1
|
Choi C, Choi W, Kim J, Kim C. Non-Invasive Photothermal Strain Imaging of Non-Alcoholic Fatty Liver Disease in Live Animals. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2487-2495. [PMID: 33999818 DOI: 10.1109/tmi.2021.3081097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The prevalence of non-alcoholic fatty liver diseases (NAFLD) has increased steadily over the past decade. Thus, diagnosing NAFLD at the earliest stage, which is a reversible condition, has become increasingly important. Here, photothermal strain imaging (pTSI) is presented as a novel non-invasive tool for NAFLD diagnosis. The pTSI uses ultrasound to detect the difference in thermal strain between fat and water during a light-induced temperature rise, which is directly related to the pathological evidence of NAFLD. To demonstrate its feasibility, fat accumulation in in vivo rat livers is monitored non-invasively using pTSI, based on clinical ultrasound B-mode images. A total of 21 male Wistar rats of 3 weeks of age were prepared. Of these, 18 rats received methionine-choline deficient diet for 1 to 6 weeks (n = 3 per week) to induce NAFLD, whereas 3 rats received normal diet as controls (n = 3). Livers were heated by a lipid-sensitive continuous-wave laser, and strain was measured. Quantitative results from the pTSI were compared with histological analysis results using Oil-Red-O (ORO). The receiver operating characteristic curve of in vivo pTSI results for detecting moderate steatosis (ORO-stained area ≥33%) was constructed based on strain change rate measured in the liver region. The sensitivity and specificity of pTSI were 90% and 82%, respectively, and the area-under-the-curve was measured as 0.85 ± 0.03 (95% confidence interval). The pTSI results tested in the rodent NAFLD model showed great potential for pTSI to be used as a new diagnostic tool for NAFLD in the future.
Collapse
|
2
|
Khalid WB, Chen X, Kim K. Multifocus Thermal Strain Imaging Using a Curved Linear Array Transducer for Identification of Lipids in Deep Tissue. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1711-1724. [PMID: 33931283 DOI: 10.1016/j.ultrasmedbio.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Thermal strain imaging (TSI) is an ultrasound-based imaging technique intended primarily for diseases in which lipid accumulation is the main biomarker. The goal of the research described here was to successfully implement TSI on a single, commercially available curved linear array transducer for heating and imaging of organs at a deeper depth. For an effective temperature rise of the tissue over a large area, which is key to TSI performance, an innovative multifocus beamforming approach was applied. This yielded a heating area from 32 to 96 mm in the axial direction and -7 to +7 mm in the lateral direction. The pressure fields generated from simulation were in agreement with pressure fields measured with the hydrophone. TSI with safe acoustic power identified with high contrast a rubber inclusion and liposuction fat tissue embedded in a gelatin block.
Collapse
Affiliation(s)
- Waqas B Khalid
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Khalid WB, Farhat N, Lavery L, Jarnagin J, Delany JP, Kim K. Non-invasive Assessment of Liver Fat in ob/ob Mice Using Ultrasound-Induced Thermal Strain Imaging and Its Correlation with Hepatic Triglyceride Content. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1067-1076. [PMID: 33468357 PMCID: PMC7936391 DOI: 10.1016/j.ultrasmedbio.2020.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/21/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Non-alcoholic fatty liver disease is the accumulation of triglycerides in liver. In its malignant form, it can proceed to steatohepatitis, fibrosis, cirrhosis, cancer and ultimately liver impairment, leading to liver transplantation. In a previous study, ultrasound-induced thermal strain imaging (US-TSI) was used to distinguish between excised fatty livers from obese mice and non-fatty livers from control mice. In this study, US-TSI was used to quantify lipid composition of fatty livers in ob/ob mice (n = 28) at various steatosis stages. A strong correlation coefficient was observed (R2 = 0.85) between lipid composition measured with US-TSI and hepatic triglyceride content. Hepatic triglyceride content is used to quantify adipose tissue in liver. The ob/ob mice were divided into three groups based on the degree of steatosis that is used in clinics: none, mild and moderate. A non-parametric Kruskal-Wallis test was conducted to determine if US-TSI can potentially differentiate among the steatosis grades in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Waqas B Khalid
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Nadim Farhat
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Linda Lavery
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center
| | - Josh Jarnagin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James P Delany
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Lee FF, He Q, Gao J, Pan A, Sun S, Liang X, Luo J. Evaluating HIFU-mediated local drug release using thermal strain imaging: Phantom and preliminary in-vivo studies. Med Phys 2019; 46:3864-3876. [PMID: 31314917 DOI: 10.1002/mp.13719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 01/25/2023] Open
Abstract
PURPOSE High-intensity focused ultrasound (HIFU)-mediated drug release becomes a promising therapeutic technique for treatment of cancer, which has merits of deep penetration, noninvasive approach and nonionizing radiation. However, conventional thermocouple-based approach for treatment monitoring would encounter big challenges such as the viscous heating artifact and difficulty in monitoring in the deep region. In this study, we develop an effective method based on thermal strain imaging (TSI) for the evaluation of HIFU-mediated drug release. METHODS Both phantom experiments and preliminary animal experiments were performed to investigate the feasibility of the proposed approach. Doxorubicin (DOX)-loaded cerasomes (HIFU and temperature-sensitive cerasomes, HTSCs) were prepared. In the phantom experiments, the HTSC solution is contained inside a cylindrical chamber within a tissue-mimicking phantom. In the animal experiments, the HTSCs are intravenously injected into tumor-bearing mice. An HIFU transducer is used to trigger DOX release from the HTSCs within the phantom or mice, and TSI is performed during HIFU heating. In the phantom experiments, the accuracy of temperature estimation using TSI is validated by measuring with a thermocouple. In animal experiments, the spatial consistency between the distribution of DOX released within the tumor and the location of the heating region estimated by TSI is validated using a spectrofluorophotometer. RESULTS In the phantom experiments, the HTSCs show a burst release of DOX when the temperature of the HTSC solution estimated by TSI reaches about 42°C, which is in agreement with the condition for drug release from the HTSCs. The temperature estimation using TSI has high accuracy with error below 2.5%. In animal experiments, fluorescence imaging of the tumor validates that the heating region of HIFU could be localized by the low-strain region of TSI. CONCLUSION The present framework demonstrates a reliable and effective solution to the evaluation of HIFU-mediated local drug delivery.
Collapse
Affiliation(s)
- Fu-Feng Lee
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Anni Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Suhui Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Liu Z, Bai Z, Huang C, Huang M, Huang L, Xu D, Zhang H, Yuan C, Luo J. Interoperator Reproducibility of Carotid Elastography for Identification of Vulnerable Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:505-516. [PMID: 30575532 DOI: 10.1109/tuffc.2018.2888479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasound-based carotid elastography has been developed to evaluate the vulnerability of carotid atherosclerotic plaques. The aim of this study was to investigate the in vivo interoperator reproducibility of carotid elastography for the identification of vulnerable plaques, with high-resolution magnetic resonance imaging (MRI) as reference. Ultrasound radio-frequency data of 45 carotid arteries (including 53 plaques) from 32 volunteers were acquired separately by two experienced operators in the longitudinal view and then were used to estimate the interframe axial strain rate (ASR) with a two-step optical flow method. The maximum 99th percentile of absolute ASR of all plaques in a carotid artery was used as the elastographic index. MRI scanning was also performed on each volunteer to identify the vulnerable plaque. The results showed no systematic bias in the Bland-Altman plot and an intraclass correlation coefficient of 0.66 between the two operators. In addition, no statistical significance was found between the receiver operating characteristic (ROC) curves from the two operators ( ), and their areas under the ROC curves were 0.83 and 0.77, respectively. Using the mean measurements of the two operators as the classification criterion, a sensitivity of 71.4%, a specificity of 87.1%, and an accuracy of 82.2% were obtained with a cutoff value of 1.37 [Formula: see text]. This study validates the interoperator reproducibility of ultrasound-based carotid elastography for identifying vulnerable carotid plaques.
Collapse
|
7
|
Choi C, Ahn J, Kim C. Intravascular Photothermal Strain Imaging for Lipid Detection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3609. [PMID: 30355999 PMCID: PMC6263484 DOI: 10.3390/s18113609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is one of the major threats to humanity, accounting for one-third of the world's deaths. For patients with high-risk CVD, plaque rupture can lead to critical condition. It is therefore important to determine the stability of the plaque and classify the patient's risk level. Lipid content is an important determinant of plaque stability. However, conventional intravascular imaging methods have limitations in finding lipids. Therefore, new intravascular imaging techniques for plaque risk assessment are urgently needed. In this study, a novel photothermal strain imaging (pTSI) was applied to an intravascular imaging system for detecting lipids in plaques. As a combination of thermal strain imaging and laser-induced heating, pTSI differentiates lipids from other tissues based on changes in ultrasound (US) velocity with temperature change. We designed an optical pathway to an intravascular ultrasound catheter to deliver 1210-nm laser and US simultaneously. To establish the feasibility of the intravascular pTSI system, we experimented with a tissue-mimicking phantom made of fat and gelatin. Due to the difference in the strain during laser heating, we can clearly distinguish fat and gelatin in the phantom. The result demonstrates that pTSI could be used with conventional intravascular imaging methods to detect the plaque lipid.
Collapse
Affiliation(s)
- Changhoon Choi
- Departments of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Joongho Ahn
- Departments of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Chulhong Kim
- Departments of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| |
Collapse
|
8
|
Chen J, Zhang YM, Song ZZ, Fu YF, Geng Y. The inter-observer agreement in the assessment of carotid plaque neovascularization by contrast-enhanced ultrasonography: The impact of plaque thickness. JOURNAL OF CLINICAL ULTRASOUND : JCU 2018; 46:403-407. [PMID: 29635687 DOI: 10.1002/jcu.22595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The interobserver agreement in the assessment of the grade of carotid plaque neovascularization by contrast-enhanced ultrasonography is poorly established. METHOD We examined 140 carotid plaques in 66 patients (all patients had bilateral plaques, and 8 patients had 2 plaques on one side). We performed conventional and contrast-enhanced ultrasonography to analyze the presence of carotid plaque neovascularization, which was graded by two independent observers whose interobserver agreement (κ) was evaluated according to the thickness of carotid plaque. RESULTS For all carotid plaques, the mean κ was 0.689 (95% confidence interval 0.604-0.774). It was 0.689 (0.569-0.808), 0.637 (0.487-0.787), and 0.740 (0.585-0.896), respectively for carotid plaques with maximal thickness <2 mm, from 2 mm to 3 mm, and >3 mm. CONCLUSION The interobserver agreement for assessing carotid plaque neovascularization by using contrast-enhanced ultrasonography is substantial and acceptable for research purposes, regardless of the maximal thickness of the plaque.
Collapse
Affiliation(s)
- Jian Chen
- Department of Ultrasound, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, China
| | - Yan-Ming Zhang
- Department of Ultrasound, Zhejiang Provincial People's Hospital, and Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ze-Zhou Song
- Department of Ultrasound, Zhejiang Provincial People's Hospital, and Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan-Fei Fu
- Community Health Centre in Binjiang District, Hangzhou, China
| | - Yu Geng
- Department of Neurology, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
9
|
Meshram NH, Varghese T, Mitchell CC, Jackson DC, Wilbrand SM, Hermann BP, Dempsey RJ. Quantification of carotid artery plaque stability with multiple region of interest based ultrasound strain indices and relationship with cognition. Phys Med Biol 2017; 62:6341-6360. [PMID: 28594333 DOI: 10.1088/1361-6560/aa781f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vulnerability and instability in carotid artery plaque has been assessed based on strain variations using noninvasive ultrasound imaging. We previously demonstrated that carotid plaques with higher strain indices in a region of interest (ROI) correlated to patients with lower cognition, probably due to cerebrovascular emboli arising from these unstable plaques. This work attempts to characterize the strain distribution throughout the entire plaque region instead of being restricted to a single localized ROI. Multiple ROIs are selected within the entire plaque region, based on thresholds determined by the maximum and average strains in the entire plaque, enabling generation of additional relevant strain indices. Ultrasound strain imaging of carotid plaques, was performed on 60 human patients using an 18L6 transducer coupled to a Siemens Acuson S2000 system to acquire radiofrequency data over several cardiac cycles. Patients also underwent a battery of neuropsychological tests under a protocol based on National Institute of Neurological Disorders and Stroke and Canadian Stroke Network guidelines. Correlation of strain indices with composite cognitive index of executive function revealed a negative association relating high strain to poor cognition. Patients grouped into high and low cognition groups were then classified using these additional strain indices. One of our newer indices, namely the average L - 1 norm with plaque (AL1NWP) presented with significantly improved correlation with executive function when compared to our previously reported maximum accumulated strain indices. An optimal combination of three of the new indices generated classifiers of patient cognition with an area under the curve (AUC) of 0.880, 0.921 and 0.905 for all (n = 60), symptomatic (n = 33) and asymptomatic patients (n = 27) whereas classifiers using maximum accumulated strain indices alone provided AUC values of 0.817, 0.815 and 0.813 respectively.
Collapse
Affiliation(s)
- N H Meshram
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI-53706, United States of America. Department of Electrical and Computer Engineering, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI-53706, United States of America
| | | | | | | | | | | | | |
Collapse
|
10
|
Choi C, Ahn J, Jeon S, Kim C. Photothermal strain imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76005. [PMID: 28697232 DOI: 10.1117/1.jbo.22.7.076005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Vulnerable plaques are the major cause of cardiovascular disease, but they are difficult to detect with conventional intravascular imaging techniques. Techniques are needed to identify plaque vulnerability based on the presence of lipids in plaque. Thermal strain imaging (TSI) is an imaging technique based on ultrasound (US) wave propagation speed, which varies with the medium temperature. In TSI, the strain that occurs during tissue temperature change can be used for lipid detection because it has a different tendency depending on the type of tissue. Here, we demonstrate photothermal strain imaging (pTSI) using an intravascular ultrasound catheter. pTSI is performed by slightly and selectively heating lipid using a relatively inexpensive continuous laser source. We applied a speckle-tracking algorithm to US B-mode images for strain calculations. As a result, the strain produced in porcine fat was different from the strain produced in water-bearing gelatin phantom, which made it possible to distinguish the two. This suggests that pTSI could potentially be a way of differentiating lipids in coronary artery.
Collapse
Affiliation(s)
- Changhoon Choi
- Pohang University of Science and Technology, Medical Device Innovation Center, Department of Creative IT Engineering, Pohang, Republic of Korea
| | - Joongho Ahn
- Pohang University of Science and Technology, Medical Device Innovation Center, Department of Creative IT Engineering, Pohang, Republic of Korea
| | - Seungwan Jeon
- Pohang University of Science and Technology, Medical Device Innovation Center, Department of Creative IT Engineering, Pohang, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology, Medical Device Innovation Center, Department of Creative IT Engineering, Pohang, Republic of Korea
| |
Collapse
|
11
|
Nguyen MM, Ding X, Leers SA, Kim K. Multi-Focus Beamforming for Thermal Strain Imaging Using a Single Ultrasound Linear Array Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1263-1274. [PMID: 28318887 PMCID: PMC5429981 DOI: 10.1016/j.ultrasmedbio.2017.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Ultrasound-induced thermal strain imaging (TSI) has been used successfully to identify lipid- and water-based tissues in atherosclerotic plaques in some research settings. However, TSI faces several challenges to be realized in clinics. These challenges include motion artifacts and displacement tracking accuracy, as well as limited heating capability, which contributes to low thermal strain signal-to-noise ratio, and a limited field of view. Our goal was to address the challenge in heating tissue in TSI. Current TSI systems use separate heating and imaging transducers, which require physical alignment of the heating and imaging beams and result in a bulky setup that limits in vivo operation. We evaluated a new design for heating beams that can be implemented on a linear array imaging transducer and can provide improved heating area and efficiency as compared with previous implementations. The heating beams designed were implemented with a clinical linear array imaging transducer connected to a research ultrasound platform. In vitro experiments using tissue-mimicking phantoms with no blood flow revealed that the new design resulted in an effective heating area of approximately 0.85 cm2 and a 0.3°C temperature rise in 2 s of heating, which compared well with in silico finite-element simulations. With the new heating beams, TSI was found to be able to detect a lipid-mimicking rubber inclusion with a diameter of 1 cm from the water-based gelatin background, with a strain contrast of 2.3 (+0.14% strain in the rubber inclusion and -0.06% strain in the gelatin background). Lastly, lipid-based tissue in a 1-cm-diameter human carotid endarterectomy (CEA) sample was identified in good agreement with histology.
Collapse
Affiliation(s)
- Man M Nguyen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Xuan Ding
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Steven A Leers
- Heart and Vascular Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Cires-Drouet RS, Mozafarian M, Ali A, Sikdar S, Lal BK. Imaging of high-risk carotid plaques: ultrasound. Semin Vasc Surg 2017; 30:44-53. [PMID: 28818258 DOI: 10.1053/j.semvascsurg.2017.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Duplex ultrasonography has a well-established role in the assessment of the degree of stenosis caused by carotid atherosclerosis. This assessment is derived from Doppler velocity changes induced by the narrowing lumen of the artery. New research into the mechanisms for plaque rupture and atheroembolic stroke indicates that the degree of narrowing is an imperfect predictor of stroke risk, and that other factors, such as plaque composition and remodeling and biomechanical forces acting on the plaque, can play a role. New advances in ultrasound imaging technology have made it possible to investigate these measures of plaque vulnerability to identify pre-embolic unstable carotid plaques. Efforts have been made to quantify the morphologic appearance of the plaque in B-mode images and to correlate them with histology. Additional research has resulted in the first generation of clinically available 3-dimensional ultrasound transducers that reduce operator-dependence and variability. Finally, ultrasonography provides real-time imaging and physiologic information that can be utilized to measure disruptive forces acting on carotid plaques. We review some of these exciting developments in ultrasonography and discuss how these may impact clinical practice.
Collapse
Affiliation(s)
- Rafael S Cires-Drouet
- Center for Vascular Diagnostics, Division of Vascular Surgery, University of Maryland School of Medicine, 22 South Greene Street, S10-B00, Baltimore, MD 21201
| | - Mahvash Mozafarian
- Center for Vascular Diagnostics, Division of Vascular Surgery, University of Maryland School of Medicine, 22 South Greene Street, S10-B00, Baltimore, MD 21201
| | - Amir Ali
- Center for Vascular Diagnostics, Division of Vascular Surgery, University of Maryland School of Medicine, 22 South Greene Street, S10-B00, Baltimore, MD 21201; Department of Bioengineering, George Mason University, Fairfax, VA
| | | | - Brajesh K Lal
- Center for Vascular Diagnostics, Division of Vascular Surgery, University of Maryland School of Medicine, 22 South Greene Street, S10-B00, Baltimore, MD 21201; Vascular Service, Veterans Affairs Medical Center, Baltimore, MD.
| |
Collapse
|
13
|
Ding X, Nguyen MM, James IB, Marra KG, Rubin JP, Leers SA, Kim K. Improved Estimation of Ultrasound Thermal Strain Using Pulse Inversion Harmonic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1182-1192. [PMID: 26948260 PMCID: PMC4811719 DOI: 10.1016/j.ultrasmedbio.2016.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/01/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Thermal (temporal) strain imaging (TSI) is being developed to detect the lipid-rich core of atherosclerotic plaques and presence of fatty liver disease. However, the effects of ultrasonic clutter on TSI have not been considered. In this study, we evaluated whether pulse inversion harmonic imaging (PIHI) could be used to improve estimates of thermal (temporal) strain. Using mixed castor oil-gelatin phantoms of different concentrations and artificially introduced clutter, we found that PIHI improved the signal-to-noise ratio of TSI by an average of 213% or 52.1% relative to 3.3- and 6.6-MHz imaging, respectively. In a phantom constructed using human liposuction fat in the presence of clutter, the contrast-to-noise ratio was degraded by 35.1% for PIHI compared with 62.4% and 43.7% for 3.3- and 6.6-MHz imaging, respectively. These findings were further validated using an ex vivo carotid endarterectomy sample. PIHI can be used to improve estimates of thermal (temporal) strain in the presence of clutter.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Man M Nguyen
- Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Isaac B James
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Steven A Leers
- Department of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Department of Medicine and Heart and Vascular Institute, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Wang X, Mitchell CC, Varghese T, Jackson DC, Rocque BG, Hermann BP, Dempsey RJ. Improved Correlation of Strain Indices with Cognitive Dysfunction with Inclusion of Adventitial Layer with Carotid Plaque. ULTRASONIC IMAGING 2016; 38:194-208. [PMID: 26025578 PMCID: PMC4662918 DOI: 10.1177/0161734615589252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plaque instability may lead to chronic embolization, which in turn may contribute to progressive cognitive decline. Accumulated strain tensor indices over a cardiac cycle within a pulsating carotid plaque may be viable biomarkers for the diagnosis of plaque instability. Using plaque-only carotid artery segmentations, we recently demonstrated that impaired cognitive function correlated significantly with maximum axial and lateral strain indices within a localized region of interest in plaque. Inclusion of the adventitial layer focuses our strain or instability measures on the vessel wall-plaque interface hypothesized to be a region with increased shearing forces and measureable instability. A hierarchical block-matching motion tracking algorithm developed in our laboratory was used to estimate accumulated axial, lateral, and shear strain distribution in plaques identified with the plaque-with-adventitia segmentation. Correlations of strain indices to the Repeatable Battery for the Assessment of Neuropsychological Status Total score were performed and compared with previous results. Overall, correlation coefficients (r) and significance (p) values improved for axial, lateral, and shear strain indices. Shear strain indices, however, demonstrated the largest improvement. The Pearson correlation coefficients for maximum shear strain and cognition improved from the previous plaque-only analyses of -0.432 and -0.345 to -0.795 and -0.717 with the plaque-with-adventitia segmentation for the symptomatic group and for all patients combined, respectively. Our results demonstrate the advantage of including adventitia for ultrasound carotid strain imaging providing improved association to parameters assessing cognitive impairment in patients. This supports theories of the importance of the vessel wall plaque interface in the pathophysiology of embolic disease.
Collapse
Affiliation(s)
- X Wang
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - C C Mitchell
- Department of Medicine, University of Wisconsin-Madison, Madison School of Medicine and Public Health, WI, USA
| | - T Varghese
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - D C Jackson
- Department of Neurology, University of Wisconsin-Madison, Madison School of Medicine and Public Health, WI, USA
| | - B G Rocque
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - B P Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison School of Medicine and Public Health, WI, USA
| | - R J Dempsey
- Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
15
|
Huang C, Pan X, He Q, Huang M, Huang L, Zhao X, Yuan C, Bai J, Luo J. Ultrasound-Based Carotid Elastography for Detection of Vulnerable Atherosclerotic Plaques Validated by Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:365-377. [PMID: 26553205 DOI: 10.1016/j.ultrasmedbio.2015.09.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/27/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Ultrasound-based carotid elastography has been developed to estimate the mechanical properties of atherosclerotic plaques. The objective of this study was to evaluate the in vivo capability of carotid elastography in vulnerable plaque detection using high-resolution magnetic resonance imaging as reference. Ultrasound radiofrequency data of 46 carotid plaques from 29 patients (74 ± 5 y old) were acquired and inter-frame axial strain was estimated with an optical flow method. The maximum value of absolute strain rate for each plaque was derived as an indicator for plaque classification. Magnetic resonance imaging of carotid arteries was performed on the same patients to classify the plaques into stable and vulnerable groups for carotid elastography validation. The maximum value of absolute strain rate was found to be significantly higher in vulnerable plaques (2.15 ± 0.79 s(-1), n = 27) than in stable plaques (1.21 ± 0.37 s(-1), n = 19) (p < 0.0001). Receiver operating characteristic curve analysis was performed, and the area under the curve was 0.848. Therefore, the in vivo capability of carotid elastography to detect vulnerable plaques, validated by magnetic resonance imaging, was proven, revealing the potential of carotid elastography as an important tool in atherosclerosis assessment and stroke prevention.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Xiaochang Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Manwei Huang
- Department of Sonography, China Meitan General Hospital, Beijing, China
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| | - Chun Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jing Bai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Ding X, Dutta D, Mahmoud AM, Tillman B, Leers SA, Kim K. An adaptive displacement estimation algorithm for improved reconstruction of thermal strain. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:138-51. [PMID: 25585398 PMCID: PMC4295651 DOI: 10.1109/tuffc.2014.006516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thermal strain imaging (TSI) can be used to differentiate between lipid and water-based tissues in atherosclerotic arteries. However, detecting small lipid pools in vivo requires accurate and robust displacement estimation over a wide range of displacement magnitudes. Phase-shift estimators such as Loupas' estimator and time-shift estimators such as normalized cross-correlation (NXcorr) are commonly used to track tissue displacements. However, Loupas' estimator is limited by phase-wrapping and NXcorr performs poorly when the SNR is low. In this paper, we present an adaptive displacement estimation algorithm that combines both Loupas' estimator and NXcorr. We evaluated this algorithm using computer simulations and an ex vivo human tissue sample. Using 1-D simulation studies, we showed that when the displacement magnitude induced by thermal strain was >λ/8 and the electronic system SNR was >25.5 dB, the NXcorr displacement estimate was less biased than the estimate found using Loupas' estimator. On the other hand, when the displacement magnitude was ≤λ/4 and the electronic system SNR was ≤25.5 dB, Loupas' estimator had less variance than NXcorr. We used these findings to design an adaptive displacement estimation algorithm. Computer simulations of TSI showed that the adaptive displacement estimator was less biased than either Loupas' estimator or NXcorr. Strain reconstructed from the adaptive displacement estimates improved the strain SNR by 43.7 to 350% and the spatial accuracy by 1.2 to 23.0% (P < 0.001). An ex vivo human tissue study provided results that were comparable to computer simulations. The results of this study showed that a novel displacement estimation algorithm, which combines two different displacement estimators, yielded improved displacement estimation and resulted in improved strain reconstruction.
Collapse
|
17
|
Mahmoud AM, Ding X, Dutta D, Singh VP, Kim K. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study. Phys Med Biol 2014; 59:881-95. [PMID: 24487698 DOI: 10.1088/0031-9155/59/4/881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatic steatosis or fatty liver disease occurs when lipids accumulate within the liver and can lead to steatohepatitis, cirrhosis, liver cancer and eventual liver failure requiring liver transplant. Conventional brightness mode (B-mode) ultrasound (US) is the most common noninvasive diagnostic imaging modality used to diagnose hepatic steatosis in clinics. However, it is mostly subjective or requires a reference organ such as the kidney or spleen with which to compare. This comparison can be problematic when the reference organ is diseased or absent. The current work presents an alternative approach to noninvasively detecting liver fat content using US-induced thermal strain imaging (US-TSI). This technique is based on the difference in the change in the speed of sound as a function of temperature between water- and lipid-based tissues. US-TSI was conducted using two system configurations including a mid-frequency scanner with a single linear array transducer (5-14 MHz) for both imaging and heating and a high-frequency (13-24 MHz) small animal imaging system combined with a separate custom-designed US heating transducer array. Fatty livers (n = 10) with high fat content (45.6 ± 11.7%) from an obese mouse model and control livers (n = 10) with low fat content (4.8 ± 2.9%) from wild-type mice were embedded in gelatin. Then, US imaging was performed before and after US induced heating. Heating time periods of ∼ 3 s and ∼ 9.2 s were used for the mid-frequency imaging and high-frequency imaging systems, respectively, to induce temperature changes of approximately 1.5 °C. The apparent echo shifts that were induced as a result of sound speed change were estimated using 2D phase-sensitive speckle tracking. Following US-TSI, histology was performed to stain lipids and measure percentage fat in the mouse livers. Thermal strain measurements in fatty livers (-0.065 ± 0.079%) were significantly (p < 0.05) higher than those measured in control livers (-0.124 ± 0.037%). Using histology as a gold standard to classify mouse livers, US-TSI had a sensitivity and specificity of 70% and 90%, respectively. The area under the receiver operating characteristic curve was 0.775. This ex vivo study demonstrates the feasibility of using US-TSI to detect fatty livers and warrants further investigation of US-TSI as a diagnostic tool for hepatic steatosis.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA. Department of Systems and Biomedical Engineering, Cairo University, Giza, 12613, Egypt
| | | | | | | | | |
Collapse
|
18
|
Stephens DN, Mahmoud AM, Ding X, Lucero S, Dutta D, Yu FT, Chen X, Kim K. Flexible integration of high-imaging-resolution and high-power arrays for ultrasound-induced thermal strain imaging (US-TSI). IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2645-56. [PMID: 24297029 PMCID: PMC3857565 DOI: 10.1109/tuffc.2013.2863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrasound-induced thermal strain imaging (USTSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US-induced heating to elevate the tissue temperature (~1°C to 3°C within 1 to 3 cardiac cycles) to produce a noticeable change in sound speed in the targeted tissues. Because the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented which utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3-D printed manifold was built to support both a high-resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5 to 4 MHz range. For the application of US-TSI in carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm(2) in the tissue target region.
Collapse
Affiliation(s)
| | - Ahmed M. Mahmoud
- Center for Ultrasound Molecular Imaging and Therapeutics-Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center
- Department of Biomedical Engineering and Systems, Cairo University, Egypt
| | - Xuan Ding
- Center for Ultrasound Molecular Imaging and Therapeutics-Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center
- Department of Bioengineering, University of Pittsburgh School of Engineering
| | | | - Debaditya Dutta
- Center for Ultrasound Molecular Imaging and Therapeutics-Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center
| | - Francois T.H. Yu
- Center for Ultrasound Molecular Imaging and Therapeutics-Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics-Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics-Department of Medicine and Heart and Vascular Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center
- Department of Bioengineering, University of Pittsburgh School of Engineering
- McGowan Institute for Regenerative Medicine, University of Pittsburgh and University of Pittsburgh Medical Center
| |
Collapse
|
19
|
Dutta D, Mahmoud AM, Leers SA, Kim K. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:1660-1668. [PMID: 24808628 PMCID: PMC4010158 DOI: 10.1109/tuffc.2013.2748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump.
Collapse
Affiliation(s)
- Debaditya Dutta
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Ahmed M. Mahmoud
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Department of Biomedical Engineering and Systems, Cairo University, Giza, Egypt
| | - Steven A. Leers
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics – Department of Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Heart and Vascular Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Mahmoud AM, Dutta D, Lavery L, Stephens DN, Villanueva FS, Kim K. Noninvasive detection of lipids in atherosclerotic plaque using ultrasound thermal strain imaging: in vivo animal study. J Am Coll Cardiol 2013; 62:1804-9. [PMID: 23916926 DOI: 10.1016/j.jacc.2013.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study sought to examine the feasibility of in vivo detection of lipids in atherosclerotic plaque (AP) by ultrasound (US) thermal (or temporal) strain imaging (TSI). BACKGROUND Intraplaque lipid content is thought to contribute to plaque stability. Lipid exhibits a distinctive physical characteristic of temperature-dependent US speed compared with water-bearing tissues. As tissue temperature changes, US radiofrequency (RF) echoes shift in time of flight, which produces an apparent strain (thermal or temporal strain [TS]). METHODS US heating-imaging pulse sequences and transducers were designed and integrated into commercial US scanners for US-TSI of arterial segments. US-RF data were collected while gradually increasing tissue temperature. Phase-sensitive speckle tracking was applied to reconstruct TS maps coregistered to B-scans. Segments from injured atherosclerotic and uninjured nonatherosclerotic common femoral arteries (CFA) in cholesterol-fed New Zealand rabbits, and segments from control normal diet-fed rabbits (N =14) were scanned in vivo at different time points up to 12 weeks. RESULTS Lipid-rich atherosclerotic lesions exhibited distinct positive TS (+0.19 ± 0.08%) compared with that in nonatherosclerotic (-0.10 ± 0.13%) and control (-0.09 ± 0.09%) segments (p < 0.001). US-TSI enabled serial monitoring of lipids during atherosclerosis development. The coregistered set of morphological and compositional information of US-TSI showed good agreement with histology. CONCLUSIONS US-TSI successfully detected and longitudinally monitored lipid progression in atherosclerotic CFA. US-TSI of relatively superficial arteries may be a modality that could be integrated into a commercial US system for noninvasive lipid detection in AP.
Collapse
Affiliation(s)
- Ahmed M Mahmoud
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Biomedical Engineering and Systems, Cairo University, Giza, Egypt
| | | | | | | | | | | |
Collapse
|
21
|
Tang D, Yang C, Zheng J, Canton G, Bach RG, Hatsukami TS, Wang L, Yang D, Billiar KL, Yuan C. Image-based modeling and precision medicine: patient-specific carotid and coronary plaque assessment and predictions. IEEE Trans Biomed Eng 2013; 60:643-51. [PMID: 23362245 DOI: 10.1109/tbme.2013.2242891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerotic plaques may rupture without warning and cause acute cardiovascular events such as heart attack and stroke. Current clinical screening tools are insufficient to identify those patients with risks early and prevent the adverse events from happening. Medical imaging and image-based modeling have made considerable progress in recent years in identifying plaque morphological and mechanical risk factors which may be used in developing improved patient screening strategies. The key steps and factors in image-based models for human carotid and coronary plaques were illustrated, as well as grand challenges facing the researchers in the field to develop more accurate screening tools.
Collapse
Affiliation(s)
- Dalin Tang
- Southeast University, Nanjing 210018, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Daoud MI, Mousavi P, Imani F, Rohling R, Abolmaesumi P. Tissue classification using ultrasound-induced variations in acoustic backscattering features. IEEE Trans Biomed Eng 2012; 60:310-20. [PMID: 23144023 DOI: 10.1109/tbme.2012.2224111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ultrasound (US) radio-frequency (RF) time series is an effective tissue classification method that enables accurate cancer diagnosis, but the mechanisms underlying this method are not completely understood. This paper presents a model to describe the variations in tissue temperature and sound speed that take place during the RF time series scanning procedures and relate these variations to US backscattering. The model was used to derive four novel characterization features. These features were used to classify three animal tissues, and they obtained accuracies as high as 88.01%. The performance of the proposed features was compared with RF time series features proposed in a previous study. The results indicated that the US-induced variations in tissue temperature and sound speed, which were used to derive the proposed features, were important contributors to the tissue typing capabilities of the RF time series. Simulations carried out to estimate the heating induced during the scanning procedure employed in this study showed temperature rises lower than 2 °C. The model and results presented in this paper can be used to improve the RF time series.
Collapse
Affiliation(s)
- Mohammad I Daoud
- Department of Computer Engineering, German Jordanian University, Amman 11180, Jordan.
| | | | | | | | | |
Collapse
|
23
|
McCormick M, Varghese T, Wang X, Mitchell C, Kliewer MA, Dempsey RJ. Methods for robust in vivo strain estimation in the carotid artery. Phys Med Biol 2012; 57:7329-53. [PMID: 23079725 DOI: 10.1088/0031-9155/57/22/7329] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A hierarchical block-matching motion tracking algorithm for strain imaging is presented. Displacements are estimated with improved robustness and precision by utilizing a Bayesian regularization algorithm and an unbiased subsample interpolation technique. A modified least-squares strain estimator is proposed to estimate strain images from a noisy displacement input while addressing the motion discontinuity at the wall-lumen boundary. Methods to track deformation over the cardiac cycle incorporate a dynamic frame skip criterion to process data frames with sufficient deformation to produce high signal-to-noise displacement and strain images. Algorithms to accumulate displacement and/or strain on particles in a region of interest over the cardiac cycle are described. New methods to visualize and characterize the deformation measured with the full 2D strain tensor are presented. Initial results from patients imaged prior to carotid endarterectomy suggest that strain imaging detects conditions that are traditionally considered high risk including soft plaque composition, unstable morphology, abnormal hemodynamics and shear of plaque against tethering tissue can be exacerbated by neoangiogenesis. For example, a maximum absolute principal strain exceeding 0.2 is observed near calcified regions adjacent to turbulent flow, protrusion of the plaque into the arterial lumen and regions of low echogenicity associated with soft plaques. Non-invasive carotid strain imaging is therefore a potentially useful tool for detecting unstable carotid plaque.
Collapse
Affiliation(s)
- M McCormick
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
24
|
Stephens DN, Truong UT, Nikoozadeh A, Oralkan O, Seo CH, Cannata J, Dentinger A, Thomenius K, de la Rama A, Nguyen T, Lin F, Khuri-Yakub P, Mahajan A, Shivkumar K, O'Donnell M, Sahn DJ. First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2012; 31:247-56. [PMID: 22298868 PMCID: PMC3420825 DOI: 10.7863/jum.2012.31.2.247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVES The primary objective was to test in vivo for the first time the general operation of a new multifunctional intracardiac echocardiography (ICE) catheter constructed with a microlinear capacitive micromachined ultrasound transducer (ML-CMUT) imaging array. Secondarily, we examined the compatibility of this catheter with electroanatomic mapping (EAM) guidance and also as a radiofrequency ablation (RFA) catheter. Preliminary thermal strain imaging (TSI)-derived temperature data were obtained from within the endocardium simultaneously during RFA to show the feasibility of direct ablation guidance procedures. METHODS The new 9F forward-looking ICE catheter was constructed with 3 complementary technologies: a CMUT imaging array with a custom electronic array buffer, catheter surface electrodes for EAM guidance, and a special ablation tip, that permits simultaneous TSI and RFA. In vivo imaging studies of 5 anesthetized porcine models with 5 CMUT catheters were performed. RESULTS The ML-CMUT ICE catheter provided high-resolution real-time wideband 2-dimensional (2D) images at greater than 8 MHz and is capable of both RFA and EAM guidance. Although the 24-element array aperture dimension is only 1.5 mm, the imaging depth of penetration is greater than 30 mm. The specially designed ultrasound-compatible metalized plastic tip allowed simultaneous imaging during ablation and direct acquisition of TSI data for tissue ablation temperatures. Postprocessing analysis showed a first-order correlation between TSI and temperature, permitting early development temperature-time relationships at specific myocardial ablation sites. CONCLUSIONS Multifunctional forward-looking ML-CMUT ICE catheters, with simultaneous intracardiac guidance, ultrasound imaging, and RFA, may offer a new means to improve interventional ablation procedures.
Collapse
|
25
|
Seo CH, Shi Y, Huang SW, Kim K, O'Donnell M. Thermal strain imaging: a review. Interface Focus 2011; 1:649-64. [PMID: 22866235 PMCID: PMC3262277 DOI: 10.1098/rsfs.2011.0010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 04/21/2011] [Indexed: 11/12/2022] Open
Abstract
Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies.
Collapse
Affiliation(s)
| | - Yan Shi
- Philips Research, Briarcliff Manor, NY, USA
| | | | - Kang Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Seo CH, Stephens DN, Cannata J, Dentinger A, Lin F, Park S, Wildes D, Thomenius KE, Chen P, Nguyen T, de La Rama A, Jeong JS, Mahajan A, Shivkumar K, Nikoozadeh A, Oralkan O, Truong U, Sahn DJ, Khuri-Yakub PT, O'Donnell M. The feasibility of using thermal strain imaging to regulate energy delivery during intracardiac radio-frequency ablation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2011; 58:1406-17. [PMID: 21768025 PMCID: PMC3177537 DOI: 10.1109/tuffc.2011.1960] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A method is introduced to monitor cardiac ablative therapy by examining slope changes in the thermal strain curve caused by speed of sound variations with temperature. The sound speed of water-bearing tissue such as cardiac muscle increases with temperature. However, at temperatures above about 50°C, there is no further increase in the sound speed and the temperature coefficient may become slightly negative. For ablation therapy, an irreversible injury to tissue and a complete heart block occurs in the range of 48 to 50°C for a short period in accordance with the well-known Arrhenius equation. Using these two properties, we propose a potential tool to detect the moment when tissue damage occurs by using the reduced slope in the thermal strain curve as a function of heating time. We have illustrated the feasibility of this method initially using porcine myocardium in vitro. The method was further demonstrated in vivo, using a specially equipped ablation tip and an 11-MHz microlinear intracardiac echocardiography (ICE) array mounted on the tip of a catheter. The thermal strain curves showed a plateau, strongly suggesting that the temperature reached at least 50°C.
Collapse
Affiliation(s)
- Chi Hyung Seo
- University of California, Davis, Department of Biomedical Engineering, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Carotid plaque vulnerability: quantification of neovascularization on contrast-enhanced ultrasound with histopathologic correlation. AJR Am J Roentgenol 2011; 196:431-6. [PMID: 21257897 DOI: 10.2214/ajr.10.4522] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this research is to develop a computerized method to quantify carotid plaque neovascularization on contrast-enhanced ultrasound images and to compare the results with the histopathologic analysis of the plaque. SUBJECTS AND METHODS Twenty-seven patients (age range, 48-84 years; mean [± SD] age, 68.4 ± 9.72 years) were recruited before endarterectomy. Contrast-enhanced ultrasound examination of the carotid artery was performed by applying low mechanical index and harmonics with pulse inversion. An algorithm was developed that implemented several image processing methods to automatically quantify neovascularization and reconstruct the vascular tree in the atheromatous plaque. Neovascularization and the number of inflammatory cells seen on histopathologic analysis of the plaque after endarterectomy were compared with neovascularization determined by the computerized method. The mean (± SD) ratios of the ultrasound and histopathologic measurements were calculated. RESULTS In five patients, heavy calcification of the plaque prevented visualization of plaque texture. Intraplaque neovascularization on contrast-enhanced ultrasound images was significant in 19 patients and low in three patients. The ratio of the neovascularization area to the total plaque area on contrast-enhanced ultrasound images was well correlated with the same histopathologic ratio (R(2) = 0.7905) and with the number of inflammatory cells present in the plaque (R(2) = 0.6109). The histopathologic ratio and the number of intraplaque inflammatory cells also were well correlated (R(2) = 0.7034). CONCLUSION The newly developed method allowed quantification of the intraplaque neovascularization as a feature of vulnerability in the carotid plaque and proved to be highly correlated with histopathologic results.
Collapse
|