1
|
Huang L, Dou Z, Fang F, Zhou B, Zhang P, Jiang R. Prediction of mortality in intensive care unit with short-term heart rate variability: Machine learning-based analysis of the MIMIC-III database. Comput Biol Med 2025; 186:109635. [PMID: 39778237 DOI: 10.1016/j.compbiomed.2024.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Prognosis prediction in the intensive care unit (ICU) traditionally relied on physiological scoring systems based on clinical indicators at admission. Electrocardiogram (ECG) provides easily accessible information, with heart rate variability (HRV) derived from ECG showing prognostic value. However, few studies have conducted a comprehensive analysis of HRV-based prognostic model against established standards, which limits the application of HRV's prognostic value in clinical settings. This study aims to evaluate the utility of HRV in predicting mortality in the ICU. Additionally, we analyzed the applicability and interpretability of the HRV-integrated clinical model and identified the HRV factors that are most significant for patient prognosis. METHODS A total of 2838 patients from the MIMIC-III database were retrospectively included in this study. These patients were randomly divided into training and testing sets at a 4:1 ratio. We collected 86 HRV indicators from patients' lead II ECG readings between 0.5h and 2h before the time of death in the ICU of deceased patients or time of discharge from the ICU of alive patients, in addition to 9 clinical parameters upon admission. Subsequently, machine learning models were developed by algorithms including logistic regression (LR), Random Forest (RF), Adaptive Boosting (Adaboost), Gradient Boost (GB), eXtreme Gradient Boosting (XGB), and Light GBM (LGB) algorithms. An ensemble model that integrated these six algorithms, along with a deep neural network model, was also explored. The ten most important variables were identified using the Shapley method. Subsequently, an HRV-modified clinical scoring system was constructed through recursive feature elimination. RESULTS The study demonstrated that the integrated model, utilizing both clinical and HRV features, outperformed the model based solely on clinical information in XGB, LGB and LR algorithms (p = 0.005-0.03). The ensemble model exhibited the best performance (AUROC = 0.878), followed closely by XGB algorithm (AUROC = 0.869). Both of these models significantly outperformed the APS III scoring system (AUROC = 0.765). Notably, this improvement is not dependent on a specific disease but rather on the timing of ECG recordings that are closer to clinical endpoints. For parameter analysis, Shapley's method identified MSEn, SD1SD2, DFAα1, and DFAα2 as key HRV features in predicting mortality. These variables also showed significant differences in univariate analysis across patients with different clinical outcomes (p < 0.0001). Additionally, regardless of machine learning, the additive scoring system incorporating HRV showed a significant enhancement in prognostic ability compared to traditional physiological scores APS III (p = 0.02). CONCLUSIONS The integration of HRV features into mortality prediction models has been shown to enhance predictive performances in ICU. This enhancement is not limited to specific machine learning models or diseases but is influenced by the timing of HRV measurement relative to clinical endpoints. HRV features, when combined with other clinical parameters, offer high interpretability and significant prognostic value. Furthermore, incorporating HRV into traditional ICU scoring systems can lead to improved predictive performance.
Collapse
Affiliation(s)
- Lexin Huang
- Department of Automation, Tsinghua University, Beijing, China
| | - Zixuan Dou
- School of Medicine, Tsinghua University, Beijing, China
| | - Fang Fang
- Department of Automation, Tsinghua University, Beijing, China; Beijing Big Data Centre, Beijing, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Rui Jiang
- Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Shi M, Shi Y, Lin Y, Qi X. Modified multiscale Renyi distribution entropy for short-term heart rate variability analysis. BMC Med Inform Decis Mak 2024; 24:346. [PMID: 39563351 PMCID: PMC11577734 DOI: 10.1186/s12911-024-02763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Multiscale sample entropy (MSE) is a prevalent complexity metric to characterize a time series and has been extensively applied to the physiological signal analysis. However, for a short-term time series, the likelihood of identifying comparable subsequences decreases, leading to higher variability in the Sample Entropy (SampEn) calculation. Additionally, as the scale factor increases in the MSE calculation, the coarse-graining process further shortens the time series. Consequently, each newly generated time series at a larger scale consists of fewer data points, potentially resulting in unreliable or undefined entropy values, particularly at higher scales. To overcome the shortcoming, a modified multiscale Renyi distribution entropy (MMRDis) was proposed in our present work. METHODS The MMRDis method uses a moving-averaging procedure to acquire a family of time series, each of which quantify the dynamic behaviors of the short-term time series over the multiple temporal scales. Then, MMRDis is constructed for the original and the coarse-grained time series. RESULTS The MMRDis method demonstrated superior computational stability on simulated Gaussian white and 1/f noise time series, effectively avoiding undefined measurements in short-term time series. Analysis of short-term heart rate variability (HRV) signals from healthy elderly individuals, healthy young people, and subjects with congestive heart failure and atrial fibrillation revealed that MMRDis complexity measurement values decreased with aging and disease. Additionally, MMRDis exhibited better distinction capability for short-term HRV physiological/pathological signals compared to several recently proposed complexity metrics. CONCLUSIONS MMRDis was a promising measurement for screening cardiovascular condition within a short time.
Collapse
Affiliation(s)
- Manhong Shi
- College of Information and Network Engineering, Anhui Science and Technology University, Bengbu, 233000, China.
| | - Yinuo Shi
- School of Mathematics and Statistics, Hunan Normal University, Changsha, 410012, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Center for Systems Biology, Soochow University, Suzhou, 215123, China.
| | - Xue Qi
- College of Information and Network Engineering, Anhui Science and Technology University, Bengbu, 233000, China
| |
Collapse
|
3
|
Jabloun M, Buttelli O, Ravier P. Legendre Polynomial Fitting-Based Permutation Entropy Offers New Insights into the Influence of Fatigue on Surface Electromyography (sEMG) Signal Complexity. ENTROPY (BASEL, SWITZERLAND) 2024; 26:831. [PMID: 39451907 PMCID: PMC11507554 DOI: 10.3390/e26100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
In a recently published work, we introduced local Legendre polynomial fitting-based permutation entropy (LPPE) as a new complexity measure for quantifying disorder or randomness in time series. LPPE benefits from the ordinal pattern (OP) concept and incorporates a natural, aliasing-free multiscaling effect by design. The current work extends our previous study by investigating LPPE's capability to assess fatigue levels using both synthetic and real surface electromyography (sEMG) signals. Real sEMG signals were recorded during biceps brachii fatiguing exercise maintained at 70% of maximal voluntary contraction (MVC) until exhaustion and were divided into four consecutive temporal segments reflecting sequential stages of exhaustion. As fatigue levels rise, LPPE values can increase or decrease significantly depending on the selection of embedding dimensions. Our analysis reveals two key insights. First, using LPPE with limited embedding dimensions shows consistency with the literature. Specifically, fatigue induces a decrease in sEMG complexity measures. This observation is supported by a comparison with the existing multiscale permutation entropy (MPE) variant, that is, the refined composite downsampling (rcDPE). Second, given a fixed OP length, higher embedding dimensions increase LPPE's sensitivity to low-frequency components, which are notably present under fatigue conditions. Consequently, specific higher embedding dimensions appear to enhance the discrimination of fatigue levels. Thus, LPPE, as the only MPE variant that allows a practical exploration of higher embedding dimensions, offers a new perspective on fatigue's impact on sEMG complexity, complementing existing MPE approaches.
Collapse
Affiliation(s)
- Meryem Jabloun
- Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique, Énergétique (PRISME), University of Orleans, 45100 Orleans, France
| | | | | |
Collapse
|
4
|
Bari V, Gelpi F, Cairo B, Anguissola M, Acerbi E, Squillace M, De Maria B, Bertoldo EG, Fiolo V, Callus E, De Vincentiis C, Bedogni F, Ranucci M, Porta A. Impact of surgical aortic valve replacement and transcatheter aortic valve implantation on cardiovascular and cerebrovascular controls: A pilot study. Physiol Rep 2024; 12:e70028. [PMID: 39227321 PMCID: PMC11371460 DOI: 10.14814/phy2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Surgical aortic valve replacement (SAVR) and transcatheter aortic valve implantation (TAVI) are options in severe aortic valve stenosis (AVS). Cardiovascular (CV) and cerebrovascular (CBV) control markers, derived from variability of heart period, systolic arterial pressure, mean cerebral blood velocity and mean arterial pressure, were acquired in 19 AVS patients (age: 76.8 ± 3.1 yrs, eight males) scheduled for SAVR and in 19 AVS patients (age: 79.9 + 6.5 yrs, 11 males) scheduled for TAVI before (PRE) and after intervention (POST, <7 days). Left ventricular function was preserved in both groups. Patients were studied at supine resting (REST) and during active standing (STAND). We found that: (i) both SAVR and TAVI groups featured a weak pre-procedure CV control; (ii) TAVI ensured better CV control; (iii) cerebral autoregulation was working in PRE in both SAVR and TAVI groups; (iv) SAVR and TAVI had no impact on the CBV control; (v) regardless of group, CV and CBV control markers were not influenced by STAND in POST. Even though the post-procedure preservation of both CV and CBV controls in TAVI group might lead to privilege this procedure in patients at higher risk, the missing response to STAND suggests that this advantage could be insignificant.
Collapse
Affiliation(s)
- Vlasta Bari
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| | - Francesca Gelpi
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Beatrice Cairo
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Martina Anguissola
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| | - Elena Acerbi
- Department of Clinical and Interventional CardiologyIRCCS Policlinico San DonatoMilanItaly
| | - Mattia Squillace
- Department of Clinical and Interventional CardiologyIRCCS Policlinico San DonatoMilanItaly
| | | | | | - Valentina Fiolo
- Clinical Psychology ServiceIRCCS Policlinico San DonatoMilanItaly
| | - Edward Callus
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
- Clinical Psychology ServiceIRCCS Policlinico San DonatoMilanItaly
| | | | - Francesco Bedogni
- Department of Clinical and Interventional CardiologyIRCCS Policlinico San DonatoMilanItaly
| | - Marco Ranucci
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| | - Alberto Porta
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
- Department of Cardiothoracic, Vascular Anesthesia and Intensive CareIRCCS Policlinico San DonatoMilanItaly
| |
Collapse
|
5
|
Grivel E, Berthelot B, Colin G, Legrand P, Ibanez V. Benefits of Zero-Phase or Linear Phase Filters to Design Multiscale Entropy: Theory and Application. ENTROPY (BASEL, SWITZERLAND) 2024; 26:332. [PMID: 38667886 PMCID: PMC11048990 DOI: 10.3390/e26040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
In various applications, multiscale entropy (MSE) is often used as a feature to characterize the complexity of the signals in order to classify them. It consists of estimating the sample entropies (SEs) of the signal under study and its coarse-grained (CG) versions, where the CG process amounts to (1) filtering the signal with an average filter whose order is the scale and (2) decimating the filter output by a factor equal to the scale. In this paper, we propose to derive a new variant of the MSE. Its novelty stands in the way to get the sequences at different scales by avoiding distortions during the decimation step. To this end, a linear-phase or null-phase low-pass filter whose cutoff frequency is well suited to the scale is used. Interpretations on how the MSE behaves and illustrations with a sum of sinusoids, as well as white and pink noises, are given. Then, an application to detect attentional tunneling is presented. It shows the benefit of the new approach in terms of p value when one aims at differentiating the set of MSEs obtained in the attentional tunneling state from the set of MSEs obtained in the nominal state. It should be noted that CG versions can be replaced not only for the MSE but also for other variants.
Collapse
Affiliation(s)
- Eric Grivel
- IMS Laboratory, Bordeaux INP, Bordeaux University, UMR CNRS 5218, 33400 Talence, France
| | - Bastien Berthelot
- Thales AVS France, Campus Merignac, 75-77 Av. Marcel Dassault, 33700 Mérignac, France; (B.B.); (V.I.)
| | - Gaetan Colin
- ENSEIRB-MATMECA, Bordeaux INP, 33400 Talence, France
| | - Pierrick Legrand
- IMB Laboratory, Bordeaux University, UMR CNRS 5251, ASTRAL Team, INRIA, 33400 Talence, France;
| | - Vincent Ibanez
- Thales AVS France, Campus Merignac, 75-77 Av. Marcel Dassault, 33700 Mérignac, France; (B.B.); (V.I.)
| |
Collapse
|
6
|
Rostaghi M, Rostaghi S, Humeau-Heurtier A, Rajji TK, Azami H. NLDyn - An open source MATLAB toolbox for the univariate and multivariate nonlinear dynamical analysis of physiological data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107941. [PMID: 38006684 DOI: 10.1016/j.cmpb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND OBJECTIVE We present NLDyn, an open-source MATLAB toolbox tailored for in-depth analysis of nonlinear dynamics in biomedical signals. Our objective is to offer a user-friendly yet comprehensive platform for researchers to explore the intricacies of time series data. METHODS NLDyn integrates approximately 80 distinct methods, encompassing both univariate and multivariate nonlinear dynamics, setting it apart from existing solutions. This toolbox combines state-of-the-art nonlinear dynamical techniques with advanced multivariate entropy methods, providing users with powerful analytical capabilities. NLDyn enables analyses with or without a sliding window, and users can easily access and customize default parameters. RESULTS NLDyn generates results that are both exportable and visually informative, facilitating seamless integration into research and presentations. Its ongoing development ensures it remains at the forefront of nonlinear dynamics analysis. CONCLUSIONS NLDyn is a valuable resource for researchers in the biomedical field, offering an intuitive interface and a wide array of nonlinear analysis tools. Its integration of advanced techniques empowers users to gain deeper insights from their data. As we continually refine and expand NLDyn's capabilities, we envision it becoming an indispensable tool for the exploration of complex dynamics in biomedical signals.
Collapse
Affiliation(s)
- Mostafa Rostaghi
- Modal Analysis Research Laboratory, Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Sadegh Rostaghi
- Department of Mechanical Engineering, Naghshejahan Higher Education Institute, Isfahan, Iran
| | | | - Tarek K Rajji
- Centre for Addiction and Mental Health, University of Toronto, Toronto Dementia Research Alliance, Toronto, ON, Canada
| | - Hamed Azami
- Centre for Addiction and Mental Health, University of Toronto, Toronto Dementia Research Alliance, Toronto, ON, Canada.
| |
Collapse
|
7
|
Tang SY, Ma HP, Lin C, Lo MT, Lin LY, Chen TY, Wu CK, Chiang JY, Lee JK, Hung CS, Liu LYD, Chiu YW, Tsai CH, Lin YT, Peng CK, Lin YH. Heart rhythm complexity analysis in patients with inferior ST-elevation myocardial infarction. Sci Rep 2023; 13:20861. [PMID: 38012168 PMCID: PMC10681979 DOI: 10.1038/s41598-023-41261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 08/23/2023] [Indexed: 11/29/2023] Open
Abstract
Heart rhythm complexity (HRC), a subtype of heart rate variability (HRV), is an important tool to investigate cardiovascular disease. In this study, we aimed to analyze serial changes in HRV and HRC metrics in patients with inferior ST-elevation myocardial infarction (STEMI) within 1 year postinfarct and explore the association between HRC and postinfarct left ventricular (LV) systolic impairment. We prospectively enrolled 33 inferior STEMI patients and 74 control subjects and analyzed traditional linear HRV and HRC metrics in both groups, including detrended fluctuation analysis (DFA) and multiscale entropy (MSE). We also analyzed follow-up postinfarct echocardiography for 1 year. The STEMI group had significantly lower standard deviation of RR interval (SDNN), and DFAα2 within 7 days postinfarct (acute stage) comparing to control subjects. LF power was consistently higher in STEMI group during follow up. The MSE scale 5 was higher at acute stage comparing to control subjects and had a trend of decrease during 1-year postinfarct. The MSE area under scale 1-5 showed persistently lower than control subjects and progressively decreased during 1-year postinfarct. To predict long-term postinfarct LV systolic impairment, the slope between MSE scale 1 to 5 (slope 1-5) had the best predictive value. MSE slope 1-5 also increased the predictive ability of the linear HRV metrics in both the net reclassification index and integrated discrimination index models. In conclusion, HRC and LV contractility decreased 1 year postinfarct in inferior STEMI patients, and MSE slope 1-5 was a good predictor of postinfarct LV systolic impairment.
Collapse
Affiliation(s)
- Shu-Yu Tang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Zhongda Road, Taoyuan, Taiwan.
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Zhongda Road, Taoyuan, Taiwan
| | - Lian-Yu Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Yan Chen
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Cho-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiun-Yang Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Kuang Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Yu Daisy Liu
- Department of Agronomy, Biometry Division, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Chiu
- Department of Computer Science and Engineering, Yuan Ze university, Taoyuan, Taiwan
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Cheng-Hsuan Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, Division of Cardiology, National Taiwan University Hospital, 7 Chung-Shan South Road, Taipei, Taiwan.
| | - Yen-Tin Lin
- Department of Internal Medicine, Taoyuan General Hospital, Taoyuan, Taiwan.
- Department of Inderal Medicine, Division of Cardiology, Taoyuan General Hospital, 1492 Zhongshan Road, Taoyuan, 33004, Taiwan.
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, USA
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Asuke N, Yamagami T, Mihana T, Röhm A, Horisaki R, Naruse M. Information-theoretical analysis of statistical measures for multiscale dynamics. CHAOS (WOODBURY, N.Y.) 2023; 33:043138. [PMID: 37097964 DOI: 10.1063/5.0141099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Multiscale entropy (MSE) has been widely used to examine nonlinear systems involving multiple time scales, such as biological and economic systems. Conversely, Allan variance has been used to evaluate the stability of oscillators, such as clocks and lasers, ranging from short to long time scales. Although these two statistical measures were developed independently for different purposes in different fields, their interest lies in examining the multiscale temporal structures of physical phenomena under study. We demonstrate that from an information-theoretical perspective, they share some foundations and exhibit similar tendencies. We experimentally confirmed that similar properties of the MSE and Allan variance can be observed in low-frequency fluctuations (LFF) in chaotic lasers and physiological heartbeat data. Furthermore, we calculated the condition under which this consistency between the MSE and Allan variance exists, which is related to certain conditional probabilities. Heuristically, natural physical systems including the aforementioned LFF and heartbeat data mostly satisfy this condition, and hence, the MSE and Allan variance demonstrate similar properties. As a counterexample, we demonstrate an artificially constructed random sequence, for which the MSE and Allan variance exhibit different trends.
Collapse
Affiliation(s)
- Naoki Asuke
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoki Yamagami
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takatomo Mihana
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - André Röhm
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryoichi Horisaki
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Naruse
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Castiglioni P, Merati G, Parati G, Faini A. Sample, Fuzzy and Distribution Entropies of Heart Rate Variability: What Do They Tell Us on Cardiovascular Complexity? ENTROPY (BASEL, SWITZERLAND) 2023; 25:281. [PMID: 36832650 PMCID: PMC9954876 DOI: 10.3390/e25020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Distribution Entropy (DistEn) has been introduced as an alternative to Sample Entropy (SampEn) to assess the heart rate variability (HRV) on much shorter series without the arbitrary definition of distance thresholds. However, DistEn, considered a measure of cardiovascular complexity, differs substantially from SampEn or Fuzzy Entropy (FuzzyEn), both measures of HRV randomness. This work aims to compare DistEn, SampEn, and FuzzyEn analyzing postural changes (expected to modify the HRV randomness through a sympatho/vagal shift without affecting the cardiovascular complexity) and low-level spinal cord injuries (SCI, whose impaired integrative regulation may alter the system complexity without affecting the HRV spectrum). We recorded RR intervals in able-bodied (AB) and SCI participants in supine and sitting postures, evaluating DistEn, SampEn, and FuzzyEn over 512 beats. The significance of "case" (AB vs. SCI) and "posture" (supine vs. sitting) was assessed by longitudinal analysis. Multiscale DistEn (mDE), SampEn (mSE), and FuzzyEn (mFE) compared postures and cases at each scale between 2 and 20 beats. Unlike SampEn and FuzzyEn, DistEn is affected by the spinal lesion but not by the postural sympatho/vagal shift. The multiscale approach shows differences between AB and SCI sitting participants at the largest mFE scales and between postures in AB participants at the shortest mSE scales. Thus, our results support the hypothesis that DistEn measures cardiovascular complexity while SampEn/FuzzyEn measure HRV randomness, highlighting that together these methods integrate the information each of them provides.
Collapse
Affiliation(s)
- Paolo Castiglioni
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
- Laboratory of Movement Analysis and Bioengineering of Rehabilitation (Lamobir), IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Giampiero Merati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
- Laboratory of Movement Analysis and Bioengineering of Rehabilitation (Lamobir), IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, 20145 Milan, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, 20145 Milan, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20131 Milan, Italy
| |
Collapse
|
10
|
Riganello F, Vatrano M, Tonin P, Cerasa A, Cortese MD. Heart Rate Complexity and Autonomic Modulation Are Associated with Psychological Response Inhibition in Healthy Subjects. ENTROPY (BASEL, SWITZERLAND) 2023; 25:152. [PMID: 36673293 PMCID: PMC9857955 DOI: 10.3390/e25010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND the ability to suppress/regulate impulsive reactions has been identified as common factor underlying the performance in all executive function tasks. We analyzed the HRV signals (power of high (HF) and low (LF) frequency, Sample Entropy (SampEn), and Complexity Index (CI)) during the execution of cognitive tests to assess flexibility, inhibition abilities, and rule learning. METHODS we enrolled thirty-six healthy subjects, recording five minutes of resting state and two tasks of increasing complexity based on 220 visual stimuli with 12 × 12 cm red and white squares on a black background. RESULTS at baseline, CI was negatively correlated with age, and LF was negatively correlated with SampEn. In Task 1, the CI and LF/HF were negatively correlated with errors. In Task 2, the reaction time positively correlated with the CI and the LF/HF ratio errors. Using a binary logistic regression model, age, CI, and LF/HF ratio classified performance groups with a sensitivity and specificity of 73 and 71%, respectively. CONCLUSIONS this study performed an important initial exploration in defining the complex relationship between CI, sympathovagal balance, and age in regulating impulsive reactions during cognitive tests. Our approach could be applied in assessing cognitive decline, providing additional information on the brain-heart interaction.
Collapse
Affiliation(s)
| | | | - Paolo Tonin
- S. Anna Institute, Via Siris 11, 88900 Crotone, Italy
| | - Antonio Cerasa
- S. Anna Institute, Via Siris 11, 88900 Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98100 Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | | |
Collapse
|
11
|
Zheng J, Li Y, Zhai Y, Zhang N, Yu H, Tang C, Yan Z, Luo E, Xie K. Effects of sampling rate on multiscale entropy of electroencephalogram time series. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Cheng W, Chen H, Tian L, Ma Z, Cui X. Heart rate variability in different sleep stages is associated with metabolic function and glycemic control in type 2 diabetes mellitus. Front Physiol 2023; 14:1157270. [PMID: 37123273 PMCID: PMC10140569 DOI: 10.3389/fphys.2023.1157270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Autonomic nervous system (ANS) plays an important role in the exchange of metabolic information between organs and regulation on peripheral metabolism with obvious circadian rhythm in a healthy state. Sleep, a vital brain phenomenon, significantly affects both ANS and metabolic function. Objectives: This study investigated the relationships among sleep, ANS and metabolic function in type 2 diabetes mellitus (T2DM), to support the evaluation of ANS function through heart rate variability (HRV) metrics, and the determination of the correlated underlying autonomic pathways, and help optimize the early prevention, post-diagnosis and management of T2DM and its complications. Materials and methods: A total of 64 volunteered inpatients with T2DM took part in this study. 24-h electrocardiogram (ECG), clinical indicators of metabolic function, sleep quality and sleep staging results of T2DM patients were monitored. Results: The associations between sleep quality, 24-h/awake/sleep/sleep staging HRV and clinical indicators of metabolic function were analyzed. Significant correlations were found between sleep quality and metabolic function (|r| = 0.386 ± 0.062, p < 0.05); HRV derived ANS function showed strengthened correlations with metabolic function during sleep period (|r| = 0.474 ± 0.100, p < 0.05); HRV metrics during sleep stages coupled more tightly with clinical indicators of metabolic function [in unstable sleep: |r| = 0.453 ± 0.095, p < 0.05; in stable sleep: |r| = 0.463 ± 0.100, p < 0.05; in rapid eye movement (REM) sleep: |r| = 0.453 ± 0.082, p < 0.05], and showed significant associations with glycemic control in non-linear analysis [fasting blood glucose within 24 h of admission (admission FBG), |r| = 0.420 ± 0.064, p < 0.05; glycated hemoglobin (HbA1c), |r| = 0.417 ± 0.016, p < 0.05]. Conclusions: HRV metrics during sleep period play more distinct role than during awake period in investigating ANS dysfunction and metabolism in T2DM patients, and sleep rhythm based HRV analysis should perform better in ANS and metabolic function assessment, especially for glycemic control in non-linear analysis among T2DM patients.
Collapse
Affiliation(s)
- Wenquan Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongsen Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Leirong Tian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhimin Ma
- Endocrinology Department, Suzhou Science and Technology Town Hospital, Suzhou, China
- *Correspondence: Zhimin Ma, ; Xingran Cui,
| | - Xingran Cui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
- *Correspondence: Zhimin Ma, ; Xingran Cui,
| |
Collapse
|
13
|
Lau ZJ, Pham T, Chen SHA, Makowski D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur J Neurosci 2022; 56:5047-5069. [PMID: 35985344 PMCID: PMC9826422 DOI: 10.1111/ejn.15800] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
There has been an increasing trend towards the use of complexity analysis in quantifying neural activity measured by electroencephalography (EEG) signals. On top of revealing complex neuronal processes of the brain that may not be possible with linear approaches, EEG complexity measures have also demonstrated their potential as biomarkers of psychopathology such as depression and schizophrenia. Unfortunately, the opacity of algorithms and descriptions originating from mathematical concepts have made it difficult to understand what complexity is and how to draw consistent conclusions when applied within psychology and neuropsychiatry research. In this review, we provide an overview and entry-level explanation of existing EEG complexity measures, which can be broadly categorized as measures of predictability and regularity. We then synthesize complexity findings across different areas of psychological science, namely, in consciousness research, mood and anxiety disorders, schizophrenia, neurodevelopmental and neurodegenerative disorders, as well as changes across the lifespan, while addressing some theoretical and methodological issues underlying the discrepancies in the data. Finally, we present important considerations when choosing and interpreting these metrics.
Collapse
Affiliation(s)
- Zen J. Lau
- School of Social SciencesNanyang Technological UniversitySingapore
| | - Tam Pham
- School of Social SciencesNanyang Technological UniversitySingapore
| | - S. H. Annabel Chen
- School of Social SciencesNanyang Technological UniversitySingapore,Centre for Research and Development in LearningNanyang Technological UniversitySingapore,Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore,National Institute of EducationNanyang Technological UniversitySingapore
| | | |
Collapse
|
14
|
Jabloun M, Ravier P, Buttelli O. On the Genuine Relevance of the Data-Driven Signal Decomposition-Based Multiscale Permutation Entropy. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1343. [PMID: 37420363 PMCID: PMC9600582 DOI: 10.3390/e24101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 07/09/2023]
Abstract
Ordinal pattern-based approaches have great potential to capture intrinsic structures of dynamical systems, and therefore, they continue to be developed in various research fields. Among these, the permutation entropy (PE), defined as the Shannon entropy of ordinal probabilities, is an attractive time series complexity measure. Several multiscale variants (MPE) have been proposed in order to bring out hidden structures at different time scales. Multiscaling is achieved by combining linear or nonlinear preprocessing with PE calculation. However, the impact of such a preprocessing on the PE values is not fully characterized. In a previous study, we have theoretically decoupled the contribution of specific signal models to the PE values from that induced by the inner correlations of linear preprocessing filters. A variety of linear filters such as the autoregressive moving average (ARMA), Butterworth, and Chebyshev were tested. The current work is an extension to nonlinear preprocessing and especially to data-driven signal decomposition-based MPE. The empirical mode decomposition, variational mode decomposition, singular spectrum analysis-based decomposition and empirical wavelet transform are considered. We identify possible pitfalls in the interpretation of PE values induced by these nonlinear preprocessing, and hence, we contribute to improving the PE interpretation. The simulated dataset of representative processes such as white Gaussian noise, fractional Gaussian processes, ARMA models and synthetic sEMG signals as well as real-life sEMG signals are tested.
Collapse
Affiliation(s)
- Meryem Jabloun
- Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique, Énergétique (PRISME), University of Orleans, 45100 Orleans, France
| | | | | |
Collapse
|
15
|
Kafantaris E, Lo TYM, Escudero J. Stratified Multivariate Multiscale Dispersion Entropy for Physiological Signal Analysis. IEEE Trans Biomed Eng 2022; 70:1024-1035. [PMID: 36121948 DOI: 10.1109/tbme.2022.3207582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multivariate entropy quantification algorithms are becoming a prominent tool for the extraction of information from multi-channel physiological time-series. However, in the analysis of physiological signals from heterogeneous organ systems, certain channels may overshadow the patterns of others, resulting in information loss. Here, we introduce the framework of Stratified Entropy to prioritize each channels' dynamics based on their allocation to respective strata, leading to a richer description of the multi-channel time-series. As an implementation of the framework, three algorithmic variations of the Stratified Multivariate Multiscale Dispersion Entropy are introduced. These variations and the original algorithm are applied to synthetic time-series, waveform physiological time-series, and derivative physiological data. Based on the synthetic time-series experiments, the variations successfully prioritize channels following their strata allocation while maintaining the low computation time of the original algorithm. In experiments on waveform physiological time-series and derivative physiological data, increased discrimination capacity was noted for multiple strata allocations in the variations when benchmarked to the original algorithm. This suggests improved physiological state monitoring by the variations. Furthermore, our variations can be modified to utilize a priori knowledge for the stratification of channels. Thus, our research provides a novel approach for the extraction of previously inaccessible information from multi-channel time series acquired from heterogeneous systems.
Collapse
Affiliation(s)
- Evangelos Kafantaris
- School of Engineering, Institute for Digital Communications, University of Edinburgh, Edinburgh, U.K
| | - Tsz-Yan Milly Lo
- Centre of Medical Informatics, Usher Institute, University of Edinburgh, U.K
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications, University of Edinburgh, U.K
| |
Collapse
|
16
|
Xiao H, Chanwimalueang T, Mandic DP. Multivariate Multiscale Cosine Similarity Entropy and Its Application to Examine Circularity Properties in Division Algebras. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1287. [PMID: 36141173 PMCID: PMC9498230 DOI: 10.3390/e24091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The extension of sample entropy methodologies to multivariate signals has received considerable attention, with traditional univariate entropy methods, such as sample entropy (SampEn) and fuzzy entropy (FuzzyEn), introduced to measure the complexity of chaotic systems in terms of irregularity and randomness. The corresponding multivariate methods, multivariate multiscale sample entropy (MMSE) and multivariate multiscale fuzzy entropy (MMFE), were developed to explore the structural richness within signals at high scales. However, the requirement of high scale limits the selection of embedding dimension and thus, the performance is unavoidably restricted by the trade-off between the data size and the required high scale. More importantly, the scale of interest in different situations is varying, yet little is known about the optimal setting of the scale range in MMSE and MMFE. To this end, we extend the univariate cosine similarity entropy (CSE) method to the multivariate case, and show that the resulting multivariate multiscale cosine similarity entropy (MMCSE) is capable of quantifying structural complexity through the degree of self-correlation within signals. The proposed approach relaxes the prohibitive constraints between the embedding dimension and data length, and aims to quantify the structural complexity based on the degree of self-correlation at low scales. The proposed MMCSE is applied to the examination of the complex and quaternion circularity properties of signals with varying correlation behaviors, and simulations show the MMCSE outperforming the standard methods, MMSE and MMFE.
Collapse
Affiliation(s)
- Hongjian Xiao
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Danilo P. Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
17
|
Veluppal A, sadhukhan D, gopinath V, swaminathan R. Differentiation of Alzheimer conditions in brain MR images using bidimensional multiscale entropy-based texture analysis of lateral ventricles. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Padhye N, Rios D, Fay V, Hanneman SK. Pressure Injury Link to Entropy of Abdominal Temperature. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1127. [PMID: 36010790 PMCID: PMC9407490 DOI: 10.3390/e24081127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This study examined the association between pressure injuries and complexity of abdominal temperature measured in residents of a nursing facility. The temperature served as a proxy measure for skin thermoregulation. Refined multiscale sample entropy and bubble entropy were used to measure the irregularity of the temperature time series measured over two days at 1-min intervals. Robust summary measures were derived for the multiscale entropies and used in predictive models for pressure injuries that were built with adaptive lasso regression and neural networks. Both types of entropies were lower in the group of participants with pressure injuries (n=11) relative to the group of non-injured participants (n=15). This was generally true at the longer temporal scales, with the effect peaking at scale τ=22 min for sample entropy and τ=23 min for bubble entropy. Predictive models for pressure injury on the basis of refined multiscale sample entropy and bubble entropy yielded 96% accuracy, outperforming predictions based on any single measure of entropy. Combining entropy measures with a widely used risk assessment score led to the best prediction accuracy. Complexity of the abdominal temperature series could therefore serve as an indicator of risk of pressure injury.
Collapse
|
19
|
Pinto H, Dias C, Rocha AP. Multiscale Information Decomposition of Long Memory Processes: Application to Plateau Waves of Intracranial Pressure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1753-1756. [PMID: 36085854 DOI: 10.1109/embc48229.2022.9870925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Traumatic Brain Injury (TBI) patients present high levels of physical stress, which in some situations can manifest as Plateau Wave (PW) episodes. This intense stress phenomenon can be evidenced by Heart Rate Variability (HRV). Thus, the multivariate and simultaneous analysis of cardio-cerebrovascular oscillations, involving the RR intervals, mean arterial pressure (MAP) and the amplitude of intracranial pressure (AMP), will be useful to understand the interconnections between body signals, allowing the interpretation of the combined activity of pathophysiological mechanisms. In this work, the multiscale representation of the Transfer Entropy (TE) and of its decomposition in the network of these three interacting processes is obtained, based on a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This method allows to assess directed interactions and to quantify the information flow accounting for the simultaneous presence of short-term dynamics and long-range correlations. The results show that the baseline RR, but not MAP can provide information about the possibility of a PW arising. During PW, the long-term correlations highlight synergistic interactions between MAP and AMP processes on RR. The multiscale decomposition of the information along with the incorporation of the long term correlations allowed a better description of HRV during PW, highlighting the fact that the HRV mirrors this cerebrovascular phenomena.
Collapse
|
20
|
|
21
|
Abdulhay E, Alafeef M, Hadoush H, Venkataraman V, Arunkumar N. EMD-based analysis of complexity with dissociated EEG amplitude and frequency information: a data-driven robust tool -for Autism diagnosis- compared to multi-scale entropy approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:5031-5054. [PMID: 35430852 DOI: 10.3934/mbe.2022235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is usually characterised by altered social skills, repetitive behaviours, and difficulties in verbal/nonverbal communication. It has been reported that electroencephalograms (EEGs) in ASD are characterised by atypical complexity. The most commonly applied method in studies of ASD EEG complexity is multiscale entropy (MSE), where the sample entropy is evaluated across several scales. However, the accuracy of MSE-based classifications between ASD and neurotypical EEG activities is poor owing to several shortcomings in scale extraction and length, the overlap between amplitude and frequency information, and sensitivity to frequency. The present study proposes a novel, nonlinear, non-stationary, adaptive, data-driven, and accurate method for the classification of ASD and neurotypical groups based on EEG complexity and entropy without the shortcomings of MSE. APPROACH The proposed method is as follows: (a) each ASD and neurotypical EEG (122 subjects × 64 channels) is decomposed using empirical mode decomposition (EMD) to obtain the intrinsic components (intrinsic mode functions). (b) The extracted components are normalised through the direct quadrature procedure. (c) The Hilbert transforms of the components are computed. (d) The analytic counterparts of components (and normalised components) are found. (e) The instantaneous frequency function of each analytic normalised component is calculated. (f) The instantaneous amplitude function of each analytic component is calculated. (g) The Shannon entropy values of the instantaneous frequency and amplitude vectors are computed. (h) The entropy values are classified using a neural network (NN). (i) The achieved accuracy is compared to that obtained with MSE-based classification. (j) The consistency of the results of entropy 3D mapping with clinical data is assessed. MAIN RESULTS The results demonstrate that the proposed method outperforms MSE (accuracy: 66.4%), with an accuracy of 93.5%. Moreover, the entropy 3D mapping results are more consistent with the available clinical data regarding brain topography in ASD. SIGNIFICANCE This study presents a more robust alternative to MSE, which can be used for accurate classification of ASD/neurotypical as well as for the examination of EEG entropy across brain zones in ASD.
Collapse
Affiliation(s)
- Enas Abdulhay
- Biomedical Engineering department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Maha Alafeef
- Biomedical Engineering department, Jordan University of Science and Technology, 22110 Irbid, Jordan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hikmat Hadoush
- Rehabilitation Sciences department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - V Venkataraman
- Department of Mathematics, School of Arts, Science and Humanities, SASTRA Deemed University, Thanjavur, 613401, India
| | - N Arunkumar
- Biomedical Engineering department, Rathinam Technical Campus, Coimbatore, India
| |
Collapse
|
22
|
A Multiscale Partition-Based Kolmogorov–Sinai Entropy for the Complexity Assessment of Heartbeat Dynamics. Bioengineering (Basel) 2022; 9:bioengineering9020080. [PMID: 35200433 PMCID: PMC8869747 DOI: 10.3390/bioengineering9020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Several methods have been proposed to estimate complexity in physiological time series observed at different time scales, with a particular focus on heart rate variability (HRV) series. In this frame, while several complexity quantifiers defined in the multiscale domain have already been investigated, the effectiveness of a multiscale Kolmogorov–Sinai (K-S) entropy has not been evaluated yet for the characterization of heartbeat dynamics. Methods: The use of the algorithmic information content, which is estimated through an effective compression algorithm, is investigated to quantify multiscale partition-based K-S entropy on publicly available experimental HRV series gathered from young and elderly subjects undergoing a visual elicitation task (Fantasia). Moreover, publicly available HRV series gathered from healthy subjects, as well as patients with atrial fibrillation and congestive heart failure in unstructured conditions have been analyzed as well. Results: Elderly people are associated with a lower HRV complexity and a more predictable cardiovascular dynamics, with significantly lower partition-based K-S entropy than the young adults. Major differences between these groups occur at partitions greater than six. In case of partition cardinality greater than 5, patients with congestive heart failure show a minimal predictability, while atrial fibrillation shows a higher variability, and hence complexity, which is actually reduced by the time coarse-graining procedure. Conclusions: The proposed multiscale partition-based K-S entropy is a viable tool to investigate complex cardiovascular dynamics in different physiopathological states.
Collapse
|
23
|
Dorantes-Méndez G, Mendez MO, Méndez-Magdaleno LE, Muñoz-Mata BG, Rodríguez-Leyva I, Mejía-Rodríguez AR. Characterization and classification of Parkinson’s disease patients based on symbolic dynamics analysis of heart rate variability. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Xiao H, Mandic DP. Variational Embedding Multiscale Sample Entropy: A Tool for Complexity Analysis of Multichannel Systems. ENTROPY 2021; 24:e24010026. [PMID: 35052052 PMCID: PMC8774490 DOI: 10.3390/e24010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
Entropy-based methods have received considerable attention in the quantification of structural complexity of real-world systems. Among numerous empirical entropy algorithms, conditional entropy-based methods such as sample entropy, which are associated with amplitude distance calculation, are quite intuitive to interpret but require excessive data lengths for meaningful evaluation at large scales. To address this issue, we propose the variational embedding multiscale sample entropy (veMSE) method and conclusively demonstrate its ability to operate robustly, even with several times shorter data than the existing conditional entropy-based methods. The analysis reveals that veMSE also exhibits other desirable properties, such as the robustness to the variation in embedding dimension and noise resilience. For rigor, unlike the existing multivariate methods, the proposed veMSE assigns a different embedding dimension to every data channel, which makes its operation independent of channel permutation. The veMSE is tested on both stimulated and real world signals, and its performance is evaluated against the existing multivariate multiscale sample entropy methods. The proposed veMSE is also shown to exhibit computational advantages over the existing amplitude distance-based entropy methods.
Collapse
|
25
|
Ribeiro M, Monteiro-Santos J, Castro L, Antunes L, Costa-Santos C, Teixeira A, Henriques TS. Non-linear Methods Predominant in Fetal Heart Rate Analysis: A Systematic Review. Front Med (Lausanne) 2021; 8:661226. [PMID: 34917624 PMCID: PMC8669823 DOI: 10.3389/fmed.2021.661226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
The analysis of fetal heart rate variability has served as a scientific and diagnostic tool to quantify cardiac activity fluctuations, being good indicators of fetal well-being. Many mathematical analyses were proposed to evaluate fetal heart rate variability. We focused on non-linear analysis based on concepts of chaos, fractality, and complexity: entropies, compression, fractal analysis, and wavelets. These methods have been successfully applied in the signal processing phase and increase knowledge about cardiovascular dynamics in healthy and pathological fetuses. This review summarizes those methods and investigates how non-linear measures are related to each paper's research objectives. Of the 388 articles obtained in the PubMed/Medline database and of the 421 articles in the Web of Science database, 270 articles were included in the review after all exclusion criteria were applied. While approximate entropy is the most used method in classification papers, in signal processing, the most used non-linear method was Daubechies wavelets. The top five primary research objectives covered by the selected papers were detection of signal processing, hypoxia, maturation or gestational age, intrauterine growth restriction, and fetal distress. This review shows that non-linear indices can be used to assess numerous prenatal conditions. However, they are not yet applied in clinical practice due to some critical concerns. Some studies show that the combination of several linear and non-linear indices would be ideal for improving the analysis of the fetus's well-being. Future studies should narrow the research question so a meta-analysis could be performed, probing the indices' performance.
Collapse
Affiliation(s)
- Maria Ribeiro
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.,Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - João Monteiro-Santos
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luísa Castro
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.,School of Health of Polytechnic of Porto, Porto, Portugal
| | - Luís Antunes
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal.,Computer Science Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Cristina Costa-Santos
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Teresa S Henriques
- Centre for Health Technology and Services Research, Faculty of Medicine University of Porto, Porto, Portugal.,Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Ravier P, Dávalos A, Jabloun M, Buttelli O. The Refined Composite Downsampling Permutation Entropy Is a Relevant Tool in the Muscle Fatigue Study Using sEMG Signals. ENTROPY 2021; 23:e23121655. [PMID: 34945961 PMCID: PMC8700437 DOI: 10.3390/e23121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (sEMG) is a valuable technique that helps provide functional and structural information about the electric activity of muscles. As sEMG measures output of complex living systems characterized by multiscale and nonlinear behaviors, Multiscale Permutation Entropy (MPE) is a suitable tool for capturing useful information from the ordinal patterns of sEMG time series. In a previous work, a theoretical comparison in terms of bias and variance of two MPE variants—namely, the refined composite MPE (rcMPE) and the refined composite downsampling (rcDPE), was addressed. In the current paper, we assess the superiority of rcDPE over MPE and rcMPE, when applied to real sEMG signals. Moreover, we demonstrate the capacity of rcDPE in quantifying fatigue levels by using sEMG data recorded during a fatiguing exercise. The processing of four consecutive temporal segments, during biceps brachii exercise maintained at 70% of maximal voluntary contraction until exhaustion, shows that the 10th-scale of rcDPE was capable of better differentiation of the fatigue segments. This scale actually brings the raw sEMG data, initially sampled at 10 kHz, to the specific 0–500 Hz sEMG spectral band of interest, which finally reveals the inner complexity of the data. This study promotes good practices in the use of MPE complexity measures on real data.
Collapse
|
27
|
Flood MW, Grimm B. EntropyHub: An open-source toolkit for entropic time series analysis. PLoS One 2021; 16:e0259448. [PMID: 34735497 PMCID: PMC8568273 DOI: 10.1371/journal.pone.0259448] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
An increasing number of studies across many research fields from biomedical engineering to finance are employing measures of entropy to quantify the regularity, variability or randomness of time series and image data. Entropy, as it relates to information theory and dynamical systems theory, can be estimated in many ways, with newly developed methods being continuously introduced in the scientific literature. Despite the growing interest in entropic time series and image analysis, there is a shortage of validated, open-source software tools that enable researchers to apply these methods. To date, packages for performing entropy analysis are often run using graphical user interfaces, lack the necessary supporting documentation, or do not include functions for more advanced entropy methods, such as cross-entropy, multiscale cross-entropy or bidimensional entropy. In light of this, this paper introduces EntropyHub, an open-source toolkit for performing entropic time series analysis in MATLAB, Python and Julia. EntropyHub (version 0.1) provides an extensive range of more than forty functions for estimating cross-, multiscale, multiscale cross-, and bidimensional entropy, each including a number of keyword arguments that allows the user to specify multiple parameters in the entropy calculation. Instructions for installation, descriptions of function syntax, and examples of use are fully detailed in the supporting documentation, available on the EntropyHub website- www.EntropyHub.xyz. Compatible with Windows, Mac and Linux operating systems, EntropyHub is hosted on GitHub, as well as the native package repository for MATLAB, Python and Julia, respectively. The goal of EntropyHub is to integrate the many established entropy methods into one complete resource, providing tools that make advanced entropic time series analysis straightforward and reproducible.
Collapse
Affiliation(s)
- Matthew W. Flood
- Human Motion, Orthopaedics, Sports Medicine and Digital Methods (HOSD), Luxembourg Institute of Health (LIH), Eich, Luxembourg
| | - Bernd Grimm
- Human Motion, Orthopaedics, Sports Medicine and Digital Methods (HOSD), Luxembourg Institute of Health (LIH), Eich, Luxembourg
| |
Collapse
|
28
|
Abstract
Parkinson’s disease (PD) is a type of neurodegenerative diseases. PD influences gait in many aspects: reduced gait speed and step length, increased axial rigidity, and impaired rhythmicity. Gait-related data used in this study are from PhysioNet. Twenty-one PD patients and five healthy controls (CO) were sorted into four groups: PD without task (PDw), PD with dual task (PDd), control without task (COw), and control with dual task (COd). Since dual task actions are attention demanding, either gait or cognitive function may be affected. To quantify the used walking data, eight pressure sensors installed in each insole are used to measure the vertical ground reaction force. Thus, quantitative measurement analysis is performed utilizing multiscale entropy (MSE) and complexity index (CI) to analyze and differentiate between the ground reaction force of the four different groups. Results show that the CI of patients with PD is higher than that of CO and 11 of the sensor signals are statistically significant (p < 0.05). The COd group has larger CI values at the beginning (p = 0.021) but they get lower at the end of the test (p = 0.000) compared to that in the COw group. The end-of-test CI for the PDw group is lower in one of the feet sensor signals, and in the right total ground reaction force compared to the PDd group counterparts. In conclusion, when people start to adjust their gait due to pathology or stress, CI may increase first and reach a peak, but it decreases afterward when stress or pathology is further increased.
Collapse
|
29
|
Chou EF, Khine M, Lockhart T, Soangra R. Effects of ECG Data Length on Heart Rate Variability among Young Healthy Adults. SENSORS (BASEL, SWITZERLAND) 2021; 21:6286. [PMID: 34577492 PMCID: PMC8472063 DOI: 10.3390/s21186286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022]
Abstract
The relationship between the robustness of HRV derived by linear and nonlinear methods to the required minimum data lengths has yet to be well understood. The normal electrocardiography (ECG) data of 14 healthy volunteers were applied to 34 HRV measures using various data lengths, and compared with the most prolonged (2000 R peaks or 750 s) by using the Mann-Whitney U test, to determine the 0.05 level of significance. We found that SDNN, RMSSD, pNN50, normalized LF, the ratio of LF and HF, and SD1 of the Poincaré plot could be adequately computed by small data size (60-100 R peaks). In addition, parameters of RQA did not show any significant differences among 60 and 750 s. However, longer data length (1000 R peaks) is recommended to calculate most other measures. The DFA and Lyapunov exponent might require an even longer data length to show robust results. Conclusions: Our work suggests the optimal minimum data sizes for different HRV measures which can potentially improve the efficiency and save the time and effort for both patients and medical care providers.
Collapse
Affiliation(s)
- En-Fan Chou
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California at Irvine, Irvine, CA 92697, USA; (E.-F.C.); (M.K.)
| | - Michelle Khine
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California at Irvine, Irvine, CA 92697, USA; (E.-F.C.); (M.K.)
| | - Thurmon Lockhart
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Rahul Soangra
- Department of Physical Therapy, Crean College of Health and Behavioral Sciences, Chapman University, Irvine, CA 92618, USA
- Department of Electrical and Computer Science Engineering, Fowler School of Engineering, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
30
|
Frassineti L, Lanatà A, Olmi B, Manfredi C. Multiscale Entropy Analysis of Heart Rate Variability in Neonatal Patients with and without Seizures. Bioengineering (Basel) 2021; 8:122. [PMID: 34562944 PMCID: PMC8469929 DOI: 10.3390/bioengineering8090122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
The complex physiological dynamics of neonatal seizures make their detection challenging. A timely diagnosis and treatment, especially in intensive care units, are essential for a better prognosis and the mitigation of possible adverse effects on the newborn's neurodevelopment. In the literature, several electroencephalographic (EEG) studies have been proposed for a parametric characterization of seizures or their detection by artificial intelligence techniques. At the same time, other sources than EEG, such as electrocardiography, have been investigated to evaluate the possible impact of neonatal seizures on the cardio-regulatory system. Heart rate variability (HRV) analysis is attracting great interest as a valuable tool in newborns applications, especially where EEG technologies are not easily available. This study investigated whether multiscale HRV entropy indexes could detect abnormal heart rate dynamics in newborns with seizures, especially during ictal events. Furthermore, entropy measures were analyzed to discriminate between newborns with seizures and seizure-free ones. A cohort of 52 patients (33 with seizures) from the Helsinki University Hospital public dataset has been evaluated. Multiscale sample and fuzzy entropy showed significant differences between the two groups (p-value < 0.05, Bonferroni multiple-comparison post hoc correction). Moreover, interictal activity showed significant differences between seizure and seizure-free patients (Mann-Whitney Test: p-value < 0.05). Therefore, our findings suggest that HRV multiscale entropy analysis could be a valuable pre-screening tool for the timely detection of seizure events in newborns.
Collapse
Affiliation(s)
- Lorenzo Frassineti
- Department of Information Engineering, Università degli Studi di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (A.L.); (B.O.); (C.M.)
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Antonio Lanatà
- Department of Information Engineering, Università degli Studi di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (A.L.); (B.O.); (C.M.)
| | - Benedetta Olmi
- Department of Information Engineering, Università degli Studi di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (A.L.); (B.O.); (C.M.)
| | - Claudia Manfredi
- Department of Information Engineering, Università degli Studi di Firenze, Via Santa Marta 3, 50139 Firenze, Italy; (A.L.); (B.O.); (C.M.)
| |
Collapse
|
31
|
Autonomic dysfunction and heart rate variability with Holter monitoring: a diagnostic look at autonomic regulation. Herzschrittmacherther Elektrophysiol 2021; 32:315-319. [PMID: 34236476 DOI: 10.1007/s00399-021-00780-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
Heart rate variability (HRV) refers to the beat-to-beat variation of the cardiac cycle. Since heart rate is modulated on a beat-to-beat basis by the combined influence of the sympathetic and parasympathetic nervous system at the sinus node level, HRV has been considered an indirect biomarker of cardiac autonomic control and widely exploited for the assessment of autonomic function in many pathological subjects. This focus article summarizes the main findings derived from HRV analysis applied to 24‑h Holter monitoring in both cardiac and non-cardiac diseases as well as in physiological conditions in the healthy population. Even if the prognostic role of HRV indices is well recognized and its use ever more widespread, its implementation in the diagnostic and prognostic processes in routine clinical practice remains limited. Several reasons for these limitations can be identified: first the lack of reliable reference values, and secondly, the low specificity of HRV indices in particular when considering the constant evolution of clinical practice and therapeutic approaches, making it difficult to refer to a specific and stable combination of clinical and HRV markers. Therefore, the clinical use of HRV should be further investigated. Finally, HRV represents a substantial tool for investigating the physiological conditions in healthy people that can have important implications in primary prevention and the understanding of gender differences, as well as in sport and occupational medicine.
Collapse
|
32
|
Weiser-Bitoun I, Davoodi M, Rosenberg AA, Alexandrovich A, Yaniv Y. Opening the Schrödinger Box: Short- and Long-Range Mammalian Heart Rate Variability. Front Physiol 2021; 12:665709. [PMID: 34276396 PMCID: PMC8278020 DOI: 10.3389/fphys.2021.665709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/14/2022] Open
Abstract
Background The interactions between the autonomic nervous system (ANS), intrinsic systems (e.g., endocrine), and internal pacemaker mechanisms govern short (milliseconds–seconds)- and long (seconds–minutes)-range heart rate variability (HRV). However, there is a debate regarding the identity of the mechanism underlying HRV on each time scale. We aim to design a general method that accurately differentiates between the relative contribution of the ANS and pacemaker mechanisms to HRV in various mammals, without the need for drug perturbations or organ isolation. Additionally, we aim to explore the universality of the relative contribution of the ANS and pacemaker system of different mammals. Methods This work explored short- and long-range HRVs using published ECG data from dogs, rabbits, and mice. To isolate the effects of ANS on HRV, ECG segments recorded before and after ANS-blockade were compared. Results Differentiation of the ANS from extrinsic and intrinsic pacemaker mechanisms was successfully achieved. In dogs, the internal pacemaker mechanisms were the main contributors to long-range and the ANS to short-range HRV. In rabbits and mice, the ANS and the internal pacemaker mechanisms affected both time scales, and anesthesia changed the relative contribution of the pacemaker mechanism to short- and long-range HRVs. In mice, the extrinsic mechanisms affected long-range HRV, while their effect was negligible in rabbits. Conclusion We offer a novel approach to determine the relative contributions of ANS and extrinsic and intrinsic pacemaker mechanisms to HRV and highlight the importance of selecting mammalian research models with HRV mechanisms representative of the target species of interest.
Collapse
Affiliation(s)
| | - Moran Davoodi
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | | | | | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| |
Collapse
|
33
|
Tang SY, Ma HP, Hung CS, Kuo PH, Lin C, Lo MT, Hsu HH, Chiu YW, Wu CK, Tsai CH, Lin YT, Peng CK, Lin YH. The Value of Heart Rhythm Complexity in Identifying High-Risk Pulmonary Hypertension Patients. ENTROPY 2021; 23:e23060753. [PMID: 34203737 PMCID: PMC8232109 DOI: 10.3390/e23060753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022]
Abstract
Pulmonary hypertension (PH) is a fatal disease—even with state-of-the-art medical treatment. Non-invasive clinical tools for risk stratification are still lacking. The aim of this study was to investigate the clinical utility of heart rhythm complexity in risk stratification for PH patients. We prospectively enrolled 54 PH patients, including 20 high-risk patients (group A; defined as WHO functional class IV or class III with severely compromised hemodynamics), and 34 low-risk patients (group B). Both linear and non-linear heart rate variability (HRV) variables, including detrended fluctuation analysis (DFA) and multiscale entropy (MSE), were analyzed. In linear and non-linear HRV analysis, low frequency and high frequency ratio, DFAα1, MSE slope 5, scale 5, and area 6–20 were significantly lower in group A. Among all HRV variables, MSE scale 5 (AUC: 0.758) had the best predictive power to discriminate the two groups. In multivariable analysis, MSE scale 5 (p = 0.010) was the only significantly predictor of severe PH in all HRV variables. In conclusion, the patients with severe PH had worse heart rhythm complexity. MSE parameters, especially scale 5, can help to identify high-risk PH patients.
Collapse
Affiliation(s)
- Shu-Yu Tang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-Y.T.); (C.-S.H.); (P.-H.K.); (C.-K.W.)
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 640, Taiwan
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-Y.T.); (C.-S.H.); (P.-H.K.); (C.-K.W.)
| | - Ping-Hung Kuo
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-Y.T.); (C.-S.H.); (P.-H.K.); (C.-K.W.)
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 330, Taiwan; (C.L.); (M.-T.L.)
| | - Men-Tzung Lo
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 330, Taiwan; (C.L.); (M.-T.L.)
| | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan;
| | - Yu-Wei Chiu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan City 330, Taiwan;
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Cho-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-Y.T.); (C.-S.H.); (P.-H.K.); (C.-K.W.)
| | - Cheng-Hsuan Tsai
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-Y.T.); (C.-S.H.); (P.-H.K.); (C.-K.W.)
- Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 220, Taiwan
- Correspondence: (C.-H.T.); (Y.-T.L.); (Y.-H.L.)
| | - Yen-Tin Lin
- Department of Internal Medicine, Taoyuan General Hospital, Taoyuan City 330, Taiwan
- Correspondence: (C.-H.T.); (Y.-T.L.); (Y.-H.L.)
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, USA;
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; (S.-Y.T.); (C.-S.H.); (P.-H.K.); (C.-K.W.)
- Correspondence: (C.-H.T.); (Y.-T.L.); (Y.-H.L.)
| |
Collapse
|
34
|
Assessing multi-layered nonlinear characteristics of ECG/EEG signal via adaptive kernel density estimation-based hierarchical entropies. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Using Bidimensional Multiscale Entropy Analysis of Ultrasound Images to Assess the Effect of Various Walking Intensities on Plantar Soft Tissues. ENTROPY 2021; 23:e23030264. [PMID: 33668190 PMCID: PMC7995977 DOI: 10.3390/e23030264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
Walking performance is usually assessed by linear analysis of walking outcome measures. However, human movements consist of both linear and nonlinear complexity components. The purpose of this study was to use bidimensional multiscale entropy analysis of ultrasound images to evaluate the effects of various walking intensities on plantar soft tissues. Twelve participants were recruited to perform six walking protocols, consisting of three speeds (slow at 1.8 mph, moderate at 3.6 mph, and fast at 5.4 mph) for two durations (10 and 20 min). A B-mode ultrasound was used to assess plantar soft tissues before and after six walking protocols. Bidimensional multiscale entropy (MSE2D) and the Complexity Index (CI) were used to quantify the changes in irregularity of the ultrasound images of the plantar soft tissues. The results showed that the CI of ultrasound images after 20 min walking increased when compared to before walking (CI4: 0.39 vs. 0.35; CI5: 0.48 vs. 0.43, p < 0.05). When comparing 20 and 10 min walking protocols at 3.6 mph, the CI was higher after 20 min walking than after 10 min walking (CI4: 0.39 vs. 0.36, p < 0.05; and CI5: 0.48 vs. 0.44, p < 0.05). This is the first study to use bidimensional multiscale entropy analysis of ultrasound images to assess plantar soft tissues after various walking intensities.
Collapse
|
36
|
Ribeiro M, Henriques T, Castro L, Souto A, Antunes L, Costa-Santos C, Teixeira A. The Entropy Universe. ENTROPY 2021; 23:e23020222. [PMID: 33670121 PMCID: PMC7916845 DOI: 10.3390/e23020222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
About 160 years ago, the concept of entropy was introduced in thermodynamics by Rudolf Clausius. Since then, it has been continually extended, interpreted, and applied by researchers in many scientific fields, such as general physics, information theory, chaos theory, data mining, and mathematical linguistics. This paper presents The Entropy Universe, which aims to review the many variants of entropies applied to time-series. The purpose is to answer research questions such as: How did each entropy emerge? What is the mathematical definition of each variant of entropy? How are entropies related to each other? What are the most applied scientific fields for each entropy? We describe in-depth the relationship between the most applied entropies in time-series for different scientific fields, establishing bases for researchers to properly choose the variant of entropy most suitable for their data. The number of citations over the past sixteen years of each paper proposing a new entropy was also accessed. The Shannon/differential, the Tsallis, the sample, the permutation, and the approximate entropies were the most cited ones. Based on the ten research areas with the most significant number of records obtained in the Web of Science and Scopus, the areas in which the entropies are more applied are computer science, physics, mathematics, and engineering. The universe of entropies is growing each day, either due to the introducing new variants either due to novel applications. Knowing each entropy's strengths and of limitations is essential to ensure the proper improvement of this research field.
Collapse
Affiliation(s)
- Maria Ribeiro
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), 4200-465 Porto, Portugal;
- Computer Science Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Correspondence:
| | - Teresa Henriques
- Centre for Health Technology and Services Research (CINTESIS), Faculty of Medicine University of Porto, 4200-450 Porto, Portugal; (T.H.); (L.C.); (C.C.-S.); (A.T.)
- Department of Community Medicine, Information and Health Decision Sciences-MEDCIDS, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luísa Castro
- Centre for Health Technology and Services Research (CINTESIS), Faculty of Medicine University of Porto, 4200-450 Porto, Portugal; (T.H.); (L.C.); (C.C.-S.); (A.T.)
| | - André Souto
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Instituto de Telecomunicações, 1049-001 Lisboa, Portugal
| | - Luís Antunes
- Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC), 4200-465 Porto, Portugal;
- Computer Science Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Cristina Costa-Santos
- Centre for Health Technology and Services Research (CINTESIS), Faculty of Medicine University of Porto, 4200-450 Porto, Portugal; (T.H.); (L.C.); (C.C.-S.); (A.T.)
- Department of Community Medicine, Information and Health Decision Sciences-MEDCIDS, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Andreia Teixeira
- Centre for Health Technology and Services Research (CINTESIS), Faculty of Medicine University of Porto, 4200-450 Porto, Portugal; (T.H.); (L.C.); (C.C.-S.); (A.T.)
- Department of Community Medicine, Information and Health Decision Sciences-MEDCIDS, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| |
Collapse
|
37
|
Jelinek HF, Tuladhar R, Culbreth G, Bohara G, Cornforth D, West BJ, Grigolini P. Diffusion Entropy vs. Multiscale and Rényi Entropy to Detect Progression of Autonomic Neuropathy. Front Physiol 2021; 11:607324. [PMID: 33519512 PMCID: PMC7841429 DOI: 10.3389/fphys.2020.607324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
We review the literature to argue the importance of the occurrence of crucial events in the dynamics of physiological processes. Crucial events are interpreted as short time intervals of turbulence, and the time distance between two consecutive crucial events is a waiting time distribution density with an inverse power law (IPL) index μ, with μ < 3 generating non-stationary behavior. The non-stationary condition is characterized by two regimes of the IPL index: (a) perennial non-stationarity, with 1 < μ < 2 and (b) slow evolution toward the stationary regime, with 2 < μ < 3. Human heartbeats and brain dynamics belong to the latter regime, with healthy physiological processes tending to be closer to the border with the perennial non-stationary regime with μ = 2. The complexity of cognitive tasks is associated with the mental effort required to address a difficult task, which leads to an increase of μ with increasing task difficulty. On this basis we explore the conjecture that disease evolution leads the IPL index μ moving from the healthy condition μ = 2 toward the border with Gaussian statistics with μ = 3, as the disease progresses. Examining heart rate time series of patients affected by diabetes-induced autonomic neuropathy of varying severity, we find that the progression of cardiac autonomic neuropathy (CAN) indeed shifts μ from the border with perennial variability, μ = 2, to the border with Gaussian statistics, μ = 3 and provides a novel, sensitive index for assessing disease progression. We find that at the Gaussian border, the dynamical complexity of crucial events is replaced by Gaussian fluctuation with long-time memory.
Collapse
Affiliation(s)
- Herbert F Jelinek
- Health Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates.,Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rohisha Tuladhar
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Garland Culbreth
- Center for Nonlinear Science, The University of North Texas, Denton, TX, United States
| | - Gyanendra Bohara
- The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David Cornforth
- Applied Informatics Research Group, Faculty of Science and IT, The University of Newcastle, Callaghan, NSW, Australia
| | - Bruce J West
- Office of the Director, Army Research Office, Research Triangle Park, Durham, NC, United States
| | - Paolo Grigolini
- Center for Nonlinear Science, The University of North Texas, Denton, TX, United States
| |
Collapse
|
38
|
Borin AMS, Silva LEV, Murta LO. Response to "Comment on 'Modified multiscale fuzzy entropy: A robust method for short-term physiologic signals"' [Chaos 30, 083135 (2020)]. CHAOS (WOODBURY, N.Y.) 2021; 31:018102. [PMID: 33754788 DOI: 10.1063/5.0040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Airton Monte Serrat Borin
- Federal Institute for Education Science and Technology of Triângulo Mineiro, IFTM, Uberaba, MG, Brazil
| | - Luiz Eduardo Virgilio Silva
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, SP 14049-900, Brazil
| | - Luiz Otavio Murta
- Department of Computing and Mathematics, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| |
Collapse
|
39
|
Faini A, Castiglioni P. Comment on "Modified multiscale fuzzy entropy: A robust method for short-term physiologic signals" [Chaos 30, 083135 (2020)]. CHAOS (WOODBURY, N.Y.) 2021; 31:018103. [PMID: 33754791 DOI: 10.1063/5.0034877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | | |
Collapse
|
40
|
Liau BY, Wu FL, Li Y, Lung CW, Mohamed AA, Jan YK. Effect of Walking Speeds on Complexity of Plantar Pressure Patterns. COMPLEXITY 2021; 2021. [DOI: 10.1155/2021/6571336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022]
Abstract
Various walking speeds may induce different responses on the plantar pressure patterns. Current methods used to analyze plantar pressure patterns are linear and ignore nonlinear features. The purpose of this study was to analyze the complexity of plantar pressure images after walking at various speeds using nonlinear bidimensional multiscale entropy (MSE2D). Twelve participants (age: 27.1 ± 5.8 years; height: 170.3 ± 10.0 cm; and weight: 63.5 ± 13.5 kg) were recruited for walking at three speeds (slow at 1.8 mph, moderate at 3.6 mph, and fast at 5.4 mph) for 20 minutes. A plantar pressure measurement system was used to measure plantar pressure patterns. Complexity index (CI), a summation of MSE2D from all time scales, was used to quantify the changes of complexity of plantar pressure images. The analysis of variance with repeated measures and Fisher’s least significant difference correction were used to examine the results of this study. The results showed that CI of plantar pressure images of 1.8 mph (1.780) was significantly lower compared with 3.6 (1.790) and 5.4 mph (1.792). The results also showed that CI significantly increased from the 1st min (1.780) to the 10th min (1.791) and 20th min (1.791) with slow walking (1.8 mph). Our results indicate that slow walking at 1.8 mph may not be good for postural control compared with moderate walking (3.6 mph) and fast walking (5.4 mph). This study demonstrates that bidimensional multiscale entropy is able to quantify complexity changes of plantar pressure images after different walking speeds.
Collapse
|
41
|
Kazmi SZH, Habib N, Riaz R, Rizvi SS, Abbas SA, Chung TS. Multiscale based nonlinear dynamics analysis of heart rate variability signals. PLoS One 2020; 15:e0243441. [PMID: 33332361 PMCID: PMC7746153 DOI: 10.1371/journal.pone.0243441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/21/2020] [Indexed: 11/18/2022] Open
Abstract
Acceleration change index (ACI) is a fast and easy to understand heart rate variability (HRV) analysis approach used for assessing cardiac autonomic control of the nervous systems. The cardiac autonomic control of the nervous system is an example of highly integrated systems operating at multiple time scales. Traditional single scale based ACI did not take into account multiple time scales and has limited capability to classify normal and pathological subjects. In this study, a novel approach multiscale ACI (MACI) is proposed by incorporating multiple time scales for improving the classification ability of ACI. We evaluated the performance of MACI for classifying, normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation subjects. The findings reveal that MACI provided better classification between healthy and pathological subjects compared to ACI. We also compared MACI with other scale-based techniques such as multiscale entropy, multiscale permutation entropy (MPE), multiscale normalized corrected Shannon entropy (MNCSE) and multiscale permutation entropy (IMPE). The preliminary results show that MACI values are more stable and reliable than IMPE and MNCSE. The results show that MACI based features lead to higher classification accuracy.
Collapse
Affiliation(s)
- Syed Zaki Hassan Kazmi
- Department of Computer Science & Information Technology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Nazneen Habib
- Department of Sociology & Rural Development, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Rabia Riaz
- Department of Computer Science & Information Technology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | | - Syed Ali Abbas
- Department of Computer Science & Information Technology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Tae-Sun Chung
- Department of Software, Ajou University, Suwon, South Korea
- * E-mail:
| |
Collapse
|
42
|
Liao F, Zhang K, Zhou L, Chen Y, Elliott J, Jan YK. Effect of Different Local Vibration Frequencies on the Multiscale Regularity of Plantar Skin Blood Flow. ENTROPY 2020; 22:e22111288. [PMID: 33287056 PMCID: PMC7712514 DOI: 10.3390/e22111288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Local vibration has shown promise in improving skin blood flow (SBF). However, there is no consensus on the selection of the best vibration frequency. An important reason may be that previous studies utilized time- and frequency-domain parameters to characterize vibration-induced SBF responses. These parameters are unable to characterize the structural features of the SBF response to local vibrations, thus contributing to the inconsistent findings seen in vibration research. The objective of this study was to provide evidence that nonlinear dynamics of SBF responses would be an important aspect for assessing the effect of local vibration on SBF. Local vibrations at 100 Hz, 35 Hz, and 0 Hz (sham vibration) with an amplitude of 1 mm were randomly applied to the right first metatarsal head of 12 healthy participants for 10 min. SBF at the same site was measured for 10 min before and after local vibration. The degree of regularity of SBF was quantified using a multiscale sample entropy algorithm. The results showed that 100 Hz vibration significantly increased multiscale regularity of SBF but 35 Hz and 0 Hz (sham vibration) did not. The significant increase of regularity of SBF after 100 Hz vibration was mainly attributed to increased regularity of SBF oscillations within the frequency interval at 0.0095–0.15 Hz. These findings support the use of multiscale regularity to assess effectiveness of local vibration on improving skin blood flow.
Collapse
Affiliation(s)
- Fuyuan Liao
- Department of Biomedical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Keying Zhang
- Rehabilitation Engineering Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; (K.Z.); (L.Z.)
| | - Lingling Zhou
- Rehabilitation Engineering Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; (K.Z.); (L.Z.)
| | - Yanni Chen
- Department of Pediatrics, Xi’an Jiaotong University Health Science Center, Xi’an 710021, China;
| | - Jeannette Elliott
- Disability Resources and Educational Services, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA;
| | - Yih-Kuen Jan
- Rehabilitation Engineering Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; (K.Z.); (L.Z.)
- Correspondence: ; Tel.: +1-217-300-7253
| |
Collapse
|
43
|
Abstract
In this article we advance a cutting-edge methodology for the study of the dynamics of plant movements of nutation. Our approach, unlike customary kinematic analyses of shape, period, or amplitude, is based on three typical signatures of adaptively controlled processes and motions, as reported in the biological and behavioral dynamics literature: harmonicity, predictability, and complexity. We illustrate the application of a dynamical methodology to the bending movements of shoots of common beans (Phaseolus vulgaris L.) in two conditions: with and without a support to climb onto. The results herewith reported support the hypothesis that patterns of nutation are influenced by the presence of a support to climb in their vicinity. The methodology is in principle applicable to a whole range of plant movements.
Collapse
Affiliation(s)
- Vicente Raja
- Rotman Institute of Philosophy, Western University, London, Canada.
| | - Paula L Silva
- Department of Psychology, University of Cincinnati, Cincinnati, USA
| | - Roghaieh Holghoomi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| | - Paco Calvo
- Minimal Intelligence Lab, University of Murcia, Murcia, Spain
| |
Collapse
|
44
|
Chang YP, Jiang BC, Nurwulan NR. Revised Stability Scales of the Postural Stability Index for Human Daily Activities. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1188. [PMID: 33286956 PMCID: PMC7597359 DOI: 10.3390/e22101188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
Evaluation of human postural stability is important to prevent falls. Recent studies have been carried out to develop postural stability evaluation in an attempt to fall prevention. The postural stability index (PSI) was proposed as a measure to evaluate the stability of human postures in performing daily activities. The objective of this study was to use the PSI in developing the stability scales for human daily activities. The current study used two open datasets collected from mobile devices. In addition, we also conducted three experiments to evaluate the effect of age, velocity, step counts, and devices on PSI values. The collected datasets were preprocessed using the ensemble empirical mode decomposition (EEMD), then the complexity index from each intrinsic mode function (IMF) was calculated using the multiscale entropy (MSE). From the evaluation, it can be concluded that the PSI can be applied to do daily monitoring of postural stability for both young and older adults, and the PSI is not affected by age. The revised stability scales developed in this current study can give better suggestions to users than the original one.
Collapse
Affiliation(s)
- Yu Ping Chang
- Department of Industrial Management, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan; (Y.P.C.); (B.C.J.)
| | - Bernard C. Jiang
- Department of Industrial Management, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan; (Y.P.C.); (B.C.J.)
| | - Nurul Retno Nurwulan
- Department of Industrial Engineering, Sampoerna University, Jakarta 12780, Indonesia
| |
Collapse
|
45
|
Platiša MM, Radovanović NN, Kalauzi A, Milašinović G, Pavlović SU. Multiscale Entropy Analysis: Application to Cardio-Respiratory Coupling. ENTROPY 2020; 22:e22091042. [PMID: 33286811 PMCID: PMC7597100 DOI: 10.3390/e22091042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
It is known that in pathological conditions, physiological systems develop changes in the multiscale properties of physiological signals. However, in real life, little is known about how changes in the function of one of the two coupled physiological systems induce changes in function of the other one, especially on their multiscale behavior. Hence, in this work we aimed to examine the complexity of cardio-respiratory coupled systems control using multiscale entropy (MSE) analysis of cardiac intervals MSE (RR), respiratory time series MSE (Resp), and synchrony of these rhythms by cross multiscale entropy (CMSE) analysis, in the heart failure (HF) patients and healthy subjects. We analyzed 20 min of synchronously recorded RR intervals and respiratory signal during relaxation in the supine position in 42 heart failure patients and 14 control healthy subjects. Heart failure group was divided into three subgroups, according to the RR interval time series characteristics (atrial fibrillation (HFAF), sinus rhythm (HFSin), and sinus rhythm with ventricular extrasystoles (HFVES)). Compared with healthy control subjects, alterations in respiratory signal properties were observed in patients from the HFSin and HFVES groups. Further, mean MSE curves of RR intervals and respiratory signal were not statistically different only in the HFSin group (p = 0.43). The level of synchrony between these time series was significantly higher in HFSin and HFVES patients than in control subjects and HFAF patients (p < 0.01). In conclusion, depending on the specific pathologies, primary alterations in the regularity of cardiac rhythm resulted in changes in the regularity of the respiratory rhythm, as well as in the level of their asynchrony.
Collapse
Affiliation(s)
- Mirjana M. Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, KCS, PO Box 22, 11129 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-360-7158; Fax: +381-11-360-7061
| | - Nikola N. Radovanović
- Pacemaker Center, Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.N.R.); (G.M.); (S.U.P.)
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Goran Milašinović
- Pacemaker Center, Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.N.R.); (G.M.); (S.U.P.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Siniša U. Pavlović
- Pacemaker Center, Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.N.R.); (G.M.); (S.U.P.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
46
|
Kloosterman NA, Kosciessa JQ, Lindenberger U, Fahrenfort JJ, Garrett DD. Boosts in brain signal variability track liberal shifts in decision bias. eLife 2020; 9:54201. [PMID: 32744502 PMCID: PMC7398662 DOI: 10.7554/elife.54201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Adopting particular decision biases allows organisms to tailor their choices to environmental demands. For example, a liberal response strategy pays off when target detection is crucial, whereas a conservative strategy is optimal for avoiding false alarms. Using conventional time-frequency analysis of human electroencephalographic (EEG) activity, we previously showed that bias setting entails adjustment of evidence accumulation in sensory regions (Kloosterman et al., 2019), but the presumed prefrontal signature of a conservative-to-liberal bias shift has remained elusive. Here, we show that a liberal bias shift is reflected in a more unconstrained neural regime (boosted entropy) in frontal regions that is suited to the detection of unpredictable events. Overall EEG variation, spectral power and event-related potentials could not explain this relationship, highlighting that moment-to-moment neural variability uniquely tracks bias shifts. Neural variability modulation through prefrontal cortex appears instrumental for permitting an organism to adapt its biases to environmental demands.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Johannes Jacobus Fahrenfort
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
47
|
Multi-scale Entropy Evaluates the Proarrhythmic Condition of Persistent Atrial Fibrillation Patients Predicting Early Failure of Electrical Cardioversion. ENTROPY 2020; 22:e22070748. [PMID: 33286519 PMCID: PMC7517291 DOI: 10.3390/e22070748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/10/2023]
Abstract
Atrial fibrillation (AF) is nowadays the most common cardiac arrhythmia, being associated with an increase in cardiovascular mortality and morbidity. When AF lasts for more than seven days, it is classified as persistent AF and external interventions are required for its termination. A well-established alternative for that purpose is electrical cardioversion (ECV). While ECV is able to initially restore sinus rhythm (SR) in more than 90% of patients, rates of AF recurrence as high as 20-30% have been found after only a few weeks of follow-up. Hence, new methods for evaluating the proarrhythmic condition of a patient before the intervention can serve as efficient predictors about the high risk of early failure of ECV, thus facilitating optimal management of AF patients. Among the wide variety of predictors that have been proposed to date, those based on estimating organization of the fibrillatory (f-) waves from the surface electrocardiogram (ECG) have reported very promising results. However, the existing methods are based on traditional entropy measures, which only assess a single time scale and often are unable to fully characterize the dynamics generated by highly complex systems, such as the heart during AF. The present work then explores whether a multi-scale entropy (MSE) analysis of the f-waves may provide early prediction of AF recurrence after ECV. In addition to the common MSE, two improved versions have also been analyzed, composite MSE (CMSE) and refined MSE (RMSE). When analyzing 70 patients under ECV, of which 31 maintained SR and 39 relapsed to AF after a four week follow-up, the three methods provided similar performance. However, RMSE reported a slightly better discriminant ability of 86%, thus improving the other multi-scale-based outcomes by 3-9% and other previously proposed predictors of ECV by 15-30%. This outcome suggests that investigation of dynamics at large time scales yields novel insights about the underlying complex processes generating f-waves, which could provide individual proarrhythmic condition estimation, thus improving preoperative predictions of ECV early failure.
Collapse
|
48
|
Kosciessa JQ, Kloosterman NA, Garrett DD. Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What's signal irregularity got to do with it? PLoS Comput Biol 2020; 16:e1007885. [PMID: 32392250 PMCID: PMC7241858 DOI: 10.1371/journal.pcbi.1007885] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 04/18/2020] [Indexed: 01/10/2023] Open
Abstract
Multiscale Entropy (MSE) is used to characterize the temporal irregularity of neural time series patterns. Due to its' presumed sensitivity to non-linear signal characteristics, MSE is typically considered a complementary measure of brain dynamics to signal variance and spectral power. However, the divergence between these measures is often unclear in application. Furthermore, it is commonly assumed (yet sparingly verified) that entropy estimated at specific time scales reflects signal irregularity at those precise time scales of brain function. We argue that such assumptions are not tenable. Using simulated and empirical electroencephalogram (EEG) data from 47 younger and 52 older adults, we indicate strong and previously underappreciated associations between MSE and spectral power, and highlight how these links preclude traditional interpretations of MSE time scales. Specifically, we show that the typical definition of temporal patterns via "similarity bounds" biases coarse MSE scales-that are thought to reflect slow dynamics-by high-frequency dynamics. Moreover, we demonstrate that entropy at fine time scales-presumed to indicate fast dynamics-is highly sensitive to broadband spectral power, a measure dominated by low-frequency contributions. Jointly, these issues produce counterintuitive reflections of frequency-specific content on MSE time scales. We emphasize the resulting inferential problems in a conceptual replication of cross-sectional age differences at rest, in which scale-specific entropy age effects could be explained by spectral power differences at mismatched temporal scales. Furthermore, we demonstrate how such problems may be alleviated, resulting in the indication of scale-specific age differences in rhythmic irregularity. By controlling for narrowband contributions, we indicate that spontaneous alpha rhythms during eyes open rest transiently reduce broadband signal irregularity. Finally, we recommend best practices that may better permit a valid estimation and interpretation of neural signal irregularity at time scales of interest.
Collapse
Affiliation(s)
- Julian Q. Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niels A. Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D. Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
49
|
|
50
|
Martins A, Pernice R, Amado C, Rocha AP, Silva ME, Javorka M, Faes L. Multivariate and Multiscale Complexity of Long-Range Correlated Cardiovascular and Respiratory Variability Series. ENTROPY 2020; 22:e22030315. [PMID: 33286089 PMCID: PMC7516773 DOI: 10.3390/e22030315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022]
Abstract
Assessing the dynamical complexity of biological time series represents an important topic with potential applications ranging from the characterization of physiological states and pathological conditions to the calculation of diagnostic parameters. In particular, cardiovascular time series exhibit a variability produced by different physiological control mechanisms coupled with each other, which take into account several variables and operate across multiple time scales that result in the coexistence of short term dynamics and long-range correlations. The most widely employed technique to evaluate the dynamical complexity of a time series at different time scales, the so-called multiscale entropy (MSE), has been proven to be unsuitable in the presence of short multivariate time series to be analyzed at long time scales. This work aims at overcoming these issues via the introduction of a new method for the assessment of the multiscale complexity of multivariate time series. The method first exploits vector autoregressive fractionally integrated (VARFI) models to yield a linear parametric representation of vector stochastic processes characterized by short- and long-range correlations. Then, it provides an analytical formulation, within the theory of state-space models, of how the VARFI parameters change when the processes are observed across multiple time scales, which is finally exploited to derive MSE measures relevant to the overall multivariate process or to one constituent scalar process. The proposed approach is applied on cardiovascular and respiratory time series to assess the complexity of the heart period, systolic arterial pressure and respiration variability measured in a group of healthy subjects during conditions of postural and mental stress. Our results document that the proposed methodology can detect physiologically meaningful multiscale patterns of complexity documented previously, but can also capture significant variations in complexity which cannot be observed using standard methods that do not take into account long-range correlations.
Collapse
Affiliation(s)
- Aurora Martins
- Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (A.M.); (C.A.); (A.P.R.)
- Centro de Matemática da Universidade do Porto (CMUP), 4169-007 Porto, Portugal
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy;
- Correspondence:
| | - Celestino Amado
- Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (A.M.); (C.A.); (A.P.R.)
| | - Ana Paula Rocha
- Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (A.M.); (C.A.); (A.P.R.)
- Centro de Matemática da Universidade do Porto (CMUP), 4169-007 Porto, Portugal
| | - Maria Eduarda Silva
- Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4169-007 Porto, Portugal;
- Centro de Investigação e Desenvolvimento em Matemática e Aplicações (CIDMA)
| | - Michal Javorka
- Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4C, 03601 Martin, Slovakia;
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Mala Hora 4C, 03601 Martin, Slovakia
| | - Luca Faes
- Department of Engineering, University of Palermo, Viale delle Scienze, Bldg. 9, 90128 Palermo, Italy;
| |
Collapse
|