1
|
Lari S, Kohandel M, Kwon HJ. Model based deep learning method for focused ultrasound pathway scanning. Sci Rep 2024; 14:20042. [PMID: 39198623 PMCID: PMC11358149 DOI: 10.1038/s41598-024-70689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The primary purpose of high-intensity focused ultrasound (HIFU), a non-invasive medical therapy, is to precisely target and ablate tumors by focusing high-frequency ultrasound from an external power source. A series of ablations must be performed in order to treat a big volume of tumors, as a single ablation can only remove a small amount of tissue. To maximize therapeutic efficacy while minimizing adverse side effects such as skin burns, preoperative treatment planning is essential in determining the focal site and sonication duration for each ablation. Here, we introduce a machine learning-based approach for designing HIFU treatment plans, which makes use of a map of the material characteristics unique to a patient alongside an accurate thermal simulation. A numerical model was employed to solve the governing equations of HIFU process and to simulate the HIFU absorption mechanism, including ensuing heat transfer process and the temperature rise during the sonication period. To validate the accuracy of this numerical model, a series of tests was conducted using ex vivo bovine liver. The findings indicate that the developed models properly represent the considerable variances observed in tumor geometrical shapes and proficiently generate well-defined closed treated regions based on imaging data. The proposed strategy facilitated the formulation of high-quality treatment plans, with an average tissue over- or under-treatment rate of less than 0.06%. The efficacy of the numerical model in accurately predicting the heating process of HIFU, when combined with machine learning techniques, was validated through quantitative comparison with experimental data. The proposed approach in cooperation with HIFU simulation holds the potential to enhance presurgical HIFU plan.
Collapse
Affiliation(s)
- Salman Lari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hyock Ju Kwon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
2
|
Kim H, Wu H, Chen M, Dai X, Zhou R, Jiang X. Intravascular Sono-Ablation for In-Stent Restenosis Relief: Transducer Development and the In-Vitro Demonstration. IEEE Trans Biomed Eng 2023; 70:2172-2180. [PMID: 37022452 DOI: 10.1109/tbme.2023.3238679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to propose a new clinical modality for the relief of in-stent restenosis (ISR) using focused ultrasound (FUS) ablation. In the first research stage, a miniaturized FUS device was developed for the sonification of the remaining plaque after stenting, known as one of the causes of ISR. METHODS This study presents a miniaturized (<2.8 mm) intravascular FUS transducer for ISR treatment. The performance of the transducer was predicted through a structural-acoustic simulation, followed by fabrication of the prototype device. Using the prototype FUS transducer, we demonstrated tissue ablation with bio-tissues over metallic stents, mimicking in-stent tissue ablation. Next, we conducted a safety test by detecting the existence of thermal damage to the arterial tissue upon sonication with a controlled dose. RESULTS The prototype device successfully delivered sufficient acoustic intensity (>30 W/cm2) to a bio tissue (chicken breast) through a metallic stent. The ablation volume was approximately 3.9 × 7.8 × 2.6 mm3. Furthermore, 1.5 min sonication was sufficient to obtain an ablating depth of approximately 1.0 mm, not thermally damaging the underlying artery vessel. CONCLUSION We demonstrated in-stent tissue sonoablation, suggesting it could be as a future ISR treatment modality. SIGNIFICANCE Comprehensive test results provide a key understanding of FUS applications using metallic stents. Furthermore, the developed device can be used for sonoablation of the remaining plaque, providing a novel approach to the treatment of ISR.
Collapse
|
3
|
Alpers J, Rötzer M, Gutberlet M, Wacker F, Hensen B, Hansen C. Adaptive simulation of 3D thermometry maps for interventional MR-guided tumor ablation using Pennes' bioheat equation and isotherms. Sci Rep 2022; 12:20356. [PMID: 36437405 PMCID: PMC9701800 DOI: 10.1038/s41598-022-24911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
Minimally-invasive thermal ablation procedures have become clinically accepted treatment options for tumors and metastases. Continuous and reliable monitoring of volumetric heat distribution promises to be an important condition for successful outcomes. In this work, an adaptive bioheat transfer simulation of 3D thermometry maps is presented. Pennes' equation model is updated according to temperature maps generated by uniformly distributed 2D MR phase images rotated around the main axis of the applicator. The volumetric heat diffusion and the resulting shape of the ablation zone can be modelled accurately without introducing a specific heat source term. Filtering the temperature maps by extracting isotherms reduces artefacts and noise, compresses information of the measured data and adds physical a priori knowledge. The inverse heat transfer for estimating values of the simulated tissue and heating parameters is done by reducing the sum squared error between these isotherms and the 3D simulation. The approach is evaluated on data sets consisting of 13 ex vivo bio protein phantoms, including six perfusion phantoms with simulated heat sink effects. Results show an overall average Dice score of 0.89 ± 0.04 (SEM < 0.01). The optimization of the parameters takes 1.05 ± 0.26 s for each acquired image. Future steps should consider the local optimization of the simulation parameters instead of a global one to better detect heat sinks without a priori knowledge. In addition, the use of a proper Kalman filter might increase robustness and accuracy if combined with our method.
Collapse
Affiliation(s)
- Julian Alpers
- grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Faculty of Computer Science, Magdeburg, 39106 Germany ,grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Research Campus STIMULATE, Magdeburg, 39106 Germany
| | - Maximilian Rötzer
- grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Faculty of Computer Science, Magdeburg, 39106 Germany ,grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Research Campus STIMULATE, Magdeburg, 39106 Germany
| | - Marcel Gutberlet
- grid.10423.340000 0000 9529 9877Hannover Medical School, Institute for Diagnostic and Interventional Radiology, Hannover, 30625 Germany ,grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Research Campus STIMULATE, Magdeburg, 39106 Germany
| | - Frank Wacker
- grid.10423.340000 0000 9529 9877Hannover Medical School, Institute for Diagnostic and Interventional Radiology, Hannover, 30625 Germany ,grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Research Campus STIMULATE, Magdeburg, 39106 Germany
| | - Bennet Hensen
- grid.10423.340000 0000 9529 9877Hannover Medical School, Institute for Diagnostic and Interventional Radiology, Hannover, 30625 Germany ,grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Research Campus STIMULATE, Magdeburg, 39106 Germany
| | - Christian Hansen
- grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Faculty of Computer Science, Magdeburg, 39106 Germany ,grid.5807.a0000 0001 1018 4307Otto-von-Guericke University, Research Campus STIMULATE, Magdeburg, 39106 Germany
| |
Collapse
|
4
|
Bashir A, Khan S, Bashmal S, Iqbal N, Ullah S, Ali L. Designing Highly Efficient Temperature Controller for Nanoparticles Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3539. [PMID: 36234672 PMCID: PMC9565335 DOI: 10.3390/nano12193539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This paper presents various control system design techniques for temperature control of Magnetic Fluid hyperthermia. The purpose of this research is to design a cost-effective, efficient, and practically implementable temperature controller for Magnetic Fluid hyperthermia, which is presently under research as a substitute to the radiation and chemotherapy treatment of cancer. The principle of this phenomenon centers on the greater sensitivity of tumor cells to changes in temperature in comparison to healthy cells. Once the nanoparticles reach the desired tissue, it can then be placed in a varying magnetic field to dissipate the heat locally by raising the temperature to 45 °C in order to kill cancerous cells. One of the challenging tasks is to maintain the temperature strictly at desired point i.e., 45 °C. Temperature controller for magnetic fluid hyperthermia provides the tight control of temperature in order to avoid folding of proteins and save the tissues around the cancerous tissue from getting destroyed. In contrast with most of the existing research on this topic, which are based on linear control strategies or their improved versions, the novelty of this research lies in applying nonlinear control technique like Sliding Mode Control (SMC) to accurately control the temperature at desired value. A comparison of the control techniques is presented in this paper, based on reliability, robustness, precision and the ability of the controller to handle the non-linearities that are faced during the treatment of cancer. SMC showed promising results in terms of settling time and rise time. Steady state error was also reduced to zero using this technique.
Collapse
Affiliation(s)
- Adeel Bashir
- Department of Electrical Engineering, COMSATS University, Islamabad 45550, Pakistan
| | - Sikandar Khan
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Salem Bashmal
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Naveed Iqbal
- Department of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Center of Energy and Geo Processing, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sami Ullah
- K. A. CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Liaqat Ali
- College of Civil Engineering & Architecture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Hyvärinen M, Huang Y, David E, Hynynen K. Comparison of computer simulations and clinical treatment results of magnetic resonance-guided focused ultrasound surgery (MRgFUS) of uterine fibroids. Med Phys 2022; 49:2101-2119. [PMID: 34601729 PMCID: PMC9314069 DOI: 10.1002/mp.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Magnetic resonance-guided focused ultrasound surgery (MRgFUS) can be used to noninvasively treat symptomatic uterine fibroids by heating with focused ultrasound sonications while monitoring the temperature with magnetic resonance (MR) thermometry. While prior studies have compared focused ultrasound simulations to clinical results, studies involving uterine fibroids remain scarce. In our study, we perform such a comparison to assess the suitability of simulations for treatment planning. METHODS Sonications (N = 67) were simulated retrospectively using acoustic and thermal models based on the Rayleigh integral and Pennes bioheat equation followed by MR-thermometry simulation in seven patients who underwent MRgFUS treatment for uterine fibroids. The spatial accuracy of simulated focus location was assessed by evaluating displacements of the centers of mass of the thermal dose distributions between simulated and treatment MR thermometry slices. Temperature-time curves and sizes of 240 equivalent minutes at 43°C (240EM43 ) volumes between treatment and simulation were compared. RESULTS The simulated focus location showed errors of 2.7 ± 4.1, -0.7 ± 2.0, and 1.3 ± 1.2 mm (mean ± SD) in the anterior-posterior, foot-head, and right-left directions for a fibroid absorption coefficient of 4.9 Np m-1 MHz-1 and perfusion parameter of 1.89 kg m-3 s-1 . Linear regression of 240EM43 volumes of 67 sonications of patient treatments and simulations utilizing these parameters yielded a slope of 1.04 and a correlation coefficient of 0.54. The temperature rise ratio of simulation to treatment near the end of sonication was 0.47 ± 0.22, 1.28 ± 0.60, and 1.49 ± 0.71 for 66 sonications simulated utilizing fibroid absorption coefficient of 1.2, 4.9, and 8.6 Np m-1 MHz-1 , respectively, and the aforementioned perfusion value. The impact of perfusion on peak temperature rise is minimal between 1.89 and 10 kg m-3 s-1 , but became more substantial when utilizing a value of 100 kg m-3 s-1 . CONCLUSIONS The results of this study suggest that perfusion, while in some cases having a substantial impact on thermal dose volumes, has less impact than ultrasound absorption for predicting peak temperature elevation at least when using perfusion parameter values up to 10 kg m-3 s-1 for this particular array geometry, frequencies, and tissue target which is good for clinicians to be aware of. The results suggest that simulations show promise in treatment planning, particularly in terms of spatial accuracy. However, in order to use simulations to predict temperature rise due to a sonication, knowledge of the patient-specific tissue parameters, in particular the absorption coefficient is important. Currently, spatially varying patient-specific tissue parameter values are not available during treatment, so simulations can only be used for planning purposes to estimate sonication performance on average.
Collapse
Affiliation(s)
- Mikko Hyvärinen
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Yuexi Huang
- Sunnybrook Research InstituteTorontoOntarioCanada
| | | | - Kullervo Hynynen
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
6
|
Filippou A, Drakos T, Giannakou M, Evripidou N, Damianou C. Experimental evaluation of the near-field and far-field heating of focused ultrasound using the thermal dose concept. ULTRASONICS 2021; 116:106513. [PMID: 34293620 DOI: 10.1016/j.ultras.2021.106513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Conventional motion algorithms utilized during High Intensity Focused Ultrasound (HIFU) procedures usually sonicate successive tissue cells, thereby inducing excess deposition of thermal dose in the pre-focal region. Long delays (~60 s) are used to reduce the heating around the focal region. In the present study the experimental evaluation of six motion algorithms so as to examine the required delay and algorithm for which the pre-focal (near-field) and post-focal (far-field) heating can be reduced using thermal dose estimations is presented. MATERIALS AND METHODS A single element spherically focused transducer operating at 1.1 MHz and focusing beam at 9 cm, was utilized for sonication on a 400 mm2 area of an agar-based phantom. Movement of the transducer was performed with each algorithm, using 0-60 s (10 s step) delays between sonications. Temperatures were recorded at both near and far-field regions and thermal dose calculations were implemented. RESULTS With the algorithms used in the present study, a delay of 50-60 s was required to reduce heating in the near-field region. A 30 s delay induced a safe thermal dose in the far-field region using all algorithms except sequential which still required 60 s delay. CONCLUSIONS The study verified the conservative need for 60 s delay for the sequential plan treatment. Nevertheless, present findings suggest that prolonged treatment times can be significantly reduced in homogeneous tissues by selection of the optimized nonlinear algorithm and delay.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | | | | | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
7
|
Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021; 38:1174-1187. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Pia Rademann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Alexandra Claudia Maul
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Sin Yuin Yeo
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo Gómez
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Daniel A Deenen
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Patrick Schmidt
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Bram de Jager
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Holger Grüll
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Edwin Heijman
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Payne A, Chopra R, Ellens N, Chen L, Ghanouni P, Sammet S, Diederich C, Ter Haar G, Parker D, Moonen C, Stafford J, Moros E, Schlesinger D, Benedict S, Wear K, Partanen A, Farahani K. AAPM Task Group 241: A medical physicist's guide to MRI-guided focused ultrasound body systems. Med Phys 2021; 48:e772-e806. [PMID: 34224149 DOI: 10.1002/mp.15076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a completely non-invasive technology that has been approved by FDA to treat several diseases. This report, prepared by the American Association of Physicist in Medicine (AAPM) Task Group 241, provides background on MRgFUS technology with a focus on clinical body MRgFUS systems. The report addresses the issues of interest to the medical physics community, specific to the body MRgFUS system configuration, and provides recommendations on how to successfully implement and maintain a clinical MRgFUS program. The following sections describe the key features of typical MRgFUS systems and clinical workflow and provide key points and best practices for the medical physicist. Commonly used terms, metrics and physics are defined and sources of uncertainty that affect MRgFUS procedures are described. Finally, safety and quality assurance procedures are explained, the recommended role of the medical physicist in MRgFUS procedures is described, and regulatory requirements for planning clinical trials are detailed. Although this report is limited in scope to clinical body MRgFUS systems that are approved or currently undergoing clinical trials in the United States, much of the material presented is also applicable to systems designed for other applications.
Collapse
Affiliation(s)
- Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Steffen Sammet
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chrit Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jason Stafford
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | | | - Keith Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Keyvan Farahani
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
9
|
Kim C, Guo Y, Velalopoulou A, Leisen J, Motamarry A, Ramajayam K, Aryal M, Haemmerich D, Arvanitis CD. Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors. Am J Cancer Res 2021; 11:7276-7293. [PMID: 34158850 PMCID: PMC8210606 DOI: 10.7150/thno.54630] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Effective drug delivery in brain tumors remains a major challenge in oncology. Although local hyperthermia and stimuli-responsive delivery systems, such as thermosensitive liposomes, represent promising strategies to locally enhance drug delivery in solid tumors and improve outcomes, their application in intracranial malignancies remains unexplored. We hypothesized that the combined abilities of closed-loop trans-skull Magnetic Resonance Imaging guided Focused Ultrasound (MRgFUS) hyperthermia with those of thermosensitive drugs can alleviate challenges in drug delivery and improve survival in gliomas. Methods: To conduct our investigations, we first designed a closed loop MR-guided Focused Ultrasound (MRgFUS) system for localized trans-skull hyperthermia (ΔT < 0.5 °C) in rodents and established safety thresholds in healthy mice. To assess the abilities of the developed system and proposed therapeutic strategy for FUS-triggered chemotherapy release we employed thermosensitive liposomal Dox (TSL-Dox) and tested it in two different glioma tumor models (F98 in rats and GL261 in mice). To quantify Dox delivery and changes in the transvascular transport dynamics in the tumor microenvironment we combined fluorescent microscopy, dynamic contrast enhanced MRI (DCE-MRI), and physiologically based pharmacokinetic (PBPK) modeling. Lastly, to assess the therapeutic efficacy of the system and of the proposed therapeutic strategy we performed a survival study in the GL261 glioma bearing mice. Results: The developed closed-loop trans-skull MRgFUS-hyperthermia system that operated at 1.7 MHz, a frequency that maximized the brain (FUS-focus) to skull temperature ratio in mice, was able to attain and maintain the desired focal temperature within a narrow range. Histological evidence (H&E and Nissl) suggests that focal temperature at 41.5 ± 0.5 °C for 10 min is below the threshold for tissue damage. Quantitative analysis of doxorubicin delivery from TSLs with MRgFUS-hyperthermia demonstrated 3.5-fold improvement in cellular uptake in GL261 glioma mouse tumors (p < 0.001) and 5-fold increase in delivery in F98 glioma rat tumors (p < 0.05), as compared to controls (TSL-Dox-only). Moreover, PBPK modeling of drug transport that was calibrated using the experimental data indicated that thermal stress could lead to significant improvement in the transvascular transport (2.3-fold increase in the vessel diffusion coefficient; P < 0.001), in addition to promoting targeted Dox release. Prospective experimental investigations with DCE-MRI during FUS-hyperthermia, supported these findings and provided evidence that moderate thermal stress (≈41 °C for up to 10 min) can promote acute changes in the vascular transport dynamics in the brain tumor microenvironment (Ktrans value for control vs. FUS was 0.0097 and 0.0148 min-1, respectively; p = 0.026). Crucially, survival analysis demonstrated significant improvement in the survival in the TSL-Dox-FUS group as compared to TSL-Dox-only group (p < 0.05), providing supporting evidence on the therapeutic potential of the proposed strategy. Conclusions: Our investigations demonstrated that spatially controlled thermal stress can be attained and sustained in the mouse brain, using a trans-skull closed-loop MRgFUS system, and used to promote the effective delivery of chemotherapy in gliomas from thermosensitive drugs. This system also allowed us to conduct mechanistic investigations that resulted in the refinement of our understanding on the role of thermal stress in augmenting mass and drug transport in brain tumors. Overall, our study established a new paradigm for effective drug delivery in brain tumors based on closed-loop ultrasound-mediated thermal stress and thermosensitive drugs.
Collapse
|
10
|
Wang D, Adams MS, Jones PD, Liu D, Burdette EC, Diederich CJ. High contrast ultrasonic method with multi-spatiotemporal compounding for monitoring catheter-based ultrasound thermal therapy: Development and Ex Vivo Evaluations. IEEE Trans Biomed Eng 2021; 68:3131-3141. [PMID: 33755552 DOI: 10.1109/tbme.2021.3067910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Changes in ultrasound backscatter energy (CBE) imaging can monitor thermal therapy. Catheter-based ultrasound (CBUS) can treat deep tumors with precise spatial control of energy deposition and ablation zones, of which CBE estimation can be limited by low contrast and robustness due to small or inconsistent changes in ultrasound data. This study develops a multi-spatiotemporal compounding CBE (MST-CBE) imaging approach for monitoring specific to CBUS thermal therapy. METHODS Ex vivo thermal ablations were performed with stereotactic positioning of a 180 directional CBUS applicator, temperature monitoring probes, endorectal US probe, and subsequent lesion sectioning and measurement. Five frames of raw radiofrequency data were acquired throughout in 15s intervals. Using window-by-window estimation methods, absolute and positive components of MST-CBE images at each point were obtained by the compounding ratio of squared envelope data within an increasing spatial size in each short-time window. RESULTS Compared with conventional US, Nakagami, and CBE imaging, the detection contrast and robustness quantified by tissue-modification-ratio improved by 37.24.7 (p<0.001), 37.55.2 (p<0.001), and 6.44.0 dB (p<0.05) in the MST-CBE imaging, respectively. Correlation coefficient and bias between cross-sectional dimensions of the ablation zones measured in tissue sections and estimated from MST-CBE were up to 0.91 (p<0.001) and -0.02 mm2, respectively. CONCLUSION The MST-CBE approach can monitor the detailed changes within target tissues and effectively characterize the dimensions of the ablation zone during CBUS energy deposition. SIGNIFICANCE The MST-CBE approach could be practical for improved accuracy and contrast of monitoring and evaluation for CBUS thermal therapy.
Collapse
|
11
|
Keserci B, Duc NM, Nadarajan C, Huy HQ, Saizan A, Wan Ahmed WA, Osman K, Abdullah MS. Volumetric MRI-guided, high-intensity focused ultrasound ablation of uterine leiomyomas: ASEAN preliminary experience. ACTA ACUST UNITED AC 2021; 26:207-215. [PMID: 32209511 DOI: 10.5152/dir.2019.19157] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE We sought to present our preliminary experience on the effectiveness and safety of magnetic resonance imaging (MRI)-guided, high-intensity focused ultrasound (HIFU) therapy using a volumetric ablation technique in the treatment of Association of Asian Nations (ASEAN) patients with symptomatic uterine leiomyomas. METHODS This study included 33 women who underwent HIFU treatment. Tissue characteristics of leiomyomas were assessed based on T2- and T1-weighted MRI. The immediate nonperfused volume (NPV) ratio and the treatment effectiveness of MRI-guided HIFU on the basis of the degrees of volume reduction and improvement in transformed symptom severity score (SSS) were assessed. RESULTS The median immediate NPV ratio was 89.8%. Additionally, the median acoustic sonication power and HIFU treatment durations were 150 W and 125 min, respectively. At six-month follow-up, the median leiomyoma volume had decreased from 139 mL at baseline to 84 mL and the median transformed SSS had decreased from 56.2 at baseline to 18.8. No major adverse events were observed. CONCLUSION The preliminary results demonstrated that volumetric MRI-guided HIFU therapy for the treatment of symptomatic leiomyomas in ASEAN patients appears to be clinically acceptable with regard to treatment effectiveness and safety.
Collapse
Affiliation(s)
- Bilgin Keserci
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia;Department of Radiology, Hospital Universiti Sains Malaysia, USM 16150 Kubang Kerian, Kelantan, Malaysia
| | - Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University School of Medicine, Ho Chi Minh City, Vietnam
| | - Chandran Nadarajan
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia;Department of Radiology, Hospital Universiti Sains Malaysia, USM 16150 Kubang Kerian, Kelantan, Malaysia
| | - Huynh Quang Huy
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Aishah Saizan
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia;Department of Radiology, Hospital Universiti Sains Malaysia, USM 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wan Aireene Wan Ahmed
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia;Department of Radiology, Hospital Universiti Sains Malaysia, USM 16150 Kubang Kerian, Kelantan, Malaysia
| | - Khalid Osman
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia;Department of Radiology, Hospital Universiti Sains Malaysia, USM 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Shafie Abdullah
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia;Department of Radiology, Hospital Universiti Sains Malaysia, USM 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
12
|
Payne A, Merrill R, Minalga E, Hadley JR, Odeen H, Hofstetter LW, Johnson S, Tunon de Lara C, Auriol S, Recco S, Dumont E, Parker DL, Palussiere J. A Breast-Specific MR Guided Focused Ultrasound Platform and Treatment Protocol: First-in-Human Technical Evaluation. IEEE Trans Biomed Eng 2021; 68:893-904. [PMID: 32784128 PMCID: PMC7878578 DOI: 10.1109/tbme.2020.3016206] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This paper presents and evaluates a breast-specific magnetic resonance guided focused ultrasound (MRgFUS) system. A first-in-human evaluation demonstrates the novel hardware, a sophisticated tumor targeting algorithm and a volumetric magnetic resonance imaging (MRI) protocol. METHODS At the time of submission, N = 10 patients with non-palpable T0 stage breast cancer have been treated with the breast MRgFUS system. The described tumor targeting algorithm is evaluated both with a phantom test and in vivo during the breast MRgFUS treatments. Treatments were planned and monitored using volumetric MR-acoustic radiation force imaging (MR-ARFI) and temperature imaging (MRTI). RESULTS Successful technical treatments were achieved in 80 % of the patients. All patients underwent the treatment with no sedation and 60 % of participants had analgesic support. The total MR treatment time ranged from 73 to 114 minutes. Mean error between desired and achieved targeting in a phantom was 2.9 ±1.8 mm while 6.2 ±1.9 mm was achieved in patient studies, assessed either with MRTI or MR-ARFI measurements. MRTI and MR-ARFI were successful in 60 % and 70 % of patients, respectively. CONCLUSION The targeting accuracy allows the accurate placement of the focal spot using electronic steering capabilities of the transducer. The use of both volumetric MRTI and MR-ARFI provides complementary treatment planning and monitoring information during the treatment, allowing the treatment of all breast anatomies, including homogeneously fatty breasts.
Collapse
|
13
|
Lam NFD, Rivens I, Giles SL, Harris E, deSouza NM, Ter Haar G. Quantitative prediction of the extent of pelvic tumour ablation by magnetic resonance-guided high intensity focused ultrasound. Int J Hyperthermia 2021; 38:1111-1125. [PMID: 34325608 DOI: 10.1080/02656736.2021.1959658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/19/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Patient suitability for magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) therapy of pelvic tumors is currently assessed by visual estimation of the proportion of tumor that can be reached by the device's focus (coverage). Since it is important to assess whether enough energy reaches the tumor to achieve ablation, a methodology for estimating the proportion of the tumor that can be ablated (treatability) was developed. Predicted treatability was compared against clinically achieved thermal ablation. METHODS MR Dixon sequence images of five patients with recurrent gynecological tumors were acquired during their treatment. Acousto-thermal simulations were performed using k-Wave for three exposure points (the deepest and shallowest reachable focal points within the tumor, identified from tumor coverage analysis, and a point halfway in-between) per patient. Interpolation between the resulting simulated ablated tissue volumes was used to estimate the maximum treatable depth and hence, tumor treatability. Predicted treatability was compared both to predicted tumor coverage and to the clinically treated tumor volume. The intended and simulated volumes and positions of ablated tissues were compared. RESULTS Predicted treatability was less than coverage by 52% (range: 31-78%) of the tumor volume. Predicted and clinical treatability differed by 9% (range: 1-25%) of tumor volume. Ablated tissue volume and position varied with beam path length through tissue. CONCLUSION Tumor coverage overestimated patient suitability for MRgHIFU therapy. Employing patient-specific simulations improved treatability assessment. Patient treatability assessment using simulations is feasible.
Collapse
Affiliation(s)
| | - Ian Rivens
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| | - Sharon L Giles
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Harris
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| | - Nandita M deSouza
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Gail Ter Haar
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| |
Collapse
|
14
|
Lau LW, Eranki A, Celik H, Kim A, Kim PCW, Sharma KV, Yarmolenko PS. Are Current Technical Exclusion Criteria for Clinical Trials of Magnetic Resonance-Guided High-Intensity Focused Ultrasound Too Restrictive?: Early Experiences at a Pediatric Hospital. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1849-1855. [PMID: 32227606 DOI: 10.1002/jum.15259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Certain technical criteria must be met to ensure the treatment safety of magnetic resonance-guided high-intensity focused ultrasound. We retrospectively reviewed how our enrollment criteria were applied from 2014 to 2017 in a clinical trial of magnetic resonance-guided high-intensity focused ultrasound ablation of recurrent malignant and locally aggressive benign solid tumors. Among the 36 screened patients between 2014 and 2017, more than one-third were excluded for technical exclusion criteria such as the anatomic location and proximity to prosthetics. Overall, patients were difficult to accrue for this trial, given the incidence of these tumors. To increase potential accrual, screening exclusion criteria could be more generalized and centered on the ability to achieve an acceptable treatment safety margin, rather than specifically excluding on the basis of general anatomic areas.
Collapse
Affiliation(s)
- Lung W Lau
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Avinash Eranki
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Haydar Celik
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
- Center for Interventional Oncology, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - AeRang Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Peter C W Kim
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Karun V Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Pavel S Yarmolenko
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| |
Collapse
|
15
|
Li C, Jin C, Liang T, Li X, Wang R, Zhang Y, Yang J. Magnetic resonance-guided high-intensity focused ultrasound of uterine fibroids: whole-tumor quantitative perfusion for prediction of immediate ablation response. Acta Radiol 2020; 61:1125-1133. [PMID: 31779469 PMCID: PMC7406966 DOI: 10.1177/0284185119891692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background In magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) treatment of uterine fibroids, the immediate ablation response is significantly affected by blood perfusion. The variability of measurement for blood perfusion is critical due to the inherent non-uniformity of tumor perfusion and its dependence on reproducible region of interest (ROI) placement. Purpose To investigate the value of whole-tumor ROI (ROIwt) analysis for quantitative perfusion in predicting immediate ablation response of uterine fibroids in MR-HIFU. Material and Methods Thirty-one fibroids in 28 eligible patients were treated with MR-HIFU. Quantitative perfusion parameters (Ktrans, Kep, and Vp) derived from dynamic contrast-enhanced MRI were obtained before MR-HIFU treatment. The ROIwt and single-layer ROI (ROIsl) were used for quantitative perfusion analysis. T1 contrast-enhanced MRI immediately after MR-HIFU treatment was conducted to determine the non-perfused volume ratio (NPVR). Intraclass correlation coefficient (ICC) was used for consistency test. Spearman’s correlation and multivariate linear regression were used to investigate the predictors of the NPVR. Received operating characteristic (ROC) curve was used to test the predictive efficacy of quantitative perfusion parameter. Results The intra- and inter-observer ICC of the quantitative perfusion parameters from ROIwt were higher than those from ROIsl. Multivariate analysis showed that the Ktrans of ROIwt was a predictor of the immediate ablation response. ROC analysis displayed that the AUC of Ktrans of ROIwt is 0.817 in predicting the ablation response. Conclusion Pretreatment Ktrans of ROIwt is more reliable and stable than that of ROIsl. It could be a predictor for the immediate ablation response of uterine fibroids in MR-HIFU.
Collapse
Affiliation(s)
- Chenxia Li
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University. Xi’an, PR China
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, PR China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, PR China
| | - Ting Liang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University. Xi’an, PR China
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, PR China
| | - Xiang Li
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, PR China
| | - Rong Wang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, PR China
| | - Yuelang Zhang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, PR China
| | - Jian Yang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University. Xi’an, PR China
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University. Xi’an, PR China
| |
Collapse
|
16
|
Sebeke LC, Rademann P, Maul AC, Schubert-Quecke C, Annecke T, Yeo SY, Castillo-Gómez JD, Schmidt P, Grüll H, Heijman E. Feasibility study of MR-guided pancreas ablation using high-intensity focused ultrasound in a healthy swine model. Int J Hyperthermia 2020; 37:786-798. [PMID: 32619373 DOI: 10.1080/02656736.2020.1782999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Purpose: Pancreatic cancer is typically diagnosed in a late stage with limited therapeutic options. For those patients, ultrasound-guided high-intensity focused ultrasound (US-HIFU) can improve local control and alleviate pain. However, MRI-guided HIFU (MR-HIFU) has not yet been studied extensively in this context. To facilitate related research and accelerate clinical translation, we report a workflow for the in vivo HIFU ablation of the porcine pancreas under MRI guidance.Materials and methods: The pancreases of five healthy German landrace pigs (35-58 kg) were sonicated using a clinical MR-HIFU system. Acoustic access to the pancreas was supported by a specialized diet and a hydrogel compression device for bowel displacement. Organ motion was suspended using periods of apnea. The size of the resulting thermal lesions was assessed using the thermal threshold- and dose profiles, non-perfused volume, and gross examination. The effect of the compression device on beam path length was assessed using MRI imaging.Results: Eight of ten treatments resulted in clearly visible damage in the target tissue upon gross examination. Five treatments resulted in coagulative necrosis. Good agreement between the four metrics for lesion size and a clear correlation between the delivered energy dose and the resulting lesion size were found. The compression device notably shortened the intra-abdominal beam path.Conclusions: We demonstrated a workflow for HIFU treatment of the porcine pancreas in-vivo under MRI-guidance. This development bears significance for the development of MR-guided HIFU interventions on the pancreas as the pig is the preferred animal model for the translation of pre-clinical research into clinical application.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Pia Rademann
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Alexandra Claudia Maul
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Claudia Schubert-Quecke
- Experimental Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Thorsten Annecke
- Department of Anesthesiology and Intensive Care Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Sin Yuin Yeo
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo-Gómez
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Patrick Schmidt
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Holger Grüll
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, University of Cologne, Cologne, Germany.,Philips Research Eindhoven, High Tech, Eindhoven, The Netherlands
| |
Collapse
|
17
|
Jiang R, Jia S, Qiao Y, Chen Q, Wen J, Liang D, Liu X, Zheng H, Zou C. Real-time volumetric MR thermometry using 3D echo-shifted sequence under an open source reconstruction platform. Magn Reson Imaging 2020; 70:22-28. [DOI: 10.1016/j.mri.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
|
18
|
Lam NFD, Rivens I, Giles SL, Harris E, deSouza NM, ter Haar G. Prediction of pelvic tumour coverage by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) from referral imaging. Int J Hyperthermia 2020; 37:1033-1045. [PMID: 32873089 PMCID: PMC8352374 DOI: 10.1080/02656736.2020.1812736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patient suitability for magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) ablation of pelvic tumors is initially evaluated clinically for treatment feasibility using referral images, acquired using standard supine diagnostic imaging, followed by MR screening of potential patients lying on the MRgHIFU couch in a 'best-guess' treatment position. Existing evaluation methods result in ≥40% of referred patients being screened out because of tumor non-targetability. We hypothesize that this process could be improved by development of a novel algorithm for predicting tumor coverage from referral imaging. METHODS The algorithm was developed from volunteer images and tested with patient data. MR images were acquired for five healthy volunteers and five patients with recurrent gynaecological cancer. Subjects were MR imaged supine and in oblique-supine-decubitus MRgHIFU treatment positions. Body outline and bones were segmented for all subjects, with organs-at-risk and tumors also segmented for patients. Supine images were aligned with treatment images to simulate a treatment dataset. Target coverage (of patient tumors and volunteer intra-pelvic soft tissue), i.e. the volume reachable by the MRgHIFU focus, was quantified. Target coverage predicted from supine imaging was compared to that from treatment imaging. RESULTS Mean (±standard deviation) absolute difference between supine-predicted and treatment-predicted coverage for 5 volunteers was 9 ± 6% (range: 2-22%) and for 4 patients, was 12 ± 7% (range: 4-21%), excluding a patient with poor acoustic coupling (coverage difference was 53%). CONCLUSION Prediction of MRgHIFU target coverage from referral imaging appears feasible, facilitating further development of automated evaluation of patient suitability for MRgHIFU.
Collapse
Affiliation(s)
| | - Ian Rivens
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| | - Sharon L. Giles
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Emma Harris
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| | - Nandita M. deSouza
- The CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Gail ter Haar
- Joint Department of Physics, The Institute of Cancer Research, London, UK
| |
Collapse
|
19
|
Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1025-1043. [PMID: 30773377 PMCID: PMC6475527 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/08/2023]
Abstract
Hyperthermia therapy (HT) raises tissue temperature to 40-45°C for up to 60 min. Hyperthermia is one of the most potent sensitizers of radiation therapy (RT). Ultrasound-mediated HT for radiosensitization has been used clinically since the 1960s. Recently, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), which has been approved by the United States Food and Drug Administration for thermal ablation therapy, has been adapted for HT. With emerging clinical trials using MRgHIFU HT for radiosensitization, there is a pressing need to review the ultrasound HT technology. The objective of this review is to overview existing HT technology, summarize available ultrasound HT devices, evaluate clinical studies combining ultrasound HT with RT and discuss challenges and future directions.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Michael B Altman
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Andrei Laszlo
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - William Straube
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
20
|
Svedin BT, Payne A, Parker DL. Simultaneous proton resonance frequency shift thermometry and T 1 measurements using a single reference variable flip angle T 1 method. Magn Reson Med 2019; 81:3138-3152. [PMID: 30652347 DOI: 10.1002/mrm.27643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Implement simultaneous proton resonance frequency (PRF) shift and T1 measurements with equivalent temporal resolution using a single reference variable flip angle method. This novel method allows for simultaneous thermometry in both aqueous and fatty tissue. METHODS This method acquires a single reference image at the lower flip angle and all dynamic images at the higher angle. T1 is calculated using a single reference variable flip angle method, which accounts for the reference image temperature remaining constant. Monte Carlo simulations determined the optimal dynamic flip angle for combined PRF and T1 measurements. This method was evaluated in MR-guided focused ultrasound heating experiments using a gelatin phantom and human cadaver breasts. In vivo measurement precision was demonstrated in healthy female volunteers under nonheating conditions. RESULTS Temperature rise during MR-guided focused ultrasound heating was measured in aqueous tissue with both PRF and T1 . Both measures show good qualitative agreement in both space and time in aqueous tissue. The T1 change due to temperature increase was measured in fat, demonstrating the expected temporal response. The dynamic flip angle that produces optimal SNR for PRF measurements is lower than the optimal angle for T1 measurements, necessitating the selection of a compromise angle. CONCLUSION The single reference variable flip angle method provides a reliable way to simultaneously measure PRF temperature and T1 change and overcomes PRF's inability to simultaneously monitor temperature in aqueous and adipose tissues. Future work will calibrate T1 change to temperature, enabling real-time temperature in fat and increasing patient safety and treatment efficacy during thermal interventional treatments.
Collapse
Affiliation(s)
- Bryant T Svedin
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Allison Payne
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| |
Collapse
|
21
|
Zhu L, Partanen A, Talcott MR, Gach HM, Greco SC, Henke LE, Contreras JA, Zoberi I, Hallahan DE, Chen H, Altman MB. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int J Hyperthermia 2019; 36:1147-1159. [PMID: 31752562 PMCID: PMC7105895 DOI: 10.1080/02656736.2019.1685684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose: To evaluate the feasibility and assess safety parameters of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT; heating to 40-45 °C) in various pelvic targets in a porcine model in vivo.Methods: Thirteen HT treatments were performed in six pigs with a commercial MRgHIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, Canada) to muscle adjacent to the ventral/dorsal bladder wall and uterus to administer 42 °C (±1°) for 30 min (±5%) using an 18-mm target diameter and 100 W power. Feasibility was assessed using accuracy, uniformity, and MR-thermometry performance-based metrics. Safety parameters were assessed for tissues in the targets and beam-path by contrast-enhanced MRI, gross-pathology and histopathology.Results: Across all HT sessions, the mean difference between average temperature (Tavg) and the target temperature within the target region-of-interest (tROI, the cross-section of the heated volume at focal depth) was 0.51 ± 0.33 °C. Within the tROI, the temperature standard deviation averaged 1.55 ± 0.31 °C, the average 30-min Tavg variation was 0.80 ± 0.17 °C, and the maximum difference between Tavg and the 10th- or 90th-percentile temperature averaged 2.01 ± 0.44 °C. The average time to reach ≥41 °C and cool to ≤40 °C within the tROI at the beginning and end of treatment was 47.25 ± 27.47 s and 66.37 ± 62.68 s, respectively. Compared to unheated controls, no abnormally-perfused tissue or permanent damage was evident in the MR images, gross pathology or histological analysis.Conclusions: MRgHIFU-mediated HT is feasible and safety assessment is satisfactory for treating an array of clinically-mimicking pelvic geometries in a porcine model in vivo, implying the technique may have utility in treating pelvic targets in human patients.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Ari Partanen
- Clinical Science, Profound Medical Inc., Mississauga, Ontario, Canada
| | - Michael R. Talcott
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - H. Michael Gach
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, 63108, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Suellen C. Greco
- Division of Comparative Medicine, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Lauren E. Henke
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Jessika A. Contreras
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Michael B. Altman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| |
Collapse
|
22
|
Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, Wodzak Staruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. Int J Hyperthermia 2018; 36:196-203. [PMID: 30541350 PMCID: PMC6430695 DOI: 10.1080/02656736.2018.1550815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 10/27/2022] Open
Abstract
Thermosensitive liposomal doxorubicin (LTSL-Dox) combined with mild hyperthermia enhances the localized delivery of doxorubicin (Dox) within a heated region. The optimal heating duration and the impact of extended heating on systemic drug distribution are unknown. Here we evaluated local and systemic Dox delivery with two different mild hyperthermia durations (42 °C for 10 or 40 minutes) in a Vx2 rabbit tumor model. We hypothesized that longer duration of hyperthermia would increase Dox concentration in heated tumors without increasing systemic exposure. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the prescribed heating durations. Forty-minutes of heating resulted in a nearly 6-fold increase in doxorubicin concentration in heated vs unheated tumors in the same animals. Therapeutic ratio, defined as the ratio of Dox delivered into the heated tumor vs the heart, increased from 1.9-fold with 10 minutes heating to 4.4-fold with 40 minutes heating. MR-HIFU can be used to guide, deliver and monitor mild hyperthermia of a Vx2 tumor model in a rabbit model, and an increased duration of heating leads to higher Dox deposition from LTSL-Dox in a target tumor without a concomitant increase in systemic exposure. Results from this preclinical study can be used to help establish clinical treatment protocols for hyperthermia mediated drug delivery.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Profound Medical, Mississauga, ON, Canada
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joris Nofiele
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Theodore Laetsch
- Children’s Health, Dallas, TX, USA
- Department of Pediatrics, Division of Hematology-Oncology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
23
|
Seward MC, Daniel GB, Ruth JD, Dervisis N, Partanen A, Yarmolenko PS. Feasibility of targeting canine soft tissue sarcoma with MR-guided high-intensity focused ultrasound. Int J Hyperthermia 2018; 35:205-215. [DOI: 10.1080/02656736.2018.1489072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Marion C. Seward
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Gregory B. Daniel
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jeffrey D. Ruth
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Nikolaos Dervisis
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Ari Partanen
- Profound Medical Inc, Mississauga, Ontario, Canada
| | - Pavel S. Yarmolenko
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| |
Collapse
|
24
|
Svedin BT, Dillon CR, Parker DL. Effect of k-space-weighted image contrast and ultrasound focus size on the accuracy of proton resonance frequency thermometry. Magn Reson Med 2018; 81:247-257. [PMID: 30058224 DOI: 10.1002/mrm.27383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE To construct a predictive model that describes how the duration and symmetry of a k-space-weighted image contrast (KWIC) window affects the temporal resolution of differently sized ultrasound foci when using a pseudo-golden angle stack-of-stars acquisition. METHODS We performed a modulation analysis of proton resonance frequency temperature measurements to create the temporal modulation transfer function for KWIC windows of different symmetry and temporal duration. We reconstructed simulated ultrasound heating trajectories and stack-of-stars k-space data as well as experimental phantom data using the same trajectories. Images were reconstructed using symmetric and asymmetric KWIC windows of 3 different temporal durations. Simulated results were compared against temporal modulation transfer function predictions, experimental results, and the original simulated temperatures. RESULTS The temporal modulation transfer function shows that temporal resolution with KWIC reconstructions depend on the object size. The KWIC window duration affected SNR and severity of undersampling artifacts. Accuracy and response delay improved as the KWIC window duration decreased or the size of the heated region within the KWIC plane increased. Precision worsened as the window duration decreased. Using a symmetric window eliminated the response delay to heated region size but introduced a large reconstruction delay. CONCLUSION The accuracy and precision of proton resonance frequency temperature measurements from a stack-of-stars acquisition using a sliding KWIC window reconstruction are dependent on the size of the KWIC window and the size and shape of the heated region. The temporal modulation transfer function of KWIC reconstructions for any object size can predict the temporal response to changes in signal being acquired, such as temperature and contrast enhancement.
Collapse
Affiliation(s)
- Bryant T Svedin
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Christopher R Dillon
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Interleaved Mapping of Temperature and Longitudinal Relaxation Rate to Monitor Drug Delivery During Magnetic Resonance-Guided High-Intensity Focused Ultrasound-Induced Hyperthermia. Invest Radiol 2018; 52:620-630. [PMID: 28598900 DOI: 10.1097/rli.0000000000000392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a method to heat lesions noninvasively to a stable, elevated temperature and a well-suited method to induce local hyperthermia (41°C-43°C) in deep-seated tissues. Magnetic Resonance (MR) imaging provides therapy planning on anatomical images and offers temperature feedback based on near-real-time MR thermometry. Although constant acquisition of MR thermometry data is crucial to ensure prolonged hyperthermia, it limits the freedom to perform measurements of other MR parameters, which are of interest during hyperthermia treatments. In image-guided drug delivery applications, co-encapsulation of paramagnetic MR contrast agents with a drug inside temperature-sensitive liposomes (TSLs) allows to visualize hyperthermia-triggered drug delivery through changes of the longitudinal relaxation rate R1. While the drug accumulates in the heated tumor tissue, R1 changes can be used for an estimate of the tumor drug concentration. The main objective of this study was to demonstrate that interleaved MR sequences are able to monitor temperature with an adequate temporal resolution and could give a reasonable estimate of the achieved tumor drug concentration through R1 changes. To this aim, in vitro validation tests and an in vivo proof-of-concept study were performed. MATERIALS AND METHODS All experiments were performed on a clinical 3-T MR-HIFU system adapted with a preclinical setup. The validity of the R1 values and the temperature maps stability were evaluated in phantom experiments and in ex vivo porcine muscle tissue. In vivo experiments were performed on rats bearing a 9L glioma tumor on their hind limb. All animals (n = 4 HIFU-treated, n = 4 no HIFU) were injected intravenously with TSLs co-encapsulating doxorubicin and gadoteridol as contrast agent. The TSL injection was followed by either 2 times 15 minutes of MR-HIFU-induced hyperthermia or a sham treatment. R1 maps were acquired before, during, and after sonication, using a single slice Inversion Recovery Look-Locker (IR-LL) sequence (field of view [FOV], 50 × 69 mm; in-plane resolution, 0.52 × 0.71 mm; slice thickness, 3 mm; 23 phases of 130 milliseconds; 1 full R1 map every 2 minutes). The R1 maps acquired during treatment were interleaved with 2 perpendicular proton resonance frequency shift (PRFS) MR thermometry slices (dynamic repetition time, 8.6 seconds; FOV, 250 × 250 mm; 1.4 × 1.4 mm in-plane resolution; 4 mm slice thickness). Tumor doxorubicin concentrations were determined fluorometrically. RESULTS In vitro results showed a slight but consistent overestimation of the measured R1 values compared with calibrated R1 values, regardless whether the R1 was acquired with noninterleaved IR-LL or interleaved. The average treatment cell temperature had a slightly higher temporal standard deviation for the interleaved PRFS sequence compared with the noninterleaved PRFS sequence (0.186°C vs 0.101°C, respectively). The prolonged time in between temperature maps due to the interleaved IR-LL sequence did not degrade the temperature stability during MR-HIFU treatment (Taverage = 40.9°C ± 0.3°C). Upon heat treatment, some tumors showed an R1 increase in a large part of the tumor while other tumors hardly showed any ΔR1. The tumor doxorubicin concentration showed a linear correlation with the average ΔR1 during both sonications (n = 8, Radj = 0.933), which was higher than for the ΔR1 measured after tumor cooldown (averaged for both sonications, n = 8, Radj = 0.877). CONCLUSIONS The new approach of interleaving different MR sequences was applied to simultaneously acquire R1 maps and PRFS thermometry scans during a feedback-controlled MR-HIFU-induced hyperthermia treatment. Interleaved acquisition did not compromise speed or accuracy of each scan. The ΔR1 acquired during treatment was used to visualize and quantify hyperthermia-triggered release of gadoteridol from TSLs and better reflected the intratumoral doxorubicin concentrations than the ΔR1 measured after cooldown of the tumor, exemplifying the benefit of interleaving R1 maps with temperature maps during drug delivery. Our study serves as an example for interleaved MR acquisition schemes, which introduce a higher flexibility in speed, sequence optimization, and timing.
Collapse
|
26
|
Deenen D, Maljaars E, Sebeke L, de Jager B, Heijman E, Grüll H, Heemels W. Offset-free model predictive control for enhancing MR-HIFU hyperthermia in cancer treatment. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.ifacol.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Iwahashi T, Tang T, Matsui K, Fujiwara K, Itani K, Yoshinaka K, Azuma T, Takagi S, Sakuma I. Visualization of Temperature Distribution around Focal Area and Near Fields of High Intensity Focused Ultrasound Using a 3D Measurement System. ADVANCED BIOMEDICAL ENGINEERING 2018. [DOI: 10.14326/abe.7.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
| | | | | | | | | | - Kiyoshi Yoshinaka
- Health Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Shu Takagi
- Department of Engineering, University of Tokyo
| | | |
Collapse
|
28
|
Mougenot C, Moonen C. Magnetic Resonance-guided High Intensity Focused Ultrasound in the presence of biopsy markers. J Ther Ultrasound 2017; 5:25. [PMID: 28944056 PMCID: PMC5607585 DOI: 10.1186/s40349-017-0103-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/08/2017] [Indexed: 01/31/2023] Open
Abstract
Background Magnetic Resonance guided High Intensity Focused ultrasound (MR-HIFU) offers precise non-invasive thermotherapy for clinical applications such as the treatment of breast lesions. However, patients with a biopsy marker are usually not eligible for MR-HIFU treatment. This study investigates the interaction of some MR-compatible markers with MR-HIFU thermotherapy. Methods The MR-HIFU compatibility of 14 markers (6 Gold Anchor and 4 Visicoil markers in gold, 1 Visicoil marker in brass, 3 BiomarC markers in carbon coated) were tested using the Sonalleve breast MR-HIFU platform at 1.5 T. The impact of these markers was assessed by counting the number of voxels with low signal intensity on MR thermal maps and by comparing temperature increases induced by the HIFU beam. Results Most markers were visible on thermal maps with an apparent size 4.2 ± 3.1 and 2 ± 1.8 times larger than their respective actual width and length. The volume of masked voxels was for most of the markers much larger than the actual volume of the marker (up to a factor 65.1). However, it represents only a small fraction of the 12 mm diameter targeted region (up to 8.8 voxels which represents 19% of this targeted region). Some differences in the maximal temperature increase were observed especially for BiomarC 1 × 3 and BiomarC 2 × 4 markers enhancing the heating. These differences were less pronounced at the edge of the targeted region. Conclusion All markers had a minimal impact on the volume above the thermal dose threshold of 240 EM since the differences measured were smaller than the in-plane image resolution of 1.56 mm.
Collapse
Affiliation(s)
- Charles Mougenot
- University Medical Center Utrecht, Heidelberglaan 100, Room Q03.4.21, 3584 CX Utrecht, The Netherlands
| | - Chrit Moonen
- University Medical Center Utrecht, Heidelberglaan 100, Room Q03.4.21, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
29
|
Farr N, Wang YN, D'Andrea S, Starr F, Partanen A, Gravelle KM, McCune JS, Risler LJ, Whang SG, Chang A, Hingorani SR, Lee D, Hwang JH. Hyperthermia-enhanced targeted drug delivery using magnetic resonance-guided focussed ultrasound: a pre-clinical study in a genetic model of pancreatic cancer. Int J Hyperthermia 2017; 34:284-291. [PMID: 28715967 DOI: 10.1080/02656736.2017.1336675] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The lack of effective treatment options for pancreatic cancer has led to a 5-year survival rate of just 8%. Here, we evaluate the ability to enhance targeted drug delivery using mild hyperthermia in combination with the systemic administration of a low-temperature sensitive liposomal formulation of doxorubicin (LTSL-Dox) using a relevant model for pancreas cancer. MATERIALS AND METHODS Experiments were performed in a genetically engineered mouse model of pancreatic cancer (KPC mice: LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre). LTSL-Dox or free doxorubicin (Dox) was administered via a tail vein catheter. A clinical magnetic resonance-guided high intensity focussed ultrasound (MR-HIFU) system was used to plan treatment, apply the HIFU-induce hyperthermia and monitor therapy. Post-therapy, total Dox concentration in tumour tissue was determined by HPLC and confirmed with fluorescence microscopy. RESULTS Localized hyperthermia was successfully applied and monitored with a clinical MR-HIFU system. The mild hyperthermia heating algorithm administered by the MR-HIFU system resulted in homogenous heating within the region of interest. MR-HIFU, in combination with LTSL-Dox, resulted in a 23-fold increase in the localised drug concentration and nuclear uptake of doxorubicin within the tumour tissue of KPC mice compared to LTSL-Dox alone. Hyperthermia, in combination with free Dox, resulted in a 2-fold increase compared to Dox alone. CONCLUSION This study demonstrates that HIFU-induced hyperthermia in combination with LTSL-Dox can be a non-invasive and effective method in enhancing the localised delivery and penetration of doxorubicin into pancreatic tumours.
Collapse
Affiliation(s)
- Navid Farr
- a Department of Bioengineering , University of Washington , Seattle , WA , USA
| | - Yak-Nam Wang
- b Applied Physics Laboratory , University of Washington , Seattle , WA , USA
| | - Samantha D'Andrea
- c Department of Medicine , University of Washington , Seattle , WA , USA
| | - Frank Starr
- b Applied Physics Laboratory , University of Washington , Seattle , WA , USA
| | - Ari Partanen
- d Philips, Clinical Science MR Therapy , Andover , MA , USA
| | - Kayla M Gravelle
- c Department of Medicine , University of Washington , Seattle , WA , USA
| | - Jeannine S McCune
- e Pharmacokinetics Laboratory , University of Washington , Seattle , WA , USA
| | - Linda J Risler
- e Pharmacokinetics Laboratory , University of Washington , Seattle , WA , USA
| | - Stella G Whang
- c Department of Medicine , University of Washington , Seattle , WA , USA
| | - Amy Chang
- f Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Sunil R Hingorani
- c Department of Medicine , University of Washington , Seattle , WA , USA.,f Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Donghoon Lee
- g Department of Radiology , University of Washington , Seattle , WA , USA
| | - Joo Ha Hwang
- c Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
30
|
Wang M, Zhou Y. Numerical evaluation of the effect of electronically steering a phased array transducer: axially post-focal shifting. Int J Hyperthermia 2017; 33:758-769. [PMID: 28540816 DOI: 10.1080/02656736.2017.1309579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE HIFU has been emerging as an effective and safe modality for the treatment of solid tumours and cancers. The focus shifting range of phased array HIFU transducer is an important safety concern because of the presence of grating lobe in the pre-focal region. However, previous studies were only based on linear acoustic wave model. MATERIALS AND METHODS The nonlinear wave propagation from a 256-element phased array through multiple layered media was simulated using the angular spectrum approach (ASA) in marching fractional steps with the consideration of diffraction, attenuation and non-linearity effects by a second-order operator splitting scheme. The distribution of acoustic intensities, temperature elevations, lesion sizes and grating lobe levels were calculated at various axially post-focal shifting distances and driving frequencies. RESULTS Axially shifting HIFU focus leads to significant increase of the acoustic intensity at the grating lobe, but decrease at the main lobe. The influences on the acoustic field, thermal field and lesion sizes are determined by the shifting distance and driving frequency, and variations can be fit monotonically and linearly. Prediction accuracies by simple regression models are satisfactory. Irreversible tissue coagulation could be generated by the grating lobe at certain conditions. CONCLUSIONS The established nonlinear wave propagation algorithm allows the accurate description of HIFU field and consequently the evaluation of grating lobe and steerability of focus. The influence of focus shifting may be predicted simply. The treatment planning of phased array HIFU ablation could be optimised by setting the appropriate exposure and focus scanning schemes.
Collapse
Affiliation(s)
- Mingjun Wang
- a School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore
| | - Yufeng Zhou
- a School of Mechanical and Aerospace Engineering, Nanyang Technological University , Singapore
| |
Collapse
|
31
|
Ramaekers P, de Greef M, Berriet R, Moonen CTW, Ries M. Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat’s spiral. Phys Med Biol 2017; 62:5021-5045. [DOI: 10.1088/1361-6560/aa716c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Staruch RM, Nofiele J, Walker J, Bing C, Madhuranthakam AJ, Bailey A, Kim YS, Chhabra A, Burns D, Chopra R. Assessment of acute thermal damage volumes in muscle using magnetization-prepared 3D T 2 -weighted imaging following MRI-guided high-intensity focused ultrasound therapy. J Magn Reson Imaging 2017; 46:354-364. [PMID: 28067975 DOI: 10.1002/jmri.25605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate magnetization-prepared 3D T2 -weighted magnetic resonance imaging (MRI) measurements of acute tissue changes produced during ablative MR high-intensity focused ultrasound (MR-HIFU) exposures. MATERIALS AND METHODS A clinical MR-HIFU system (3T) was used to generate thermal lesions (n = 24) in the skeletal muscles of three pigs. T1 -weighted, 2D T2 -weighted, and magnetization-prepared 3D T2 -weighted sequences were acquired before and after therapy to evaluate tissue changes following ablation. Tissues were harvested shortly after imaging, fixed in formalin, and gross-sectioned. Select lesions were processed into whole-mount sections. Lesion dimensions for each imaging sequence (length, width) and for gross sections (diameter of lesion core and rim) were assessed by three physicists. Contrast-to-background ratio between lesions and surrounding muscle was compared. RESULTS Lesion dimensions on T1 and 2D T2 -weighted imaging sequences were well correlated (R2 ∼0.7). The contrast-to-background ratio between lesion and surrounding muscle was 7.4 ± 2.4 for the magnetization-prepared sequence versus 1.7 ± 0.5 for a conventional 2D T2 -weighted acquisition, and 7.0 ± 2.9 for a contrast-enhanced T1 -weighted sequence. Compared with diameter measured on gross pathology, all imaging sequences overestimated the lesion core by 22-33%, and underestimated the lesion rim by 6-13%. CONCLUSION After MR-HIFU exposures, measurements of the acute thermal damage patterns in muscle using a magnetization-prepared 3D T2 -weighted imaging sequence correlate with 2D T2 -weighted and contrast-enhanced T1 -weighted imaging, and all agree well with histology. The magnetization-prepared sequence offers positive tissue contrast and does not require IV contrast agents, and may provide a noninvasive imaging evaluation of the region of acute thermal injury at multiple times during HIFU procedures. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:354-364.
Collapse
Affiliation(s)
- Robert M Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Clinical Sites Research Program, Philips Research North America, Cambridge, Massachusetts, USA
| | - Joris Nofiele
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jamie Walker
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ananth J Madhuranthakam
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - April Bailey
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Young-Sun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis Burns
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
34
|
Chen R, Keserci B, Bi H, Han X, Wang X, Bai W, Wang Y, Yang X, Yang J, Wei J, Seppälä M, Viitala A, Liao Q. The safety and effectiveness of volumetric magnetic resonance-guided high-intensity focused ultrasound treatment of symptomatic uterine fibroids: early clinical experience in China. J Ther Ultrasound 2016; 4:27. [PMID: 27822376 PMCID: PMC5094072 DOI: 10.1186/s40349-016-0072-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Uterine fibroids are the most common benign tumor in women, and surgical intervention is still the main fibroid treatment. Patient demands have encouraged development of less-invasive methods such as high-intensity focused ultrasound (HIFU). This study aimed to evaluate the safety and effectiveness of magnetic resonance-guided high-intensity focused ultrasound therapy using a volumetric ablation technique in the treatment of symptomatic uterine fibroids in China. METHODS One hundred and seven patients were enrolled and treated with magnetic resonance-guided high-intensity focused ultrasound in this study. Clinical efficacy was based on the proportion of patients with fibroid shrinkage (10 % volume reduction or more compared to baseline) at 6 months post treatment as measured with magnetic resonance imaging. The quality of life and symptom outcome was assessed using the uterine fibroid symptom and quality of life questionnaire with symptom severity scoring. Safety was primarily assessed by evaluating the reported adverse events. RESULTS Ninety nine of the 107 treated patients had fibroid shrinkage at 6 months post treatment. Resulting in an overall 93 % (95 % confidence interval 86-97 %) treatment success rate, p value <0.001; the symptom severity scoring and health-related quality of life at 6 months was statistically different from the screening symptom severity scoring at 0.05 level. Of 366 adverse events reported, there were no study procedure-related or device-related serious adverse events were in the study. CONCLUSIONS This study demonstrated that the volumetric magnetic resonance-guided high-intensity focused ultrasound device is safe and technically effective and can be utilized in clinically efficient treatments of symptomatic uterine fibroids. TRIAL REGISTRATION NCT01588899.
Collapse
Affiliation(s)
- Rui Chen
- Department of Obstetrics & Gynecology, Peking University First Hospital, Beijing, China
| | | | - Hui Bi
- Department of Obstetrics & Gynecology, Peking University First Hospital, Beijing, China
| | - Xiaobing Han
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Wenpei Bai
- Department of Obstetrics & Gynecology, Peking University First Hospital, Beijing, China
| | - Yueling Wang
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuedong Yang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Juan Wei
- Philips Research China, Shanghai, China
| | | | | | - Qinping Liao
- Department of Obstetrics & Gynecology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, China
- Department of Obstetrics & Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
35
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
36
|
Jeong JH, Hong GP, Kim YR, Ha JE, Lee KS. Clinical Consideration of Treatment to Ablate Uterine Fibroids with Magnetic Resonance Imaging-guided High Intensity Focused Ultrasound (MRgFUS): Sonalleve. J Menopausal Med 2016; 22:94-107. [PMID: 27617244 PMCID: PMC5016510 DOI: 10.6118/jmm.2016.22.2.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/17/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Objectives Magnetic resonance imaging (MRI)-guided high intensity focused ultrasound surgery (MRgFUS) is a newly emerging non-invasive technique for the treatment of uterine fibroids. The purpose of this study is to review the clinical impact of MRgFUS. Methods This study examined 157 patients. The high intensity focused ultrasound (HIFU) utilized in this study was Philips Achieva 1.5 Tesla MR (Philips Healthcare, Best, the Netherlands) and Sonalleve HIFU system. The patients were followed in post-operative Month 1, Month 3, and Month 6 to investigate any change. Then, these were further classified according to the use of uterine stimulant (oxytocin) in parallel, Funaki Type of uterine fibroid, HIFU intensity, and non-perfused volume (NPV) ratio. Results When the uterine stimulant was utilized, the HIFU intensity was measured at significantly lower levels, compared with the group not using uterine stimulant, and treatment duration was significantly. The NPV ratio was found significantly higher in the group using uterine stimulant. Concerning the correlation between Funaki Type of uterine fibroid and average sonication power, it was found that the closer to Type I, the lower the sonication power, the shorter the treatment duration, and the higher the NPV ratio significantly. Conclusions In this study, it was found that the lower the Funaki Types of uterine fibroids, and the higher the NPV ratio immediately after the operation, the larger the uterine fibroid volume decrease and SSS change were. Also, if uterine stimulant was used in parallel in treatment, treatment duration and HIFU intensity could become shorter and lower.
Collapse
Affiliation(s)
- Jae-Hyeok Jeong
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Gil Pyo Hong
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Yu-Ri Kim
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Jae-Eun Ha
- Department of Obstetrics & Gynecology, Hwa Myung Il Sin Christian Hospital, Busan, Korea
| | - Kyu-Sup Lee
- Department of Obstetrics & Gynecology, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
37
|
Zhu Y, Keserci B, Viitala A, Wei J, Yang X, Wang X. Volumetric MR-guided high-intensity focused ultrasound ablation to treat uterine fibroids through the abdominal scars using scar patch: a case report. J Ther Ultrasound 2016; 4:20. [PMID: 27525101 PMCID: PMC4982143 DOI: 10.1186/s40349-016-0064-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abdominal scars pose a challenge in magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) therapies, limiting patient selection and increasing the risk of skin burns. Especially, scars arising from longitudinal incisions are problematic as they usually lie medially at the lower abdomen where the ultrasound beam has to go through. Volumetric sonication has been shown to efficiently enlarge the ablated volume per sonication, but they nevertheless require more thermal energy to be deposited per sonication which increases the temperature in the near-field area located between the transducer and the target region. CASE PRESENTATION The scar patch was used in three patients undergoing MR-HIFU ablation of fibroids using volumetric technique, one with transverse incision and the other two with longitudinal incision. No severe adverse effects were observed. The relative shrinkage of the fibroid of these patients at 6-month follow-up were 67, 78, and 59 %, respectively. CONCLUSIONS Our preliminary experience suggests that the use of scar patch on MR-HIFU ablation of fibroids using volumetric technique provides an effective treatment option for patients who were previously excluded from MR-HIFU treatment due to the abdominal scars.
Collapse
Affiliation(s)
- Ying Zhu
- Radiology Department, Peking University First Hospital, 8 Xishiku Street, Beijing, 100034 China
| | | | | | - Juan Wei
- Philips Research China, Shanghai, China
| | - Xuedong Yang
- Radiology Department, Peking University First Hospital, 8 Xishiku Street, Beijing, 100034 China
| | - Xiaoying Wang
- Radiology Department, Peking University First Hospital, 8 Xishiku Street, Beijing, 100034 China
| |
Collapse
|
38
|
Magnetic Resonance–Guided High-Intensity Focused Ultrasound Hyperthermia for Recurrent Rectal Cancer: MR Thermometry Evaluation and Preclinical Validation. Int J Radiat Oncol Biol Phys 2016; 95:1259-67. [DOI: 10.1016/j.ijrobp.2016.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 11/19/2022]
|
39
|
Bing C, Staruch RM, Tillander M, Köhler MO, Mougenot C, Ylihautala M, Laetsch TW, Chopra R. Drift correction for accurate PRF-shift MR thermometry during mild hyperthermia treatments with MR-HIFU. Int J Hyperthermia 2016; 32:673-87. [PMID: 27210733 DOI: 10.1080/02656736.2016.1179799] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED There is growing interest in performing hyperthermia treatments with clinical magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) therapy systems designed for tissue ablation. During hyperthermia treatment, however, due to the narrow therapeutic window (41-45 °C), careful evaluation of the accuracy of proton resonant frequency (PRF) shift MR thermometry for these types of exposures is required. PURPOSE The purpose of this study was to evaluate the accuracy of MR thermometry using a clinical MR-HIFU system equipped with a hyperthermia treatment algorithm. METHODS Mild heating was performed in a tissue-mimicking phantom with implanted temperature sensors using the clinical MR-HIFU system. The influence of image-acquisition settings and post-acquisition correction algorithms on the accuracy of temperature measurements was investigated. The ability to achieve uniform heating for up to 40 min was evaluated in rabbit experiments. RESULTS Automatic centre-frequency adjustments prior to image-acquisition corrected the image-shifts in the order of 0.1 mm/min. Zero- and first-order phase variations were observed over time, supporting the use of a combined drift correction algorithm. The temperature accuracy achieved using both centre-frequency adjustment and the combined drift correction algorithm was 0.57° ± 0.58 °C in the heated region and 0.54° ± 0.42 °C in the unheated region. CONCLUSION Accurate temperature monitoring of hyperthermia exposures using PRF shift MR thermometry is possible through careful implementation of image-acquisition settings and drift correction algorithms. For the evaluated clinical MR-HIFU system, centre-frequency adjustment eliminated image shifts, and a combined drift correction algorithm achieved temperature measurements with an acceptable accuracy for monitoring and controlling hyperthermia exposures.
Collapse
Affiliation(s)
- Chenchen Bing
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA
| | - Robert M Staruch
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,c Clinical Sites Research Program, Philips Research , Cambridge , Massachusetts , USA
| | | | | | | | | | - Theodore W Laetsch
- f Department of Pediatrics , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,g Pauline Allen Gill Center for Cancer and Blood Disorders, Children's Health System of Texas , Dallas , Texas , USA
| | - Rajiv Chopra
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas , USA ;,b Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas , Texas , USA
| |
Collapse
|
40
|
Negussie AH, Partanen A, Mikhail AS, Xu S, Abi-Jaoudeh N, Maruvada S, Wood BJ. Thermochromic tissue-mimicking phantom for optimisation of thermal tumour ablation. Int J Hyperthermia 2016; 32:239-43. [PMID: 27099078 DOI: 10.3109/02656736.2016.1145745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study was to (1) develop a novel tissue-mimicking thermochromic (TMTC) phantom that permanently changes colour from white to magenta upon heating above ablative temperatures, and (2) assess its utility for specific applications in evaluating thermal therapy devices. Materials and methods Polyacrylamide gel mixed with thermochromic ink was custom made to produce a TMTC phantom that changes its colour upon heating above biological ablative temperatures (> 60 °C). The thermal properties of the phantom were characterised, and compared to those of human tissue. In addition, utility of this phantom as a tool for the assessment of laser and microwave thermal ablation was examined. Results The mass density, thermal conductivity, and thermal diffusivity of the TMTC phantom were measured as 1033 ± 1.0 kg/m(3), 0.590 ± 0.015 W/m.K, and 0.145 ± 0.002 mm(2)/s, respectively, and found to be in agreement with reported values for human soft tissues. Heating the phantom with laser and microwave ablation devices produced clearly demarcated regions of permanent colour change geographically corresponding to regions with temperature elevations above 60 °C. Conclusion The TMTC phantom provides direct visualisation of ablation dynamics, including ablation volume and geometry as well as peak absolute temperatures within the treated region post-ablation. This phantom can be specifically tailored for different thermal therapy modalities, such as radiofrequency, laser, microwave, or therapeutic ultrasound ablation. Such modality-specific phantoms may enable better quality assurance, device characterisation, and ablation parameter optimisation, or optimise the study of dynamic heating parameters integral to drug device combination therapies relying upon heat.
Collapse
Affiliation(s)
- Ayele H Negussie
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Ari Partanen
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD ;,b Clinical Science MR Therapy, Philips , Andover , MA
| | - Andrew S Mikhail
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Sheng Xu
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Nadine Abi-Jaoudeh
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| | - Subha Maruvada
- c US Food and Drug Administration , Silver Spring , MD , USA
| | - Bradford J Wood
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center, National Institutes of Health , Bethesda , MD
| |
Collapse
|
41
|
Yoon JH, Yang YJ, Park J, Son H, Park H, Park GS, Ahn CB. Stiffness measurement using terahertz and acoustic waves for biological samples. OPTICS EXPRESS 2015; 23:32671-32678. [PMID: 26699056 DOI: 10.1364/oe.23.032671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A method is proposed to measure sample stiffness using terahertz wave and acoustic stimulation. The stiffness-dependent vibration is measured using terahertz wave (T-ray) during an acoustic stimulation. To quantify the vibration, time of the peak amplitude of the reflected T-ray is measured. In our experiment, the T-ray is asynchronously applied during the period of the acoustic stimulation, and multiple measurements are taken to use the standard deviation and the maximum difference in the peak times to estimate the amplitude of the vibration. Some preliminary results are shown using biological samples.
Collapse
|
42
|
Copelan A, Hartman J, Chehab M, Venkatesan AM. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy. Semin Intervent Radiol 2015; 32:398-415. [PMID: 26622104 PMCID: PMC4640913 DOI: 10.1055/s-0035-1564793] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy.
Collapse
Affiliation(s)
- Alexander Copelan
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Jason Hartman
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Monzer Chehab
- Department of Diagnostic Radiology, William Beaumont Hospital, Royal Oak, Michigan
| | - Aradhana M. Venkatesan
- Section of Abdominal Imaging, Department of Diagnostic Radiology, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
43
|
Abstract
Advances in medical imaging have enabled the development of new minimally and completely noninvasive therapies that produce a desired biological effect in a target, such as a tumor, with minimal damage to the surrounding tissue. One means of noninvasively achieving bioeffects in tissue is the use of ultrasound to generate heat. Specialized ultrasound transducers can be used to generate focal regions of heating non invasively, without inserting anything into the body or affecting the tissue outside the target region. Ultrasound thermal therapy can be used with magnetic resonance (MR) imaging (MRI) guidance and MRI temperature feedback to automatically control temperature distributions during heating, producing accurate thermal lesions, or maintaining optimal conditions to enhance drug delivery.
Collapse
|
44
|
Lam MK, de Greef M, Bouwman JG, Moonen CTW, Viergever MA, Bartels LW. Multi-gradient echo MR thermometry for monitoring of the near-field area during MR-guided high intensity focused ultrasound heating. Phys Med Biol 2015; 60:7729-45. [DOI: 10.1088/0031-9155/60/19/7729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Gaur P, Partanen A, Werner B, Ghanouni P, Bitton R, Butts Pauly K, Grissom WA. Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry. Magn Reson Med 2015; 76:172-82. [PMID: 26301458 DOI: 10.1002/mrm.25899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE To reconstruct proton resonance frequency-shift temperature maps free of chemical shift distortions. THEORY AND METHODS Tissue heating created by thermal therapies such as focused ultrasound surgery results in a change in proton resonance frequency that causes geometric distortions in the image and calculated temperature maps, in the same manner as other chemical shift and off-resonance distortions if left uncorrected. We propose an online-compatible algorithm to correct these distortions in 2DFT and echo-planar imaging acquisitions, which is based on a k-space signal model that accounts for proton resonance frequency change-induced phase shifts both up to and during the readout. The method was evaluated with simulations, gel phantoms, and in vivo temperature maps from brain, soft tissue tumor, and uterine fibroid focused ultrasound surgery treatments. RESULTS Without chemical shift correction, peak temperature and thermal dose measurements were spatially offset by approximately 1 mm in vivo. Spatial shifts increased as readout bandwidth decreased, as shown by up to 4-fold greater temperature hot spot asymmetry in uncorrected temperature maps. In most cases, the computation times to correct maps at peak heat were less than 10 ms, without parallelization. CONCLUSION Heat-induced proton resonance frequency changes create chemical shift distortions in temperature maps resulting from MR-guided focused ultrasound surgery ablations, but the distortions can be corrected using an online-compatible algorithm. Magn Reson Med 76:172-182, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pooja Gaur
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ari Partanen
- Clinical Science MR Therapy, Philips Healthcare, Andover, Massachusetts, USA
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Rachelle Bitton
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| | - William A Grissom
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Mikhail AS, Partanen A, Yarmolenko P, Venkatesan AM, Wood BJ. Magnetic Resonance-Guided Drug Delivery. Magn Reson Imaging Clin N Am 2015; 23:643-55. [PMID: 26499281 DOI: 10.1016/j.mric.2015.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The use of clinical imaging modalities for the guidance of targeted drug delivery systems, known as image-guided drug delivery (IGDD), has emerged as a promising strategy for enhancing antitumor efficacy. MR imaging is particularly well suited for IGDD applications because of its ability to acquire images and quantitative measurements with high spatiotemporal resolution. The goal of IGDD strategies is to improve treatment outcomes by facilitating planning, real-time guidance, and personalization of pharmacologic interventions. This article reviews basic principles of targeted drug delivery and highlights the current status, emerging applications, and future paradigms of MR-guided drug delivery.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Ari Partanen
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA; Philips Healthcare, 3000 Minuteman Road, Andover, MA 01810, USA
| | - Pavel Yarmolenko
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 111 Michigan Avenue, Washington, DC 20010, USA
| | - Aradhana M Venkatesan
- Section of Abdominal Imaging, Department of Diagnostic Radiology, M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Bradford J Wood
- Center for Interventional Oncology, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Xiaohua F, Fei G, Yuanjin Z. Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia. IEEE Trans Biomed Eng 2015; 62:1728-1737. [PMID: 25700435 DOI: 10.1109/tbme.2015.2403276] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GOAL Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. METHODS To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. RESULTS Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. CONCLUSION The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. SIGNIFICANCE This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.
Collapse
Affiliation(s)
- Feng Xiaohua
- School of Electrical and Electronic Engineering, Nanyang Technological University
| | - Gao Fei
- School of Electrical and Electronic Engineering, Nanyang Technological University
| | - Zheng Yuanjin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
48
|
Filipowska J, Loziński T. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) in Treatment of Symptomatic Uterine Myomas. Pol J Radiol 2014; 79:439-43. [PMID: 25469176 PMCID: PMC4250033 DOI: 10.12659/pjr.890606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/14/2014] [Indexed: 11/09/2022] Open
Abstract
Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods.
Collapse
Affiliation(s)
- Justyna Filipowska
- Institute of Nursing and Health Sciences, Faculty of Electroradiology, University of Rzeszów, Rzeszów, Poland
| | - Tomasz Loziński
- Departament of Gynecology and Obstetrics, Pro-Familia Specialized Hospital, Rzeszów, Poland
| |
Collapse
|
49
|
de Bever J, Todd N, Payne A, Christensen DA, Roemer RB. Adaptive model-predictive controller for magnetic resonance guided focused ultrasound therapy. Int J Hyperthermia 2014; 30:456-70. [DOI: 10.3109/02656736.2014.968223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Zhang J, Fischer J, Warner L, Oto A, Hor PH, Muthupillai R. Noninvasive, in vivo determination of uterine fibroid thermal conductivity in MRI-guided high intensity focused ultrasound therapy. J Magn Reson Imaging 2014; 41:1654-61. [PMID: 25160768 DOI: 10.1002/jmri.24724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To estimate the local thermal conductivity of uterine fibroid in vivo at a high temperature range (60-80°C) typically encountered in magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) surgery. The thermal conductivity of uterine fibroids in vivo is unknown and knowledge about tissue thermal conductivity may aid in effective delivery of thermal energy for ablation. MATERIALS AND METHODS All subjects (nine women) provided written informed consent to participate in this Institutional Review Board-approved study. A total of 10 fibroids were treated using MRgHIFU surgery with real-time temperature monitoring during both heating and cooling periods. The local thermal conductivity was determined by analyzing the spatiotemporal spread of temperature during the cooling period. RESULTS The thermal conductivity of MRgHIFU-treated uterine fibroids was 0.47 ± 0.07 W·m(-1) ·K(-1) (range: 0.25∼0.67 W·m(-1) ·K(-1) ) which is slightly lower than the reported value for skeletal muscle at temperatures of <40°C (0.52 to 0.62 W·m(-1) ·K(-1) ). CONCLUSION It is possible to estimate the thermal conductivity of uterine fibroids in vivo from the spatiotemporal spread of temperature around the HIFU focus during the cooling period.
Collapse
Affiliation(s)
- Jiming Zhang
- Department of Diagnostic and Interventional Radiology, CHI St. Luke's Health, Houston, Texas, USA.,Department of Physics and Texas Center for Superconductivity at University of Houston, Houston, Texas, USA
| | - John Fischer
- Department of Diagnostic and Interventional Radiology, CHI St. Luke's Health, Houston, Texas, USA
| | | | - Aytekin Oto
- University of Chicago Medical Center, Chicago, Illinois, USA
| | - Pei-Herng Hor
- Department of Physics and Texas Center for Superconductivity at University of Houston, Houston, Texas, USA
| | - Raja Muthupillai
- Department of Diagnostic and Interventional Radiology, CHI St. Luke's Health, Houston, Texas, USA
| |
Collapse
|