1
|
Wang Y, Wei X, Pan Z, Huang L, He Q, Luo J. Influence of key parameters on motion artifacts in lateral strain estimation with spatial angular compounding. ULTRASONICS 2022; 125:106799. [PMID: 35797866 DOI: 10.1016/j.ultras.2022.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Strain imaging can reveal the changes in tissue mechanical properties related to pathological alterations by estimating tissue strains in the lateral and axial directions of ultrasound imaging. The estimation performance in the lateral direction is usually worse than that in the axial direction. Spatial angular compounding (SAC) has been demonstrated to improve the quality of lateral estimation by deriving the lateral displacements using axial displacements obtained from multi-angle transmissions. However, motion and deformation of tissues during multiple transmissions may cause motion artifacts, and thus deteriorate the quality of strain estimation. These artifacts can be reduced by choosing appropriate imaging parameters. However, few studies have been conducted to evaluate the influences of key parameters in strain estimation, such as the pulse repetition frequency (PRF), the number of steering angles (NSA), and the maximum steering angles (MSA), in terms of performance optimization. Therefore, this study aims to investigate the effects of these parameters through simulations and phantom experiments. The performance of strain estimation is evaluated by measuring the root-mean-square error (RMSE) and the standard deviation (SD) in the simulations and phantom experiments, respectively. The contrast-to-noise ratio (CNR) of strain images is calculated in both the simulations and phantom experiments. The results show that motion artifacts in strain estimation can be reduced by increasing the PRF to 1 kHz. When the PRF reaches 1 kHz, further increase of the PRF shows little obvious improvement in strain estimation. An increase in the NSA can cause larger motion artifacts and deteriorate the quality of strain images, and the improvement of strain estimation is limited when the NSA is increased from 3 to 7. An NSA of 3 is thus recommended to balance the influences of motion artifacts and the improvement for strain estimation. The MSA has little influence on the motion artifacts, while increased MSA can achieve improved lateral estimation performance at the cost of a smaller imaging region. In light of the lateral strain estimation performance and imaging region, an MSA of 15° is recommended. The influences of these key parameters obtained from this study may provide insights for parameter optimization in strain estimation with SAC to minimize the effects of motion artifacts.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xingyue Wei
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zonghui Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Hendriks GAGM, Hansen HHG, De Korte CL, Chen C. Optimization of transmission and reconstruction parameters in angular displacement compounding using plane wave ultrasound. Phys Med Biol 2020; 65:085007. [PMID: 32109889 DOI: 10.1088/1361-6560/ab7b2f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In ultrasound elastography, plane-wave acquisitions and angular displacement compounding (ADC) are often used and combined to allow high frame rates and to improve accuracy of lateral displacement estimates, respectively. This study investigates the performance of displacement and strain estimation for ADC as a function of; the main-to-grating-lobe-amplitude ratio which decreases as a function of steering angle; plane-wave acquisition and Delay-and-Sum (DaS)-related parameters; and grating-lobe filter cut-off frequency. Three experiments were conducted with a block phantom to test ADC performance for displacement fields of varying complexity: a lateral transducer shift, phantom rotation and phantom deformation. Experiments were repeated for four linear array transducers (pitch-to-lambda ratios between 0.6 and 1.4). Best ADC performance was found for steering angles that resulted in a theoretically derived main-to-grating-lobe-amplitude ratio of 1.7 dB for pure lateral translation and 6 dB for predominately lateral strain or rotation. Temporal filtering to reduce grating lobe signal or shifting of the receive aperture to receive angles below or above the optimal angle, as dictated by the main-to-grating-lobe-amplitude ratio, did not improve results. The accuracy of lateral displacement and strain estimates was improved by apodization in transmission and a dedicated F-number in DaS (0.75) allowing incidence angles within ± 33° in the active aperture. ADC with the optimized settings as found in this study improves the accuracy of displacements and strain estimates up to 80.7% compared to non-ADC. Compared to ADC settings described in current literature, our optimization improved the accuracy by 11.9% to 75.3% for lateral displacement and strain, and by 89.3% to 96.2% for rotation. The accuracy of ADC in rotation seemed to depend highly on plane-wave and DaS-related parameters which may explain the major improvement compared to settings in current literature. The overall improvement by optimized ADC was statistically significant compared to non-ADC (p = 0.003) and literature (p = 0.002).
Collapse
Affiliation(s)
- Gijs A G M Hendriks
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
3
|
Liu Z, He Q, Luo J. Spatial Angular Compounding With Affine-Model-Based Optical Flow for Improvement of Motion Estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:701-716. [PMID: 30703018 DOI: 10.1109/tuffc.2019.2895374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tissue motion estimation is an essential step for ultrasound elastography. Our previous study has shown that the affine-model-based optical flow (OF) method outperforms the normalized cross-correlation-based block matching (BM) method in motion estimation. However, the quality of lateral estimation using OF is still low due to inherent limitation of ultrasound imaging. BM-based spatial angular compounding (SAC) has been developed to obtain better motion estimation. In this paper, OF-based SAC (OF-SAC) is proposed to further improve the performance of lateral (and axial) estimation, and it is compared with BM-based SAC (BM-SAC). Plane wave as well as focused wave is transmitted in both simulations and phantom experiments on a linear array. In order to compare the performance quantitatively, the root-mean-square error (RMSE) of axial/lateral displacement and strain, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of axial/lateral strain are used as the evaluation criteria in the simulations. In the phantom experiments, the SNR and CNR are used to assess the quality of axial/lateral strain. The results show that for both OF and BM, SAC improves the performance of motion estimation, regardless of using plane or focused wave transmission. More importantly, OF-SAC is shown to outperform BM-SAC with lower RMSE, higher SNR, and higher CNR. In addition, preliminary in vivo experiments on the carotid artery of a healthy human subject also prove the superiority of OF-SAC. These results suggest that OF-SAC is preferred for both axial and lateral motion estimation to BM-SAC.
Collapse
|
4
|
Masum M, Pickering M, Lambert A, Scarvell J, Smith P. Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation. J Biomech 2017; 62:165-171. [DOI: 10.1016/j.jbiomech.2016.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
5
|
Kothawala A, Chandramoorthi S, Reddy NRK, Thittai AK. Spatial Compounding Technique to Obtain Rotation Elastogram: A Feasibility Study. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1290-1301. [PMID: 28433440 DOI: 10.1016/j.ultrasmedbio.2017.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 06/07/2023]
Abstract
The perception of stiffness and slipperiness of a breast mass on palpation is used by physicians to assess the level of suspicion of a lesion as being malignant or benign. However, most current ultrasound elastography imaging methods provide only stiffness-related information. There is no existing approach that provides information about the local rigid body rotation undergone by only a loosely bonded, asymmetrically oriented lesion subjected to a small quasi-static compression. The inherent poor lateral resolution in ultrasound imaging poses a limitation in estimating the local rigid body rotation. Several techniques have been reported in the literature to improve the lateral resolution in ultrasound imaging, and among them is spatial compounding. In this study, we explore the feasibility of obtaining better-quality rotation elastograms with spatial compounding through simulations using Field II and experiments on tissue-mimicking phantoms. The phantom was subjected to axial compression (∼1%-2%) from the top, and the angular axial and lateral displacement estimates were obtained using a multilevel 2-D displacement tracking algorithm at different insonification angles. A rotation elastogram (RE) was obtained by taking half of the difference between the lateral gradient of the axial displacement estimates and the axial gradient of the lateral displacement estimates. Contrast-to-noise ratio was used to quantify the improvements in quality of RE. Contrast-to-noise ratio values were calculated by varying the maximum steering angle and the incremental angle, and its effects on RE quality were evaluated. Both simulation and experimental results corroborated and indicated a significant improvement in the quality of RE using compounding technique.
Collapse
Affiliation(s)
- AliArshad Kothawala
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India
| | - Sowmiya Chandramoorthi
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India
| | - N Ravi Kiran Reddy
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India
| | - Arun Kumar Thittai
- Department of Applied Mechanics (Biomedical Engineering Group), Indian Institute of Technology, Madras, Chennai, India.
| |
Collapse
|
6
|
Hansen H, Saris A, Vaka N, Nillesen M, de Korte C. Ultrafast vascular strain compounding using plane wave transmission. J Biomech 2014; 47:815-23. [PMID: 24484646 DOI: 10.1016/j.jbiomech.2014.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
|
7
|
Kremer F, Dresselaers T, Heyde B, Ferferieva V, Caluwé E, Choi HF, Claus P, Oosterlinck W, Janssens S, Himmelreich U, D'hooge J. 2-D strain assessment in the mouse through spatial compounding of myocardial velocity data: in vivo feasibility. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1848-1860. [PMID: 23830981 DOI: 10.1016/j.ultrasmedbio.2013.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/20/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Ultrasound assessment of myocardial strain can provide valuable information on regional cardiac function. However, Doppler-based methods often used in practice for strain estimation suffer from angle dependency. In this study, a partial solution to that fundamental limitation is presented. We have previously reported using simulated data sets that spatial compounding of axial velocities obtained at three steering angles can theoretically outperform 2-D speckle tracking for 2-D strain estimation in the mouse heart. In this study, the feasibility of the method was analyzed in vivo using spatial compounding of Doppler velocities on six mice with myocardial infarction and five controls, and results were compared with those of tagged microscopic magnetic resonance imaging (μMRI). Circumferential estimates quantified by means of both ultrasound and μMRI could detect regional dysfunction. Between echocardiography and μMRI, a good regression coefficient was obtained for circumferential strain estimates (r = 0.69), whereas radial strain estimates correlated only moderately (r = 0.37). A second echocardiography was performed after μMRI to test the reproducibility of the compounding method. This yielded a higher correlation coefficient for the circumferential component than for the radial component (r = 0.74 circumferentially, r = 0.49 radially).
Collapse
Affiliation(s)
- Florence Kremer
- Division of Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hansen HH, Richards MS, Doyley MM, de Korte CL. Noninvasive vascular displacement estimation for relative elastic modulus reconstruction in transversal imaging planes. SENSORS 2013; 13:3341-57. [PMID: 23478602 PMCID: PMC3658750 DOI: 10.3390/s130303341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/03/2022]
Abstract
Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.
Collapse
Affiliation(s)
- Hendrik H.G. Hansen
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +31-2436-14730; Fax: +31-2436-14427
| | - Michael S. Richards
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Hopeman Engineering Building, P.O. Box 270126, Rochester, NY 14627, USA; E-Mails: (M.S.R.); (M.M.D.)
| | - Marvin M. Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Hopeman Engineering Building, P.O. Box 270126, Rochester, NY 14627, USA; E-Mails: (M.S.R.); (M.M.D.)
| | - Chris L. de Korte
- Medical UltraSound Imaging Center (MUSIC), Department of Radiology, Radboud University Nijmegen Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands; E-Mail:
| |
Collapse
|
9
|
Abeysekera JM, Rohling R. Alignment and calibration of dual ultrasound transducers using a wedge phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:271-279. [PMID: 21208730 DOI: 10.1016/j.ultrasmedbio.2010.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 05/30/2023]
Abstract
We present a novel method of aligning two orthogonal ultrasound transducers into a coincident scan plane. A wedge phantom design provides visual feedback to the user to facilitate alignment. Calibration provides the transformation from one transducer to the other as well as a measure of the residual error in alignment. Mean alignment error is shown to be under 1° in the rotation axes and 1 mm in translation after repeated manual alignments. The repeatability of wedge based calibration has similar results compared with N-fiducial based calibration. The accuracy of the calibration for mapping points from one transducer to the other is found to have a mean error of 1.6 mm. The dual transducer system is well suited to imaging anatomy such as the breast and may be used for spatial compounding for improving B-mode images and motion estimation compounding for improving elastography results.
Collapse
Affiliation(s)
- Jeffrey M Abeysekera
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
10
|
Hansen HHG, Lopata RGP, Idzenga T, de Korte CL. Full 2D displacement vector and strain tensor estimation for superficial tissue using beam-steered ultrasound imaging. Phys Med Biol 2010; 55:3201-18. [PMID: 20479516 DOI: 10.1088/0031-9155/55/11/014] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|