00311-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
Monitoring level of hypnosis is a major ongoing challenge for anesthetists to reduce anesthetic drug consumption, avoiding intraoperative awareness and prolonged recovery. This paper proposes a novel automated method for accurate assessing of the level of hypnosis with sevoflurane in 17 patients using the electroencephalogram signal. In this method, a set of distinctive features and a hierarchical classification structure based on support vector machine (SVM) methods, is proposed to discriminate the four levels of anesthesia (awake, light, general and deep states). The first stage of the hierarchical SVM structure identifies the awake state by extracting Shannon Permutation Entropy, Detrended Fluctuation Analysis and frequency features. Then deep state is identified by extracting the sample entropy feature; and finally light and general states are identified by extracting the three mentioned features of the first step. The accuracy of the proposed method of analyzing the brain activity during anesthesia is 94.11%; which was better than previous studies and also a commercial monitoring system (Response Entropy Index).
Collapse
|
10
|
Thanh LT, Dao NTA, Dung NV, Trung NL, Abed-Meraim K. Multi-channel EEG epileptic spike detection by a new method of tensor decomposition. J Neural Eng 2020; 17:016023. [PMID: 31905174 DOI: 10.1088/1741-2552/ab5247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG) data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of interest to see whether tensor decomposition is able to analyze EEG epileptic spikes. APPROACH In this paper, we first proposed the problem of simultaneous multilinear low-rank approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we presented a new system for automatic epileptic spike detection based on SMLRAT. MAIN RESULTS We propose to formulate the problem of feature extraction from a set of EEG segments, represented by tensors, as the SMLRAT problem. Efficient EEG features were obtained, based on estimating the 'eigenspikes' derived from nonnegative GSMLRAT. We compared the proposed tensor analysis method with other common tensor methods in analyzing EEG signal and compared the proposed feature extraction method with the state-of-the-art methods. Experimental results indicated that our proposed method is able to detect epileptic spikes with high accuracy. SIGNIFICANCE Our method, for the first time, makes a step forward for automatic detection EEG epileptic spikes based on tensor decomposition. The method can provide a practical solution to distinguish epileptic spikes from artifacts in real-life EEG datasets.
Collapse
Affiliation(s)
- Le Trung Thanh
- Advanced Institute of Engineering and Technology (AVITECH), VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | | | | | | | | |
Collapse
|
11
|
Sharmila A, Geethanjali P. A review on the pattern detection methods for epilepsy seizure detection from EEG signals. ACTA ACUST UNITED AC 2019; 64:507-517. [PMID: 31026222 DOI: 10.1515/bmt-2017-0233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 12/05/2018] [Indexed: 11/15/2022]
Abstract
Over several years, research had been conducted for the detection of epileptic seizures to support an automatic diagnosis system to comfort the clinicians' encumbrance. In this regard, a number of research papers have been published for the identification of epileptic seizures. A thorough review of all these papers is required. So, an attempt has been made to review on the pattern detection methods for epilepsy seizure detection from EEG signals. More than 150 research papers have been discussed to determine the techniques for detecting epileptic seizures. Further, the literature review confirms that the pattern recognition techniques required to detect epileptic seizures varies across the electroencephalogram (EEG) datasets of different conditions. This is mostly owing to the fact that EEG detected under different conditions have different characteristics. This consecutively necessitates the identification of the pattern recognition technique to efficiently differentiate EEG epileptic data from the EEG data of various conditions.
Collapse
Affiliation(s)
- Ashok Sharmila
- School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Purusothaman Geethanjali
- School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| |
Collapse
|
12
|
Li Z, Yuan W, Zhao S, Yu Z, Kang Y, Chen CLP. Brain-Actuated Control of Dual-Arm Robot Manipulation With Relative Motion. IEEE Trans Cogn Dev Syst 2019. [DOI: 10.1109/tcds.2017.2770168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
|
14
|
Abstract
Over many decades, research is being attempted for the detection of epileptic seizure to support for automatic diagnosis system to help clinicians from burdensome work. In this respect, an enormous number of research papers is published for identification of epileptic seizure. It is difficult to present a detailed review of all these literature. Therefore, in this paper, an attempt has been made to review the detection of an epileptic seizure. More than 100 research papers have been discussed to discern the techniques for detecting the epileptic seizure. Further, the literature survey shows that the pattern recognition required to detect epileptic seizure varies with different conditions of EEG datasets. This is mainly due to the fact that EEG detected under different conditions has different characteristics. This is, in turn, necessitates the identification of pattern recognition technique to effectively distinguish EEG epileptic data from a various condition of EEG data.
Collapse
Affiliation(s)
- A Sharmila
- a School of Electrical Engineering , VIT , Vellore , India
| |
Collapse
|
15
|
Murat Yilmaz C, Kose C, Hatipoglu B. A Quasi-probabilistic distribution model for EEG Signal classification by using 2-D signal representation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 162:187-196. [PMID: 29903485 DOI: 10.1016/j.cmpb.2018.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/10/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Electroencephalography (EEG) is a method that measures and records the electrical activity of the human brain. These biomedical signals are currently being actively used in many research fields and have a wide range of potential uses in brain-computer interfaces (BCIs). The main aim of the present work is to improve the classification of EEG patterns for EEG-based BCI systems. METHODS In this paper, we presented a classification approach for EEG-based BCIs. For this purpose, in the training stage, 2-D representations of signals were extracted and a quasi-probabilistic learning model was built for binary classification. In the testing stage, the estimation of class membership probability was performed with an untrained sub-data set. To confirm the validity of the proposed method, we conducted experiments on the BCI Competition 2003 Data Sets (Ia and Ib). The classification performances were evaluated for accuracy, sensitivity, specificity and F-measure measurements using the five-fold leave-one-out cross-validation technique ten times. RESULTS The proposed method yielded an average classification accuracy of 95.54% (with sensitivity and specificity of 100.00% and 91.80% respectively) for Data Set Ia and accuracy of 72.37% (with sensitivity and specificity of 75.76% and 69.77% respectively) for Data Set Ib, which are the highest rates ever reported for both data sets. CONCLUSIONS It is apparent from the results that the proposed method has potential and can assist in the development of effective EEG-based BCIs. The advantage of this method lies in its relatively simple algorithm and easy computational implementation. The experimental results also showed that the selection of relevant channels is an important step in developing efficient EEG-based BCI systems.
Collapse
Affiliation(s)
- Cagatay Murat Yilmaz
- Department of Computer Engineering, Karadeniz Technical University, Trabzon 61080, Turkey.
| | - Cemal Kose
- Department of Computer Engineering, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Bahar Hatipoglu
- Department of Computer Engineering, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
16
|
Antoniades A, Spyrou L, Martin-Lopez D, Valentin A, Alarcon G, Sanei S, Cheong Took C. Detection of Interictal Discharges With Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2285-2294. [DOI: 10.1109/tnsre.2017.2755770] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Epileptic MEG Spike Detection Using Statistical Features and Genetic Programming with KNN. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:3035606. [PMID: 29118962 PMCID: PMC5651155 DOI: 10.1155/2017/3035606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/06/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022]
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide. Monitoring the brain activities and identifying the seizure source which starts with spike detection are important steps for epilepsy treatment. Magnetoencephalography (MEG) is an emerging epileptic diagnostic tool with high-density sensors; this makes manual analysis a challenging task due to the vast amount of MEG data. This paper explores the use of eight statistical features and genetic programing (GP) with the K-nearest neighbor (KNN) for interictal spike detection. The proposed method is comprised of three stages: preprocessing, genetic programming-based feature generation, and classification. The effectiveness of the proposed approach has been evaluated using real MEG data obtained from 28 epileptic patients. It has achieved a 91.75% average sensitivity and 92.99% average specificity.
Collapse
|
18
|
Adam A, Ibrahim Z, Mokhtar N, Shapiai MI, Mubin M, Saad I. Feature selection using angle modulated simulated Kalman filter for peak classification of EEG signals. SPRINGERPLUS 2016; 5:1580. [PMID: 27652153 PMCID: PMC5025417 DOI: 10.1186/s40064-016-3277-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 11/10/2022]
Abstract
In the existing electroencephalogram (EEG) signals peak classification research, the existing models, such as Dumpala, Acir, Liu, and Dingle peak models, employ different set of features. However, all these models may not be able to offer good performance for various applications and it is found to be problem dependent. Therefore, the objective of this study is to combine all the associated features from the existing models before selecting the best combination of features. A new optimization algorithm, namely as angle modulated simulated Kalman filter (AMSKF) will be employed as feature selector. Also, the neural network random weight method is utilized in the proposed AMSKF technique as a classifier. In the conducted experiment, 11,781 samples of peak candidate are employed in this study for the validation purpose. The samples are collected from three different peak event-related EEG signals of 30 healthy subjects; (1) single eye blink, (2) double eye blink, and (3) eye movement signals. The experimental results have shown that the proposed AMSKF feature selector is able to find the best combination of features and performs at par with the existing related studies of epileptic EEG events classification.
Collapse
Affiliation(s)
- Asrul Adam
- Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zuwairie Ibrahim
- Faculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang Malaysia
| | - Norrima Mokhtar
- Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Ibrahim Shapiai
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Semarak, 54100 Kuala Lumpur, Malaysia
| | - Marizan Mubin
- Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ismail Saad
- Artificial Intelligence Research Unit (AiRU), Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Malaysia
| |
Collapse
|
19
|
Adam A, Ibrahim Z, Mokhtar N, Shapiai MI, Cumming P, Mubin M. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal. SPRINGERPLUS 2016; 5:1036. [PMID: 27462484 PMCID: PMC4940316 DOI: 10.1186/s40064-016-2697-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/27/2016] [Indexed: 11/29/2022]
Abstract
Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37–52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.
Collapse
Affiliation(s)
- Asrul Adam
- Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zuwairie Ibrahim
- Faculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang Malaysia
| | - Norrima Mokhtar
- Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Ibrahim Shapiai
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Semarak, 54100 Kuala Lumpur, Malaysia
| | - Paul Cumming
- School of Psychology and Counseling, Queensland University of Technology, and QIMR Berghofer, Brisbane, Australia
| | - Marizan Mubin
- Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Automatic Identification of Interictal Epileptiform Discharges in Secondary Generalized Epilepsy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:8701973. [PMID: 27379172 PMCID: PMC4917751 DOI: 10.1155/2016/8701973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
Abstract
Ictal epileptiform discharges (EDs) are characteristic signal patterns of scalp electroencephalogram (EEG) or intracranial EEG (iEEG) recorded from patients with epilepsy, which assist with the diagnosis and characterization of various types of epilepsy. The EEG signal, however, is often recorded from patients with epilepsy for a long period of time, and thus detection and identification of EDs have been a burden on medical doctors. This paper proposes a new method for automatic identification of two types of EDs, repeated sharp-waves (sharps), and runs of sharp-and-slow-waves (SSWs), which helps to pinpoint epileptogenic foci in secondary generalized epilepsy such as Lennox-Gastaut syndrome (LGS). In the experiments with iEEG data acquired from a patient with LGS, our proposed method detected EDs with an accuracy of 93.76% and classified three different signal patterns with a mean classification accuracy of 87.69%, which was significantly higher than that of a conventional wavelet-based method. Our study shows that it is possible to successfully detect and discriminate sharps and SSWs from background EEG activity using our proposed method.
Collapse
|
21
|
Zacharaki EI, Mporas I, Garganis K, Megalooikonomou V. Spike pattern recognition by supervised classification in low dimensional embedding space. Brain Inform 2016; 3:73-83. [PMID: 27747608 PMCID: PMC4883172 DOI: 10.1007/s40708-016-0044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Epileptiform discharges in interictal electroencephalography (EEG) form the mainstay of epilepsy diagnosis and localization of seizure onset. Visual analysis is rater-dependent and time consuming, especially for long-term recordings, while computerized methods can provide efficiency in reviewing long EEG recordings. This paper presents a machine learning approach for automated detection of epileptiform discharges (spikes). The proposed method first detects spike patterns by calculating similarity to a coarse shape model of a spike waveform and then refines the results by identifying subtle differences between actual spikes and false detections. Pattern classification is performed using support vector machines in a low dimensional space on which the original waveforms are embedded by locality preserving projections. The automatic detection results are compared to experts' manual annotations (101 spikes) on a whole-night sleep EEG recording. The high sensitivity (97 %) and the low false positive rate (0.1 min-1), calculated by intra-patient cross-validation, highlight the potential of the method for automated interictal EEG assessment.
Collapse
Affiliation(s)
- Evangelia I Zacharaki
- Department of Computer Engineering and Informatics, University of Patras, Patras, Greece.
- Center for Visual Computing, CentraleSupélec/Galen Team, INRIA, Paris, France.
| | - Iosif Mporas
- Department of Computer Engineering and Informatics, University of Patras, Patras, Greece
| | | | | |
Collapse
|
22
|
Spyrou L, Martín-Lopez D, Valentín A, Alarcón G, Sanei S. Detection of Intracranial Signatures of Interictal Epileptiform Discharges from Concurrent Scalp EEG. Int J Neural Syst 2016; 26:1650016. [DOI: 10.1142/s0129065716500167] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interictal epileptiform discharges (IEDs) are transient neural electrical activities that occur in the brain of patients with epilepsy. A problem with the inspection of IEDs from the scalp electroencephalogram (sEEG) is that for a subset of epileptic patients, there are no visually discernible IEDs on the scalp, rendering the above procedures ineffective, both for detection purposes and algorithm evaluation. On the other hand, intracranially placed electrodes yield a much higher incidence of visible IEDs as compared to concurrent scalp electrodes. In this work, we utilize concurrent scalp and intracranial EEG (iEEG) from a group of temporal lobe epilepsy (TLE) patients with low number of scalp-visible IEDs. The aim is to determine whether by considering the timing information of the IEDs from iEEG, the resulting concurrent sEEG contains enough information for the IEDs to be reliably distinguished from non-IED segments. We develop an automatic detection algorithm which is tested in a leave-subject-out fashion, where each test subject’s detection algorithm is based on the other patients’ data. The algorithm obtained a [Formula: see text] accuracy in recognizing scalp IED from non-IED segments with [Formula: see text] accuracy when trained and tested on the same subject. Also, it was able to identify nonscalp-visible IED events for most patients with a low number of false positive detections. Our results represent a proof of concept that IED information for TLE patients is contained in scalp EEG even if they are not visually identifiable and also that between subject differences in the IED topology and shape are small enough such that a generic algorithm can be used.
Collapse
Affiliation(s)
| | - David Martín-Lopez
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Department of Clinical Neurophysiology, Ashford and St Peter’s Hospital NHS FT, Chertsey, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Antonio Valentín
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Gonzalo Alarcón
- Department of Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, UK
- Department of Clinical Neurophysiology, King’s College Hospital NHS FT, London, UK
- Comprehensive Epilepsy Center Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, Qatar
| | - Saeid Sanei
- Department of Computer Science, University of Surrey, UK
| |
Collapse
|
23
|
Van de Velde S, Roshanov P, Kortteisto T, Kunnamo I, Aertgeerts B, Vandvik PO, Flottorp S. Tailoring implementation strategies for evidence-based recommendations using computerised clinical decision support systems: protocol for the development of the GUIDES tools. Implement Sci 2016; 11:29. [PMID: 26946141 PMCID: PMC4779557 DOI: 10.1186/s13012-016-0393-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/25/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND A computerised clinical decision support system (CCDSS) is a technology that uses patient-specific data to provide relevant medical knowledge at the point of care. It is considered to be an important quality improvement intervention, and the implementation of CCDSS is growing substantially. However, the significant investments do not consistently result in value for money due to content, context, system and implementation issues. The Guideline Implementation with Decision Support (GUIDES) project aims to improve the impact of CCDSS through optimised implementation based on high-quality evidence-based recommendations. To achieve this, we will develop tools that address the factors that determine successful CCDSS implementation. METHODS/DESIGN We will develop the GUIDES tools in four steps, using the methods and results of the Tailored Implementation for Chronic Diseases (TICD) project as a starting point: (1) a review of research evidence and frameworks on the determinants of implementing recommendations using CCDSS; (2) a synthesis of a comprehensive framework for the identified determinants; (3) the development of tools for use of the framework and (4) pilot testing the utility of the tools through the development of a tailored CCDSS intervention in Norway, Belgium and Finland. We selected the conservative management of knee osteoarthritis as a prototype condition for the pilot. During the process, the authors will collaborate with an international expert group to provide input and feedback on the tools. DISCUSSION This project will provide guidance and tools on methods of identifying implementation determinants and selecting strategies to implement evidence-based recommendations through CCDSS. We will make the GUIDES tools available to CCDSS developers, implementers, researchers, funders, clinicians, managers, educators, and policymakers internationally. The tools and recommendations will be generic, which makes them scalable to a large spectrum of conditions. Ultimately, the better implementation of CCDSS may lead to better-informed decisions and improved care and patient outcomes for a wide range of conditions. PROTOCOL REGISTRATION PROSPERO, CRD42016033738.
Collapse
Affiliation(s)
| | | | | | - Ilkka Kunnamo
- Duodecim, Scientific Society of Finnish Physicians, Helsinki, Finland
| | - Bert Aertgeerts
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Per Olav Vandvik
- MAGIC Non-Profit Research and Innovation Programme, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
24
|
Tieng QM, Kharatishvili I, Chen M, Reutens DC. Mouse EEG spike detection based on the adapted continuous wavelet transform. J Neural Eng 2016; 13:026018. [PMID: 26859447 DOI: 10.1088/1741-2560/13/2/026018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. APPROACH A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. MAIN RESULT The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. SIGNIFICANCE Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.
Collapse
|
25
|
Liu YT, Lin YY, Wu SL, Chuang CH, Lin CT. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016; 27:347-360. [PMID: 26595929 DOI: 10.1109/tnnls.2015.2496330] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
Collapse
|
26
|
Kang JH, Chung YG, Kim SP. An efficient detection of epileptic seizure by differentiation and spectral analysis of electroencephalograms. Comput Biol Med 2015; 66:352-6. [DOI: 10.1016/j.compbiomed.2015.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
|
27
|
|
28
|
Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015; 26:56-64. [DOI: 10.1016/j.seizure.2015.01.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 11/25/2022] Open
|
29
|
Hajipour Sardouie S, Shamsollahi M, Albera L, Merlet I. Interictal EEG noise cancellation: GEVD and DSS based approaches versus ICA and DCCA based methods. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization. ScientificWorldJournal 2014; 2014:973063. [PMID: 25243236 PMCID: PMC4157008 DOI: 10.1155/2014/973063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022] Open
Abstract
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.
Collapse
|
31
|
Helal AEM, Seddik AF, Eldosoky MA, Hussein AAF. An Efficient Method for Epileptic Seizure Detection in Long-Term EEG Recordings. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.712093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Shen CP, Chen CC, Hsieh SL, Chen WH, Chen JM, Chen CM, Lai F, Chiu MJ. High-Performance Seizure Detection System Using a Wavelet-Approximate Entropy-fSVM Cascade With Clinical Validation. Clin EEG Neurosci 2013; 44:247-56. [PMID: 23610456 DOI: 10.1177/1550059413483451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The classification of electroencephalography (EEG) signals is one of the most important methods for seizure detection. However, verification of an atypical epileptic seizure often can only be done through long-term EEG monitoring for 24 hours or longer. Hence, automatic EEG signal analysis for clinical screening is necessary for the diagnosis of epilepsy. We propose an EEG analysis system of seizure detection, based on a cascade of wavelet-approximate entropy for feature selection, Fisher scores for adaptive feature selection, and support vector machine for feature classification. Performance of the system was tested on open source data, and the overall accuracy reached 99.97%. We further tested the performance of the system on clinical EEG obtained from a clinical EEG laboratory and bedside EEG recordings. The results showed an overall accuracy of 98.73% for routine EEG, and 94.32% for bedside EEG, which verified the high performance and usefulness of such a cascade system for seizure detection. Also, the prediction model, trained by routine EEG, can be successfully generalized to bedside EEG of independent patients.
Collapse
Affiliation(s)
- Chia-Ping Shen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu YC, Lin CCK, Tsai JJ, Sun YN. Model-based spike detection of epileptic EEG data. SENSORS 2013; 13:12536-47. [PMID: 24048343 PMCID: PMC3821325 DOI: 10.3390/s130912536] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 11/16/2022]
Abstract
Accurate automatic spike detection is highly beneficial to clinical assessment of epileptic electroencephalogram (EEG) data. In this paper, a new two-stage approach is proposed for epileptic spike detection. First, the k-point nonlinear energy operator (k-NEO) is adopted to detect all possible spike candidates, then a newly proposed spike model with slow wave features is applied to these candidates for spike classification. Experimental results show that the proposed system, using the AdaBoost classifier, outperforms the conventional method in both two- and three-class EEG pattern classification problems. The proposed system not only achieves better accuracy for spike detection, but also provides new ability to differentiate between spikes and spikes with slow waves. Though spikes with slow waves occur frequently in epileptic EEGs, they are not used in conventional spike detection. Identifying spikes with slow waves allows the proposed system to have better capability for assisting clinical neurologists in routine EEG examinations and epileptic diagnosis.
Collapse
Affiliation(s)
- Yung-Chun Liu
- Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan; E-Mail:
- Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Chou-Ching K. Lin
- Department of Neurology, National Cheng Kung University Hospital, No. 138, Sheng Li Road, Tainan City 704, Taiwan; E-Mails: (C.-C.K.L.); (J.-J.T.)
| | - Jing-Jane Tsai
- Department of Neurology, National Cheng Kung University Hospital, No. 138, Sheng Li Road, Tainan City 704, Taiwan; E-Mails: (C.-C.K.L.); (J.-J.T.)
| | - Yung-Nien Sun
- Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan; E-Mail:
- Medical Device Innovation Center, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-6-275-7575 (ext. 62526); Fax: +886-6-274-7076
| |
Collapse
|
34
|
Halford JJ, Schalkoff RJ, Zhou J, Benbadis SR, Tatum WO, Turner RP, Sinha SR, Fountain NB, Arain A, Pritchard PB, Kutluay E, Martz G, Edwards JC, Waters C, Dean BC. Standardized database development for EEG epileptiform transient detection: EEGnet scoring system and machine learning analysis. J Neurosci Methods 2012; 212:308-16. [PMID: 23174094 DOI: 10.1016/j.jneumeth.2012.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
The routine scalp electroencephalogram (rsEEG) is the most common clinical neurophysiology procedure. The most important role of rsEEG is to detect evidence of epilepsy, in the form of epileptiform transients (ETs), also known as spike or sharp wave discharges. Due to the wide variety of morphologies of ETs and their similarity to artifacts and waves that are part of the normal background activity, the task of ET detection is difficult and mistakes are frequently made. The development of reliable computerized detection of ETs in the EEG could assist physicians in interpreting rsEEGs. We report progress in developing a standardized database for testing and training ET detection algorithms. We describe a new version of our EEGnet software system for collecting expert opinion on EEG datasets, a completely web-browser based system. We report results of EEG scoring from a group of 11 board-certified academic clinical neurophysiologists who annotated 30-s excepts from rsEEG recordings from 100 different patients. The scorers had moderate inter-scorer reliability and low to moderate intra-scorer reliability. In order to measure the optimal size of this standardized rsEEG database, we used machine learning models to classify paroxysmal EEG activity in our database into ET and non-ET classes. Based on our results, it appears that our database will need to be larger than its current size. Also, our non-parametric classifier, an artificial neural network, performed better than our parametric Bayesian classifier. Of our feature sets, the wavelet feature set proved most useful for classification.
Collapse
Affiliation(s)
- Jonathan J Halford
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nonclercq A, Foulon M, Verheulpen D, De Cock C, Buzatu M, Mathys P, Van Bogaert P. Cluster-based spike detection algorithm adapts to interpatient and intrapatient variation in spike morphology. J Neurosci Methods 2012; 210:259-65. [PMID: 22850558 DOI: 10.1016/j.jneumeth.2012.07.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/09/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
36
|
Aarabi A, Grebe R, Berquin P, Bourel Ponchel E, Jalin C, Fohlen M, Bulteau C, Delalande O, Gondry C, Héberlé C, Moullart V, Wallois F. Spatiotemporal source analysis in scalp EEG vs. intracerebral EEG and SPECT: A case study in a 2-year-old child. Neurophysiol Clin 2012; 42:207-24. [DOI: 10.1016/j.neucli.2011.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 10/14/2022] Open
|
37
|
Tang Y, Durand D. A tunable support vector machine assembly classifier for epileptic seizure detection. EXPERT SYSTEMS WITH APPLICATIONS 2012; 39:3925-3938. [PMID: 22563146 PMCID: PMC3341176 DOI: 10.1016/j.eswa.2011.08.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Automating the detection of epileptic seizures could reduce the significant human resources necessary for the care of patients suffering from intractable epilepsy and offer improved solutions for closed-loop therapeutic devices such as implantable electrical stimulation systems. While numerous detection algorithms have been published, an effective detector in the clinical setting remains elusive. There are significant challenges facing seizure detection algorithms. The epilepsy EEG morphology can vary widely among the patient population. EEG recordings from the same patient can change over time. EEG recordings can be contaminated with artifacts that often resemble epileptic seizure activity. In order for an epileptic seizure detector to be successful, it must be able to adapt to these different challenges. In this study, a novel detector is proposed based on a support vector machine assembly classifier (SVMA). The SVMA consists of a group of SVMs each trained with a different set of weights between the seizure and non-seizure data and the user can selectively control the output of the SVMA classifier. The algorithm can improve the detection performance compared to traditional methods by providing an effective tuning strategy for specific patients. The proposed algorithm also demonstrates a clear advantage over threshold tuning. When compared with the detection performances reported by other studies using the publicly available epilepsy dataset hosted by the University of BONN, the proposed SVMA detector achieved the best total accuracy of 98.72%. These results demonstrate the efficacy of the proposed SVMA detector and its potential in the clinical setting.
Collapse
Affiliation(s)
- Y Tang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
38
|
Ji Z, Sugi T, Goto S, Wang X, Ikeda A, Nagamine T, Shibasaki H, Nakamura M. An Automatic Spike Detection System Based on Elimination of False Positives Using the Large-Area Context in the Scalp EEG. IEEE Trans Biomed Eng 2011; 58:2478-88. [PMID: 21622069 DOI: 10.1109/tbme.2011.2157917] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhanfeng Ji
- Department of Advanced Systems Control Engineering, Saga University, 840-8502 Saga, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Zhang Y, Xu G, Wang J, Liang L. An automatic patient-specific seizure onset detection method in intracranial EEG based on incremental nonlinear dimensionality reduction. Comput Biol Med 2010; 40:889-99. [PMID: 20951372 DOI: 10.1016/j.compbiomed.2010.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 11/17/2022]
Abstract
Epileptic seizure features always include the morphology and spatial distribution of nonlinear waveforms in the electroencephalographic (EEG) signals. In this study, we propose a novel incremental learning scheme based on nonlinear dimensionality reduction for automatic patient-specific seizure onset detection. The method allows for identification of seizure onset times in long-term EEG signals acquired from epileptic patients. Firstly, a nonlinear dimensionality reduction (NDR) method called local tangent space alignment (LTSA) is used to reduce the dimensionality of available initial feature sets extracted with continuous wavelet transform (CWT). One-dimensional manifold which reflects the intrinsic dynamics of seizure onset is obtained. For each patient, IEEG recordings containing one seizure onset is sufficient to train the initial one-dimensional manifold. Secondly, an unsupervised incremental learning scheme is proposed to update the initial manifold when the unlabelled EEG segments flow in sequentially. The incremental learning scheme can cluster the new coming samples into the trained patterns (containing or not containing seizure onsets). Intracranial EEG recordings from 21 patients with duration of 193.8h and 82 seizures are used for the evaluation of the method. Average sensitivity of 98.8%, average uninteresting false positive rate of 0.24/h, average interesting false positives rate of 0.25/h, and average detection delay of 10.8s are obtained. Our method offers simple, accurate training with less human intervening and can be well used in off-line seizure detection. The unsupervised incremental learning scheme has the potential in identifying novel IEEG classes (different onset patterns) within the data.
Collapse
Affiliation(s)
- Yizhuo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | |
Collapse
|
41
|
Guerrero-Mosquera C, Vazquez AN. New approach in features extraction for EEG signal detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:13-6. [PMID: 19963450 DOI: 10.1109/iembs.2009.5332434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes a new approach in features extraction using time-frequency distributions (TFDs) for detecting epileptic seizures to identify abnormalities in electroencephalogram (EEG). Particularly, the method extracts features using the Smoothed Pseudo Wigner-Ville distribution combined with the McAulay-Quatieri sinusoidal model and identifies abnormal neural discharges. We propose a new feature based on the length of the track that, combined with energy and frequency features, allows to isolate a continuous energy trace from another oscillations when an epileptic seizure is beginning. We evaluate our approach using data consisting of 16 different seizures from 6 epileptic patients. The results show that our extraction method is a suitable approach for automatic seizure detection, and opens the possibility of formulating new criteria to detect and analyze abnormal EEGs.
Collapse
Affiliation(s)
- Carlos Guerrero-Mosquera
- University Carlos III of Madrid, Signal Processing and Communications Department, 28911 Leganes, Spain.
| | | |
Collapse
|
42
|
Guerrero-Mosquera C, Malanda Trigueros A, Iriarte Franco J, Navia-Vázquez Á. New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Med Biol Eng Comput 2010; 48:321-30. [PMID: 20217264 DOI: 10.1007/s11517-010-0590-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
43
|
Halford JJ. Computerized epileptiform transient detection in the scalp electroencephalogram: Obstacles to progress and the example of computerized ECG interpretation. Clin Neurophysiol 2009; 120:1909-1915. [PMID: 19836303 DOI: 10.1016/j.clinph.2009.08.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/05/2009] [Accepted: 08/09/2009] [Indexed: 11/19/2022]
Affiliation(s)
- Jonathan J Halford
- Division of Adult Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
44
|
Koçer S, Canal MR. Classifying Epilepsy Diseases Using Artificial Neural Networks and Genetic Algorithm. J Med Syst 2009; 35:489-98. [DOI: 10.1007/s10916-009-9385-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
|
45
|
Abstract
Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.
Collapse
Affiliation(s)
- Richard Harner
- BrainVue Systems, Philadelphia, Pennsylvania, PA 19129, USA.
| |
Collapse
|
46
|
Detection of EEG transients in neonates and older children using a system based on dynamic time-warping template matching and spatial dipole clustering. Neuroimage 2009; 48:50-62. [DOI: 10.1016/j.neuroimage.2009.06.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/17/2009] [Accepted: 06/20/2009] [Indexed: 11/19/2022] Open
|
47
|
Kuhlmann L, Burkitt AN, Cook MJ, Fuller K, Grayden DB, Seiderer L, Mareels IMY. Seizure Detection Using Seizure Probability Estimation: Comparison of Features Used to Detect Seizures. Ann Biomed Eng 2009; 37:2129-45. [DOI: 10.1007/s10439-009-9755-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
48
|
Selver MA, Akay O, Ardali E, Yavuz AB, Onal O, Ozden G. Cascaded and Hierarchical Neural Networks for Classifying Surface Images of Marble Slabs. ACTA ACUST UNITED AC 2009. [DOI: 10.1109/tsmcc.2009.2013816] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Hannula M, Huttunen K, Koskelo J, Laitinen T, Leino T. Comparison between artificial neural network and multilinear regression models in an evaluation of cognitive workload in a flight simulator. Comput Biol Med 2009; 38:1163-70. [PMID: 19010465 DOI: 10.1016/j.compbiomed.2008.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 09/01/2008] [Accepted: 09/16/2008] [Indexed: 11/17/2022]
Abstract
In this study, the performances of artificial neural network (ANN) analysis and multilinear regression (MLR) model-based estimation of heart rate were compared in an evaluation of individual cognitive workload. The data comprised electrocardiography (ECG) measurements and an evaluation of cognitive load that induces psychophysiological stress (PPS), collected from 14 interceptor fighter pilots during complex simulated F/A-18 Hornet air battles. In our data, the mean absolute error of the ANN estimate was 11.4 as a visual analog scale score, being 13-23% better than the mean absolute error of the MLR model in the estimation of cognitive workload.
Collapse
Affiliation(s)
- Manne Hannula
- Medical Engineering R & D Center, Oulu University of Applied Sciences, Finland.
| | | | | | | | | |
Collapse
|
50
|
Walbran AC, Unsworth CP, Gunn AJ, Bennet L. A semi-automated method for epileptiform transient detection in the EEG of the fetal sheep using time-frequency analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:17-20. [PMID: 19963451 DOI: 10.1109/iembs.2009.5332431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Perinatal hypoxia remains a significant cause of brain damage. Currently there are no biomarkers to detect the at risk brain. Recent research, however, suggests that the appearance of epileptiform transients in the first 6-8 hours after hypoxia (the latent phase of injury) are predictive of neural outcome. To quantify this further a key need is to automate EEG signal analysis to aid clinical staff with the vast amounts of complex data to review. In this study, we present a semi-automated method for spike detection in the fetal sheep EEG. The method utilizes the short time Fourier transform and peak separation to extract spikes. The performance of the method was found to be high in sensitivity and selectivity over 3 distinct time points.
Collapse
Affiliation(s)
- Anita C Walbran
- Department of Engineering Science, The University of Auckland, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|