1
|
Gunderman AL, Sengupta S, Huang Z, Sigounas D, Oluigbo C, Godage IS, Cleary K, Chen Y. Towards MR-Guided Robotic Intracerebral Hemorrhage Evacuation: Aiming Device Design and ex vivo Ovine Head Trial. IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2024; 6:577-588. [PMID: 38911181 PMCID: PMC11189651 DOI: 10.1109/tmrb.2024.3385794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Stereotactic neurosurgery is a well-established surgical technique for navigation and guidance during treatment of intracranial pathologies. Intracerebral hemorrhage (ICH) is an example of various neurosurgical conditions that can benefit from stereotactic neurosurgery. As a part of our ongoing work toward real-time MR-guided ICH evacuation, we aim to address an unmet clinical need for a skull-mounted frameless stereotactic aiming device that can be used with minimally invasive robotic systems for MR-guided interventions. In this paper, we present NICE-Aiming, a Neurosurgical, Interventional, Configurable device for Effective-Aiming in MR-guided robotic neurosurgical interventions. A kinematic model was developed and the system was used with a concentric tube robot (CTR) for ICH evacuation in (i) a skull phantom and (ii) in the first ever reported ex vivo CTR ICH evacuation using an ex vivo ovine head. The NICE-Aiming prototype provided a tip accuracy of 1.41±0.35 mm in free-space. In the MR-guided gel phantom experiment, the targeting accuracy was 2.07±0.42 mm and the residual hematoma volume was 12.87 mL (24.32% of the original volume). In the MR-guided ex vivo ovine head experiment, the targeting accuracy was 2.48±0.48 mm and the residual hematoma volume was 1.42 mL (25.08% of the original volume).
Collapse
Affiliation(s)
- Anthony L Gunderman
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30338 USA
| | - Saikat Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Zhefeng Huang
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30338 USA
| | - Dimitri Sigounas
- The George Washington University School of Medicine and Health Sciences, Department of Neurosurgery, The George Washington University, Washington, DC, US
| | - Chima Oluigbo
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC 20010 USA
| | - Isuru S Godage
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, USA
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC 20010 USA
| | - Yue Chen
- Biomedical Engineering Department, Georgia Institute of Technology/Emory, Atlanta 30338 USA
| |
Collapse
|
2
|
Menke C, Kluge M, Welke B, Lenarz T, Majdani O, S. Rau T. Pull-Out Strength of Orthodontic Miniscrews in the Temporal Bone. J Otolaryngol Head Neck Surg 2024; 53:19160216241248669. [PMID: 38903014 PMCID: PMC11191615 DOI: 10.1177/19160216241248669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Minimally invasive cochlear implant surgery by using a microstereotactic frame demands solid connection to the bone. We aimed to determine the stability of commercially available orthodontic miniscrews to evaluate their feasibility for frame's fixation. In addition, which substitute material most closely resembles the mechanical properties of the human temporal bone was evaluated. METHODS Pull-out tests were carried out with five different types of orthodontic miniscrews in human temporal bone specimens. Furthermore, short fiber filled epoxy (SFFE), solid rigid polyurethane (SRPU50), bovine femur, and porcine iliac bone were evaluated as substitute materials. In total, 57 tests in human specimens and 180 tests in the substitute materials were performed. RESULTS In human temporal bone, average pull-out forces ranged from 220 N to 285 N between screws. Joint stiffness in human temporal bone ranged between 14 N/mm and 358 N/mm. Statistically significant differences between the tested screws were measured in terms of stiffness and elastic energy. One screw type failed insertion due to tip breakage. No significant differences occurred between screws in maximum pull-out force. The average pull-out values of SFFE were 14.1 N higher compared to human specimen. CONCLUSION Orthodontic miniscrews provided rigid fixation when partially inserted in human temporal bone, as evidenced by pull-out forces and joint stiffness. Average values exceeded requirements despite variations between screws. Differences in stiffness and elastic energy indicate screw-specific interface mechanics. With proper insertion, orthodontic miniscrews appear suitable for microstereotactic frame anchoring during minimally invasive cochlear implant surgery. However, testing under more complex loading is needed to better predict clinical performance. For further pull-out tests, the most suitable substitute material is SFFE.
Collapse
Affiliation(s)
- Christian Menke
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | | | - Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology and Cluster of Excellence, “Hearing4all,” Hannover Medical School, Hannover, Germany
| | - Omid Majdani
- Department of Otolaryngology, Medizincampus Wolfsburg der Universitätsmedizin Göttingen, Wolfsburg, Germany
| | - Thomas S. Rau
- Department of Otolaryngology and Cluster of Excellence, “Hearing4all,” Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Robot-Assisted Electrode Insertion in Cochlear Implantation Controlled by Intraoperative Electrocochleography-A Pilot Study. J Clin Med 2022; 11:jcm11237045. [PMID: 36498620 PMCID: PMC9737018 DOI: 10.3390/jcm11237045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Robotics in otology has been developing in many directions for more than two decades. Current clinical trials focus on more accurate stapes surgery, minimally invasive access to the cochlea and less traumatic insertion of cochlear implant (CI) electrode arrays. In this study we evaluated the use of the RobOtol® (Collin, Bagneux, France) otologic robot to insert CI electrodes into the inner ear with intraoperative ECochG analysis. This prospective, pilot study included two adult patients implanted with Advanced Bionics (Westinghouse PI, CA, USA) cochlear implant, with HiFocus™ Mid-Scala electrode array. The standard surgical approach was used. For both subjects, who had residual hearing in the implanted ear, intraoperative and postoperative ECochG was performed with the AIMTM system. The surgeries were uneventful. A credible ECochG response was obtained after complete electrode insertion in both cases. Preoperative BC thresholds compared to intraoperative estimated ECochG thresholds and 2-day postoperative BC thresholds had similar values at frequencies where all thresholds were measurable. The results of the ECochG performed one month after the surgery showed that in both patients the hearing residues were preserved for the selected frequencies. The RobOtol® surgical robot allows for the correct, safe and gentle insertion of the cochlear implant electrode inside the cochlea. The use of electrocochleography measurements during robotic cochlear implantation offers an additional opportunity to evaluate and modify the electrode array insertion on an ongoing basis, which may contribute to the preservation of residual hearing.
Collapse
|
4
|
Wang Y, Zheng H, Taylor RH, Samuel Au KW. A Handheld Steerable Surgical Drill With a Novel Miniaturized Articulated Joint Module for Dexterous Confined-Space Bone Work. IEEE Trans Biomed Eng 2022; 69:2926-2934. [PMID: 35263248 DOI: 10.1109/tbme.2022.3157818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Steerable surgical drills have the potential to minimize intraoperative tissue damage to patients. However, due to their large shaft diameters, large bend radii, and small bend angles, existing steerable drills are unsuitable for dexterous operations in confined spaces. This article presents a handheld steerable drill with a 4.5-mm miniaturized tip, capable of abruptly bending up to 65. METHODS To achieve a small tip diameter and a large bend angle, we propose a novel articulated joint module composed of a tendon-driven geared rolling joint and a double universal joint for steering the drill shaft and transmitting drilling torques, respectively. We integrate this joint module with a customized compact actuation unit into a handheld device. The integrated handheld steerable drill is slim and lightweight, supporting burdenless, single-handed grips and easy integration into existing surgical procedures. RESULTS Experiments and analysis showed the proposed steerable drill has high distal dexterity and is capable to remove target tissues dexterously through a small passage/incision with minimized collateral damage. CONCLUSION The results suggest the potential of the proposed miniaturized articulated drill for dexterous bone work in confined spaces. SIGNIFICANCE By enhancing distal dexterity and reach for surgeons when dealing with hard bony tissues, the proposed device can potentially minimize surgical invasiveness and thus collateral tissue damage to patients for a better clinical outcome.
Collapse
|
5
|
Ding AS, Capostagno S, Razavi CR, Li Z, Taylor RH, Carey JP, Creighton FX. Volumetric Accuracy Analysis of Virtual Safety Barriers for Cooperative-Control Robotic Mastoidectomy. Otol Neurotol 2021; 42:e1513-e1517. [PMID: 34325455 PMCID: PMC8595530 DOI: 10.1097/mao.0000000000003309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Virtual fixtures can be enforced in cooperative-control robotic mastoidectomies with submillimeter accuracy. BACKGROUND Otologic procedures are well-suited for robotic assistance due to consistent osseous landmarks. We have previously demonstrated the feasibility of cooperative-control robots (CCRs) for mastoidectomy. CCRs manipulate instruments simultaneously with the surgeon, allowing the surgeon to control instruments with robotic augmentation of motion. CCRs can also enforce virtual fixtures, which are safety barriers that prevent motion into undesired locations. Previous studies have validated the ability of CCRs to allow a novice surgeon to safely complete a cortical mastoidectomy. This study provides objective accuracy data for CCR-imposed safety barriers in cortical mastoidectomies. METHODS Temporal bone phantoms were registered to a CCR using preoperative computed tomography (CT) imaging. Virtual fixtures were created using 3D Slicer, with 2D planes placed along the external auditory canal, tegmen, and sigmoid, converging on the antrum. Five mastoidectomies were performed by a novice surgeon, moving the drill to the limit of the barriers. Postoperative CT scans were obtained, and Dice coefficients and Hausdorff distances were calculated. RESULTS The average modified Hausdorff distance between drilled bone and the preplanned volume was 0.351 ± 0.093 mm. Compared with the preplanned volume of 0.947 cm3, the mean volume of bone removed was 1.045 cm3 (difference of 0.0982 cm3 or 10.36%), with an average Dice coefficient of 0.741 (range, 0.665-0.802). CONCLUSIONS CCR virtual fixtures can be enforced with a high degree of accuracy. Future studies will focus on improving accuracy and developing 3D fixtures around relevant surgical anatomy.
Collapse
Affiliation(s)
- Andy S. Ding
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Sarah Capostagno
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Christopher R. Razavi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoshuo Li
- Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Russell H. Taylor
- Department of Computer Science, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - John P. Carey
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francis X. Creighton
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Michel G, Salunkhe DH, Bordure P, Chablat D. Literature Review on Endoscopic Robotic Systems in Ear and Sinus Surgery. J Med Device 2021. [DOI: 10.1115/1.4052516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
In otolaryngologic surgery, endoscopy is increasingly used to provide a better view of hard-to-reach areas and to promote minimally invasive surgery. However, the need to manipulate the endoscope limits the surgeon's ability to operate with only one instrument at a time. Currently, several robotic systems are being developed, demonstrating the value of robotic assistance in microsurgery. The aim of this literature review is to present and classify current robotic systems that are used for otological and endonasal applications. For these solutions, an analysis of the functionalities in relation to the surgeon's needs will be carried out to produce a set of specifications for the creation of new robots.
Collapse
Affiliation(s)
- Guillaume Michel
- ENT Department, CHU de Nantes, 1, place A. Ricordeau, Nantes 44093, France
| | - Durgesh Haribhau Salunkhe
- Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, 1 rue de la Noë, Nantes 44321, France
| | - Philippe Bordure
- ENT Department, CHU de Nantes, 1, place A. Ricordeau, Nantes 44093, France
| | - Damien Chablat
- Laboratoire des Sciences du Numérique de Nantes, UMR CNRS 6004, 1 rue de la Noë, Nantes 44321, France
| |
Collapse
|
7
|
Torres R, Daoudi H, Lahlou G, Sterkers O, Ferrary E, Mosnier I, Nguyen Y. Restoration of High Frequency Auditory Perception After Robot-Assisted or Manual Cochlear Implantation in Profoundly Deaf Adults Improves Speech Recognition. Front Surg 2021; 8:729736. [PMID: 34568420 PMCID: PMC8461256 DOI: 10.3389/fsurg.2021.729736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Robot-assisted cochlear implantation has recently been implemented in clinical practice; however, its effect on hearing outcomes is unknown. The aim of this preliminary study was to evaluate hearing performance 1 year post-implantation whether the electrode array was inserted manually or assisted by a robot. Methods: Forty-two profoundly deaf adults were implanted either manually (n = 21) or assisted by a robot (RobOtol®, Collin, Bagneux, France) with three different electrode array types. Participants were paired by age, and electrode array type. The scalar position of the electrode array in the cochlea was assessed by 3D reconstruction from the pre- and post-implantation computed tomography. Pure-tone audiometry and speech perception in silence (percentage of disyllabic words at 60 dB) were tested on the implanted ear 1 year post-implantation in free-field conditions. The pure-tone average was calculated at 250–500–750 Hz, 500–1,000–2,000–3,000 Hz, and 3,000–4,000–8,000 Hz for low, mid, and high frequencies, respectively. Results: One year after cochlear implantation, restoration of the high-frequency thresholds was associated with better speech perception in silence, but not with low or mid frequencies (p < 0.0001; Adjusted R2 = 0.64, polynomial non-linear regression). Although array translocation was similar using either technique, the number of translocated electrodes was lower when the electrode arrays had been inserted with the assistance of the robot compared with manual insertion (p = 0.018; Fisher's exact test). Conclusion: The restoration of high-frequency thresholds (3,000–4,000–8,000 Hz) by cochlear implantation was associated with good speech perception in silence. The numbers of translocated electrodes were reduced after a robot-assisted insertion.
Collapse
Affiliation(s)
- Renato Torres
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France.,Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Hannah Daoudi
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Ghizlene Lahlou
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Olivier Sterkers
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Evelyne Ferrary
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Yann Nguyen
- Unité Fonctionnelle Implants Auditifs, Service Oto-Rhino-Laryngologie, AP-HP/Sorbonne Université, Paris, France.,Centre de Recherche en Audiologie Adulte, GHU Pitié-Salpêtrière/Fondation Pour l'Audition, AP-HP, Paris, France.,Technologies et Thérapie Génique Pour la Surdité, Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| |
Collapse
|
8
|
Riojas KE, Tran ET, Freeman MH, Noble JH, Webster RJ, Labadie RF. Clinical Translation of an Insertion Tool for Minimally Invasive Cochlear Implant Surgery. J Med Device 2021; 15:031001. [PMID: 33995757 PMCID: PMC8086187 DOI: 10.1115/1.4050203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/22/2021] [Indexed: 11/08/2022] Open
Abstract
The objective of this paper is to describe the development of a minimally invasive cochlear implant surgery (MICIS) electrode array insertion tool concept to enable clinical translation. First, analysis of the geometric parameters of potential MICIS patients (N = 97) was performed to inform tool design, inform MICIS phantom model design, and provide further insight into MICIS candidacy. Design changes were made to the insertion tool based on clinical requirements and parameter analysis results. A MICIS phantom testing model was built to evaluate insertion force profiles in a clinically realistic manner, and the new tool design was evaluated in the model and in cadavers to test clinical viability. Finally, after regulatory approval, the tool was used for the first time in a clinical case. Results of this work included first, in the parameter analysis, approximately 20% of the population was not considered viable MICIS candidates. Additionally, one 3D printed tool could accommodate all viable candidates with polyimide sheath length adjustments accounting for interpatient variation. The insertion tool design was miniaturized out of clinical necessity and a disassembly method, necessary for removal around the cochlear implant, was developed and tested. Phantom model testing revealed that the force profile of the insertion tool was similar to that of traditional forceps insertion. Cadaver testing demonstrated that all clinical requirements (including complete disassembly) were achieved with the tool, and the new tool enabled 15% deeper insertions compared to the forceps approach. Finally, and most importantly, the tool helped achieve a full insertion in its first MICIS clinical case. In conclusion, the new insertion tool provides a clinically viable solution to one of the most difficult aspects of MICIS.
Collapse
Affiliation(s)
- Katherine E. Riojas
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212
| | - Emily T. Tran
- Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK 74104
| | - Michael H. Freeman
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jack H. Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212
| | - Robert J. Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212
| | - Robert F. Labadie
- Department of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
9
|
Miniature parallel robot with submillimeter positioning accuracy for minimally invasive laser osteotomy. ROBOTICA 2021. [DOI: 10.1017/s0263574721000990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractTo overcome the physical limitations of mechanical bone cutting in minimally invasive surgery, we are developing a miniature parallel robot that enables positioning of a pulsed laser with an accuracy below 0.25 mm and minimizes the required manipulation space above the target tissue. This paper presents the design, control, device characteristics, functional testing, and performance evaluation of the robot. The performance of the robot was evaluated within the scope of a path-following experiment. The required accuracy for continuous cuts was achieved and reached 0.176 mm on the test bench.
Collapse
|
10
|
Panara K, Shahal D, Mittal R, Eshraghi AA. Robotics for Cochlear Implantation Surgery: Challenges and Opportunities. Otol Neurotol 2021; 42:e825-e835. [PMID: 33993143 DOI: 10.1097/mao.0000000000003165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recent advancements in robotics have set forth a growing body of evidence for the clinical application of the robotic cochlear implantation (RCI), with many potential benefits. This review aims to summarize these efforts, provide the latest developments in this exciting field, and explore the challenges associated with the clinical implementation of RCI. DATA SOURCES MEDLINE, PubMed, and EMBASE databases. STUDY SELECTION A search was conducted using the keywords "robotics otolaryngology," "robotic cochlear implant," "minimally-invasive cochlear implantation," "minimally-invasive mastoidectomy," and "percutaneous cochlear implant" with all of their synonyms. Literature selection criteria included articles published in English, and articles from 1970 to present. RESULTS The use of robotics in neurotology is a relatively new endeavor that continues to evolve. Robotics is being explored by various groups to facilitate in the various steps of cochlear implant surgery, including drilling a keyhole approach to the middle ear for implants, inner ear access, and electrode insertion into the cochlea. Initial clinical trials have successfully implanted selected subjects using robotics. CONCLUSIONS The use of robotics in cochlear implants remains in its very early stages. It is hoped that robotics will improve clinical outcomes. Although successful implants with robots are reported in the literature, there are some challenges that need to be addressed before this approach can become an acceptable option for the conventional cochlear implant surgery, such as safety, time, efficiency, and cost. However, it is hoped that further advancements in robotic technology will help in overcoming these barriers leading to successful implementation for clinical utility.
Collapse
Affiliation(s)
- Kush Panara
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
| | - David Shahal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
| | - Adrien A Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory
- Department of Neurological Surgery
- Department of Pediatrics, University of Miami, Miller School of Medicine, Miami, Florida
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| |
Collapse
|
11
|
Torres R, Hochet B, Daoudi H, Carré F, Mosnier I, Sterkers O, Ferrary E, Nguyen Y. Atraumatic Insertion of a Cochlear Implant Pre-Curved Electrode Array by a Robot-Automated Alignment with the Coiling Direction of the Scala Tympani. Audiol Neurootol 2021; 27:148-155. [PMID: 34284383 DOI: 10.1159/000517398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Electrode array translocation is an unpredictable event with all types of arrays, even using a teleoperated robot in a clinical scenario. We aimed to compare the intracochlear trauma produced by the HiFocus™ Mid-Scala (MS) electrode array (Advanced Bionics, Valencia, CA, USA) using a teleoperated robot, with an automated robot connected to a navigation system to align the pre-curved tip of the electrode array with the coiling direction of the scala tympani (ST). METHODS Fifteen freshly frozen temporal bones were implanted with the MS array using the RobOtol® (Collin, Bagneux, France). In the first group (n = 10), the robot was teleoperated to insert the electrode array into the basal turn of the ST under stereomicroscopic vision, and then the array was driven by a slow-speed hydraulic insertion technique with an estimated placement of the pre-curved electrode tip. In the second group (n = 5), 3 points were obtained from the preoperative cone-beam computed tomography: the 2 first defining the ST insertion axis of the basal turn and a third one at the center of the ST at 270°. They provided the information to the automated system (RobOtol® connected with a navigation system) to automatically align the electrode array with the ST insertion axis and to aim the pre-curved tip toward the subsequent coiling of the ST. After this, the electrode array was manually advanced. Finally, the cochleae were obtained and fixed in a crystal resin, and the position of each electrode was determined by a micro-grinding technique. RESULTS In all cases, the electrode array was fully inserted into the cochlea and the depth of insertion was similar using both techniques. With the teleoperated robotic technique, translocations of the array were observed in 7/10 insertions (70%), but neither trauma nor array translocation occurred with automated robotic insertion. CONCLUSION We have successfully tested an automated insertion system (robot + navigation) that could accurately align a pre-curved electrode array to the axis of the basal turn of the ST and its subsequent coiling, which reduced intracochlear insertion trauma and translocation.
Collapse
Affiliation(s)
- Renato Torres
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Baptiste Hochet
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Hannah Daoudi
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Fabienne Carré
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Isabelle Mosnier
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Olivier Sterkers
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Evelyne Ferrary
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| | - Yann Nguyen
- Technologies et thérapie génique pour la surdité, Institut de l'Audition, Institut Pasteur/Inserm, Paris, France.,Unité fonctionnelle Implants auditifs et explorations fonctionnelles, Service ORL, GH Pitié-Salpêtrière, AP-HP Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Jia H, Pan J, Gu W, Tan H, Chen Y, Zhang Z, Jiang M, Li Y, Sterkers O, Wu H. Robot-Assisted Electrode Array Insertion Becomes Available in Pediatric Cochlear Implant Recipients: First Report and an Intra-Individual Study. Front Surg 2021; 8:695728. [PMID: 34307444 PMCID: PMC8294934 DOI: 10.3389/fsurg.2021.695728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022] Open
Abstract
Background: As an advanced surgical technique to reduce trauma to the inner ear, robot-assisted electrode array (EA) insertion has been applied in adult cochlear implantation (CI) and was approved as a safe surgical procedure that could result in better outcomes. As the mastoid and temporal bones are generally smaller in children, which would increase the difficulty for robot-assisted manipulation, the clinical application of these systems for CI in children has not been reported. Given that the pediatric candidate is the main population, we aim to investigate the safety and reliability of robot-assisted techniques in pediatric cochlear implantation. Methods: Retrospective cohort study at a referral center in Shanghai including all patients of simultaneous bilateral CI with robotic assistance on one side (RobOtol® system, Collin ORL, Bagneux, France), and manual insertion on the other (same brand of EA and CI in both side), from December 2019 to June 2020. The surgical outcomes, radiological measurements (EA positioning, EA insertion depth, mastoidectomy size), and audiological outcomes (Behavior pure-tone audiometry) were evaluated. Results: Five infants (17.8 ± 13.5 months, ranging from 10 to 42 months) and an adult (39 years old) were enrolled in this study. Both perimodiolar and lateral wall EAs were included. The robot-assisted EA insertion was successfully performed in all cases, although the surgical zone in infants was about half the size in adults, and no difference was observed in mastoidectomy size between robot-assisted and manual insertion sides (p = 0.219). The insertion depths of EA with two techniques were similar (P = 0.583). The robot-assisted technique showed no scalar deviation, but scalar deviation occurred for one manually inserted pre-curved EA (16%). Early auditory performance was similar to both techniques. Conclusion: Robot-assisted technique for EA insertion is approved to be used safely and reliably in children, which is possible and potential for better scalar positioning and might improve long-term auditory outcome. Standard mastoidectomy size was enough for robot-assisted technique. This first study marks the arrival of the era of robotic CI for all ages.
Collapse
Affiliation(s)
- Huan Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jinxi Pan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenxi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haoyue Tan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Ying Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Olivier Sterkers
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,APHP, Groupe hospitalo-Universitaire Pitié Salpêtrière, Otorhinolaryngology Department, Unit of Otology, Auditory Implants and Skull Base Surgery, Paris, France
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
13
|
An Embedded Quaternion-Based Extended Kalman Filter Pose Estimation for Six Degrees of Freedom Systems. J INTELL ROBOT SYST 2021. [DOI: 10.1007/s10846-021-01377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Rau TS, Witte S, Uhlenbusch L, Kahrs LA, Lenarz T, Majdani O. Concept description and accuracy evaluation of a moldable surgical targeting system. J Med Imaging (Bellingham) 2021; 8:015003. [PMID: 33634206 PMCID: PMC7893323 DOI: 10.1117/1.jmi.8.1.015003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: We explain our concept for customization of a guidance instrument, present a prototype, and describe a set of experiments to evaluate its positioning and drilling accuracy. Methods: Our concept is characterized by the use of bone cement, which enables fixation of a specific configuration for each individual surgical template. This well-established medical product was selected to ensure future intraoperative fabrication of the template under sterile conditions. For customization, a manually operated alignment device is proposed that temporary defines the planned trajectory until the bone cement is hardened. Experiments (n=10) with half-skull phantoms were performed. Analysis of accuracy comprises targeting validations and experiments including drilling in bone substitutes. Results: The resulting mean positioning error was found to be 0.41±0.30 mm at the level of the target point whereas drilling was possible with a mean accuracy of 0.35±0.30 mm. Conclusion: We proposed a cost-effective, easy-to-use approach for accurate instrument guidance that enables template fabrication under sterile conditions. The utilization of bone cement was proven to fulfill the demands of an easy, quick, and prospectively intraoperatively doable customization. We could demonstrate sufficient accuracy for many surgical applications, e.g., in neurosurgery. The system in this early development stage already outperforms conventional stereotactic frames and image-guided surgery systems in terms of targeting accuracy.
Collapse
Affiliation(s)
- Thomas S Rau
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Sina Witte
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Lea Uhlenbusch
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Lüder A Kahrs
- University of Toronto Mississauga, Department of Mathematical and Computational Sciences, Mississauga, Ontario, Canada.,Hospital for Sick Children (SickKids), Centre for Image Guided Innovation and Therapeutic Intervention, Toronto, Ontario, Canada
| | - Thomas Lenarz
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| | - Omid Majdani
- Hannover Medical School, Department of Otolaryngology, Cluster of Excellence EXC 2177/1 "Hearing4all", Hannover, Germany
| |
Collapse
|
15
|
|
16
|
Wang J, Liu H, Ke J, Hu L, Zhang S, Yang B, Sun S, Guo N, Ma F. Image-guided cochlear access by non-invasive registration: a cadaveric feasibility study. Sci Rep 2020; 10:18318. [PMID: 33110188 PMCID: PMC7591497 DOI: 10.1038/s41598-020-75530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Image-guided cochlear implant surgery is expected to reduce volume of mastoidectomy, accelerate recovery, and improve safety. The purpose of this study was to investigate the safety and effectiveness of image-guided cochlear implant surgery by a non-invasive registration method, in a cadaveric study. We developed a visual positioning frame that can utilize the maxillary dentition as a registration tool and completed the tunnels experiment on 5 cadaver specimens (8 cases in total). The accuracy of the entry point and the target point were 0.471 ± 0.276 mm and 0.671 ± 0.268 mm, respectively. The shortest distance from the margin of the tunnel to the facial nerve and the ossicular chain were 0.790 ± 0.709 mm and 1.960 ± 0.630 mm, respectively. All facial nerves, tympanic membranes, and ossicular chains were completely preserved. Using this approach, high accuracy was achieved in this preliminary study, suggesting that the non-invasive registration method can meet the accuracy requirements for cochlear implant surgery. Based on the above accuracy, we speculate that our method can also be applied to neurosurgery, orbitofacial surgery, lateral skull base surgery, and anterior skull base surgery with satisfactory accuracy.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Hongsheng Liu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Jia Ke
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lei Hu
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shaoxing Zhang
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Biao Yang
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Shilong Sun
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Na Guo
- The Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Furong Ma
- Department of Otorhinolaryngology - Head and Neck Surgery, Peking University Third Hospital, Peking University, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
17
|
Švaco M, Stiperski I, Dlaka D, Šuligoj F, Jerbić B, Chudy D, Raguž M. Stereotactic Neuro-Navigation Phantom Designs: A Systematic Review. Front Neurorobot 2020; 14:549603. [PMID: 33192433 PMCID: PMC7644893 DOI: 10.3389/fnbot.2020.549603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
Diverse stereotactic neuro-navigation systems are used daily in neurosurgery and novel systems are continuously being developed. Prior to clinical implementation of new surgical tools, methods or instruments, in vitro experiments on phantoms should be conducted. A stereotactic neuro-navigation phantom denotes a rigid or deformable structure resembling the cranium with the intracranial area. The use of phantoms is essential for the testing of complete procedures and their workflows, as well as for the final validation of the application accuracy. The aim of this study is to provide a systematic review of stereotactic neuro-navigation phantom designs, to identify their most relevant features, and to identify methodologies for measuring the target point error, the entry point error, and the angular error (α). The literature on phantom designs used for evaluating the accuracy of stereotactic neuro-navigation systems, i.e., robotic navigation systems, stereotactic frames, frameless navigation systems, and aiming devices, was searched. Eligible articles among the articles written in English in the period 2000-2020 were identified through the electronic databases PubMed, IEEE, Web of Science, and Scopus. The majority of phantom designs presented in those articles provide a suitable methodology for measuring the target point error, while there is a lack of objective measurements of the entry point error and angular error. We identified the need for a universal phantom design, which would be compatible with most common imaging techniques (e.g., computed tomography and magnetic resonance imaging) and suitable for simultaneous measurement of the target point, entry point, and angular errors.
Collapse
Affiliation(s)
- Marko Švaco
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Ivan Stiperski
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Domagoj Dlaka
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Filip Šuligoj
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Bojan Jerbić
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
| | - Darko Chudy
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, University Hospital Dubrava, Zagreb, Croatia
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Machine Learning and Cochlear Implantation-A Structured Review of Opportunities and Challenges. Otol Neurotol 2019; 41:e36-e45. [PMID: 31644477 DOI: 10.1097/mao.0000000000002440] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The use of machine learning technology to automate intellectual processes and boost clinical process efficiency in medicine has exploded in the past 5 years. Machine learning excels in automating pattern recognition and in adapting learned representations to new settings. Moreover, machine learning techniques have the advantage of incorporating complexity and are free from many of the limitations of traditional deterministic approaches. Cochlear implants (CI) are a unique fit for machine learning techniques given the need for optimization of signal processing to fit complex environmental scenarios and individual patients' CI MAPping. However, there are many other opportunities where machine learning may assist in CI beyond signal processing. The objective of this review was to synthesize past applications of machine learning technologies for pediatric and adult CI and describe novel opportunities for research and development. DATA SOURCES The PubMed/MEDLINE, EMBASE, Scopus, and ISI Web of Knowledge databases were mined using a directed search strategy to identify the nexus between CI and artificial intelligence/machine learning literature. STUDY SELECTION Non-English language articles, articles without an available abstract or full-text, and nonrelevant articles were manually appraised and excluded. Included articles were evaluated for specific machine learning methodologies, content, and application success. DATA SYNTHESIS The database search identified 298 articles. Two hundred fifty-nine articles (86.9%) were excluded based on the available abstract/full-text, language, and relevance. The remaining 39 articles were included in the review analysis. There was a marked increase in year-over-year publications from 2013 to 2018. Applications of machine learning technologies involved speech/signal processing optimization (17; 43.6% of articles), automated evoked potential measurement (6; 15.4%), postoperative performance/efficacy prediction (5; 12.8%), and surgical anatomy location prediction (3; 7.7%), and 2 (5.1%) in each of robotics, electrode placement performance, and biomaterials performance. CONCLUSION The relationship between CI and artificial intelligence is strengthening with a recent increase in publications reporting successful applications. Considerable effort has been directed toward augmenting signal processing and automating postoperative MAPping using machine learning algorithms. Other promising applications include augmenting CI surgery mechanics and personalized medicine approaches for boosting CI patient performance. Future opportunities include addressing scalability and the research and clinical communities' acceptance of machine learning algorithms as effective techniques.
Collapse
|
19
|
Rau TS, Kreul D, Lexow J, Hügl S, Zuniga MG, Lenarz T, Majdani O. Characterizing the size of the target region for atraumatic opening of the cochlea through the facial recess. Comput Med Imaging Graph 2019; 77:101655. [DOI: 10.1016/j.compmedimag.2019.101655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/05/2019] [Accepted: 08/19/2019] [Indexed: 11/26/2022]
|
20
|
Razavi CR, Wilkening PR, Yin R, Barber SR, Taylor RH, Carey JP, Creighton FX. Image-Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot. Otolaryngol Head Neck Surg 2019; 161:852-855. [PMID: 31331246 DOI: 10.1177/0194599819861526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mastoidectomy is a common surgical procedure within otology. Despite being inherently well suited for implementation of robotic assistance, there are no commercially available robotic systems that have demonstrated utility in aiding with this procedure. This article describes a robotic technique for image-guided mastoidectomy with an experimental cooperatively controlled robotic system developed for use within otolaryngology-head and neck surgery. It has the ability to facilitate enhanced operative precision with dampening of tremor in simulated surgical tasks. Its kinematic design is such that the location of the attached surgical instrument is known with a high degree of fidelity at all times. This facilitates image registration and subsequent definition of virtual fixtures, which demarcate surgical workspace boundaries and prevent motion into undesired areas. In this preliminary feasibility study, we demonstrate the clinical utility of this system to facilitate performance of a cortical mastoidectomy by a novice surgeon in 5 identical temporal bone models with a mean time of 221 ± 35 seconds.
Collapse
Affiliation(s)
- Christopher R Razavi
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul R Wilkening
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rui Yin
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samuel R Barber
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Russell H Taylor
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - John P Carey
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francis X Creighton
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Müller S, Kahrs LA, Gaa J, Tauscher S, Kluge M, John S, Rau TS, Lenarz T, Ortmaier T, Majdani O. Workflow assessment as a preclinical development tool. Int J Comput Assist Radiol Surg 2019; 14:1389-1401. [DOI: 10.1007/s11548-019-02002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022]
|
22
|
Dahroug B, Tamadazte B, Weber S, Tavernier L, Andreff N. Review on Otological Robotic Systems: Toward Microrobot-Assisted Cholesteatoma Surgery. IEEE Rev Biomed Eng 2018; 11:125-142. [PMID: 29994589 DOI: 10.1109/rbme.2018.2810605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Otologic surgical procedures over time have become minimally invasive due to the development of medicine, microtechniques, and robotics. This trend then provides an expected reduction in the patient's recovery time and improvement in the accuracy of diagnosis and treatment. One of the most challenging difficulties that such techniques face are precise control of the instrument and supply of an ergonomic system to the surgeon. The objective of this literature review is to present requirements and guidelines for a surgical robotic system dedicated to middle ear surgery. This review is particularly focused on cholesteatoma surgery (diagnosis and surgical tools), which is one of the most frequent pathologies that urge for an enhanced treatment. This review also presents the current robotic systems that are implemented for otologic applications.
Collapse
|
23
|
Abstract
HYPOTHESIS Descriptive statistics with respect to patient anatomy and image guidance accuracy can be used to assess the effectiveness of any system for minimally invasive cochlear implantation, on both an individual patient and wider population level. BACKGROUND Minimally invasive cochlear implantation involves the drilling of a tunnel from the surface of the mastoid to cochlea, with the trajectory passing through the facial recess. The facial recess anatomy constrains the drilling path and places prohibitive accuracy requirements on the used system. Existing single thresholds are insufficient for assessing the effectiveness of these systems. METHODS A statistical model of the anatomical situation encountered during minimally invasive drilling of the mastoid for cochlear implantation was developed. A literature review was performed to determine the statistical distribution of facial recess width; these values were confirmed through facial recess measurements on computed tomography (CT) data. Based on the accuracy of a robotic system developed by the authors, the effect of variation of system accuracy, precision, and tunnel diameter examined with respect to the potential treatable portion of the population. RESULTS A facial recess diameter of 2.54 ± 0.51 mm (n = 74) was determined from a review of existing literature; subsequent measurements on CT data revealed a facial recess diameter of 2.54 ± 0.5 mm (n = 23). The developed model demonstrated the effects of varying accuracy on the treatable portion of the population. CONCLUSIONS The presented model allows the assessment of the applicability of a system on a wider population scale beyond examining only the system's ability to reach an arbitrary threshold accuracy.
Collapse
|
24
|
Sang H, Monfaredi R, Wilson E, Fooladi H, Preciado D, Cleary K. A New Surgical Drill Instrument With Force Sensing and Force Feedback for Robotically Assisted Otologic Surgery. J Med Device 2017. [DOI: 10.1115/1.4036490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Drilling through bone is a common task during otologic procedures. Currently, the drilling tool is manually held by the surgeon. A robotically assisted surgical drill with force sensing for otologic surgery was developed, and the feasibility of using the da Vinci research kit to hold the drill and provide force feedback for temporal bone drilling was demonstrated in this paper. To accomplish intuitive motion and force feedback, the kinematics and coupling matrices of the slave manipulator were analyzed and a suitable mapping was implemented. Several experiments were completed including trajectory tracking, drill instrument calibration, and temporal bone drilling with force feedback. The results showed that good trajectory tracking performance and minor calibration errors were achieved. In addition, temporal bone drilling could be successfully performed and force feedback from the drill instrument could be felt at the master manipulator. In the future, it may be feasible to use master–slave surgical robotic systems for temporal bone drilling.
Collapse
Affiliation(s)
- Hongqiang Sang
- Advanced Mechatronics Equipment Technology, Tianjin Area Major Laboratory, Tianjin Polytechnic University, Tianjin 300387, China e-mail:
| | - Reza Monfaredi
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC 20010 e-mail:
| | - Emmanuel Wilson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC 20010 e-mail:
| | - Hadi Fooladi
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC 20010 e-mail:
| | - Diego Preciado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC 20010 e-mail:
| | - Kevin Cleary
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC 20010 e-mail:
| |
Collapse
|
25
|
Feng AL, Razavi CR, Lakshminarayanan P, Ashai Z, Olds K, Balicki M, Gooi Z, Day AT, Taylor RH, Richmon JD. The robotic ENT microsurgery system: A novel robotic platform for microvascular surgery. Laryngoscope 2017; 127:2495-2500. [PMID: 28581249 DOI: 10.1002/lary.26667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Assess the feasibility of a novel robotic platform for use in microvascular surgery. STUDY DESIGN Prospective feasibility study. SETTING Robotics laboratory. METHODS The Robotic ENT (Ear, Nose, and Throat) Microsurgery System (REMS) (Galen Robotics, Inc., Sunnyvale, CA) is a robotic arm that stabilizes a surgeon's instrument, allowing precise, tremor-free movement. Six microvascular naïve medical students and one microvascular expert performed microvascular anastomosis of a chicken ischiatic artery, with and without the REMS. Trials were blindly graded by seven microvascular surgeons using a microvascular tremor scale (MTS) based on instrument tip movement as a function of vessel width. Time to completion (TTC) was measured, and an exit survey assessed participants' experience. The interrater reliability of the MTS was calculated. RESULTS For microvascular-naïve participants, the mean MTS score for REMS-assisted trials was 0.72 (95% confidence interval [CI] 0.64-1.07) and 2.40 (95% CI 2.12-2.69) for freehand (P < 0.001). The mean TTC was 1,265 seconds for REMS-assisted trials and 1,320 seconds for freehand (P > 0.05). For the microvascular expert, the mean REMS-assisted MTS score was 0.71 (95% CI 0.15-1.27) and 0.86 (95% CI 0.35-1.37) for freehand (P > 0.05). TTC was 353 seconds for the REMS-assisted trial and 299 seconds for freehand. All participants thought the REMS was more accurate and improved instrument handling and stability. The intraclass correlation coefficient for MTS ratings was 0.914 (95% CI 0.823-0.968) for consistency and 0.901 (95% CI 0.795-0.963) for absolute value. CONCLUSION The REMS is a feasible adjunct for microvascular surgery and a potential teaching tool capable of reducing tremor in novice users. Furthermore, the MTS is a feasible grading system for assessing microvascular tremor. LEVEL OF EVIDENCE NA. Laryngoscope, 127:2495-2500, 2017.
Collapse
Affiliation(s)
- Allen L Feng
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine
| | - Christopher R Razavi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine
| | | | | | | | | | - Zhen Gooi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine
| | - Andrew T Day
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine
| | - Russell H Taylor
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Jeremy D Richmon
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine
| |
Collapse
|
26
|
Pre-operative Screening and Manual Drilling Strategies to Reduce the Risk of Thermal Injury During Minimally Invasive Cochlear Implantation Surgery. Ann Biomed Eng 2017; 45:2184-2195. [PMID: 28523516 DOI: 10.1007/s10439-017-1854-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
This article presents the development and experimental validation of a methodology to reduce the risk of thermal injury to the facial nerve during minimally invasive cochlear implantation surgery. The first step in this methodology is a pre-operative screening process, in which medical imaging is used to identify those patients that present a significant risk of developing high temperatures at the facial nerve during the drilling phase of the procedure. Such a risk is calculated based on the density of the bone along the drilling path and the thermal conductance between the drilling path and the nerve, and provides a criterion to exclude high-risk patients from receiving the minimally invasive procedure. The second component of the methodology is a drilling strategy for manually-guided drilling near the facial nerve. The strategy utilizes interval drilling and mechanical constraints to enable better control over the procedure and the resulting generation of heat. The approach is tested in fresh cadaver temporal bones using a thermal camera to monitor temperature near the facial nerve. Results indicate that pre-operative screening may successfully exclude high-risk patients and that the proposed drilling strategy enables safe drilling for low-to-moderate risk patients.
Collapse
|
27
|
Weber S, Gavaghan K, Wimmer W, Williamson T, Gerber N, Anso J, Bell B, Feldmann A, Rathgeb C, Matulic M, Stebinger M, Schneider D, Mantokoudis G, Scheidegger O, Wagner F, Kompis M, Caversaccio M. Instrument flight to the inner ear. Sci Robot 2017; 2:eaal4916. [PMID: 30246168 PMCID: PMC6150423 DOI: 10.1126/scirobotics.aal4916] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Surgical robot systems can work beyond the limits of human perception, dexterity and scale making them inherently suitable for use in microsurgical procedures. However, despite extensive research, image-guided robotics applications for microsurgery have seen limited introduction into clinical care to date. Among others, challenges are geometric scale and haptic resolution at which the surgeon cannot sufficiently control a device outside the range of human faculties. Mechanisms are required to ascertain redundant control on process variables that ensure safety of the device, much like instrument-flight in avionics. Cochlear implantation surgery is a microsurgical procedure, in which specific tasks are at sub-millimetric scale and exceed reliable visuo-tactile feedback. Cochlear implantation is subject to intra- and inter-operative variations, leading to potentially inconsistent clinical and audiological outcomes for patients. The concept of robotic cochlear implantation aims to increase consistency of surgical outcomes such as preservation of residual hearing and reduce invasiveness of the procedure. We report successful image-guided, robotic CI in human. The robotic treatment model encompasses: computer-assisted surgery planning, precision stereotactic image-guidance, in-situ assessment of tissue properties and multipolar neuromonitoring (NM), all based on in vitro, in vivo and pilot data. The model is expandable to integrate additional robotic functionalities such as cochlear access and electrode insertion. Our results demonstrate the feasibility and possibilities of using robotic technology for microsurgery on the lateral skull base. It has the potential for benefit in other microsurgical domains for which there is no task-oriented, robotic technology available at present.
Collapse
Affiliation(s)
- Stefan Weber
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Kate Gavaghan
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Wilhelm Wimmer
- ARTORG Center for Biomedical Engineering Research, University of Bern
- Department of Otorhinolaryngology, Head and Neck Surgery, lnselspital, Bern University Hospital
| | - Tom Williamson
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Nicolas Gerber
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Juan Anso
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Brett Bell
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Arne Feldmann
- Institute for Surgical Technologies and Biomechanics, University of Bern
| | - Christoph Rathgeb
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Marco Matulic
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Manuel Stebinger
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Daniel Schneider
- ARTORG Center for Biomedical Engineering Research, University of Bern
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, lnselspital, Bern University Hospital
| | | | - Franca Wagner
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital
| | - Martin Kompis
- Department of Otorhinolaryngology, Head and Neck Surgery, lnselspital, Bern University Hospital
| | - Marco Caversaccio
- ARTORG Center for Biomedical Engineering Research, University of Bern
- Department of Otorhinolaryngology, Head and Neck Surgery, lnselspital, Bern University Hospital
| |
Collapse
|
28
|
Dillon NP, Balachandran R, Siebold MA, Webster RJ, Wanna GB, Labadie RF. Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal. Otol Neurotol 2017; 38:441-447. [PMID: 28079677 PMCID: PMC5303146 DOI: 10.1097/mao.0000000000001324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS An image-guided robotic system can safely perform the bulk removal of bone during the translabyrinthine approach to vestibular schwannoma (VS). BACKGROUND The translabyrinthine approach to VS removal involves extensive manual milling in the temporal bone to gain access to the internal auditory canal (IAC) for tumor resection. This bone removal is time consuming and challenging due to the presence of vital anatomy (e.g., facial nerve) embedded within the temporal bone. A robotic system can use preoperative imaging and segmentations to guide a surgical drill to remove a prescribed volume of bone, thereby preserving the surgeon for the more delicate work of opening the IAC and resecting the tumor. METHODS Fresh human cadaver heads were used in the experiments. For each trial, the desired bone resection volume was planned on a preoperative computed tomography (CT) image, the steps in the proposed clinical workflow were undertaken, and the robot was programmed to mill the specified volume. A postoperative CT scan was acquired for evaluation of the accuracy of the milled cavity and examination of vital anatomy. RESULTS In all experimental trials, the facial nerve and chorda tympani were preserved. The root mean squared surface accuracy of the milled cavities ranged from 0.23 to 0.65 mm and the milling time ranged from 32.7 to 57.0 minute. CONCLUSION This work shows feasibility of using a robot-assisted approach for VS removal surgery. Further testing and system improvements are necessary to enable clinical translation of this technology.
Collapse
Affiliation(s)
- Neal P Dillon
- *Mechanical Engineering †Otolaryngology, Vanderbilt University Medical Center ‡Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
29
|
Siebold MA, Dillon NP, Fichera L, Labadie RF, Webster RJ, Fitzpatrick JM. Safety margins in robotic bone milling: from registration uncertainty to statistically safe surgeries. Int J Med Robot 2016; 13. [PMID: 27650366 DOI: 10.1002/rcs.1773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 11/12/2022]
Abstract
BACKGROUND When robots mill bone near critical structures, safety margins are used to reduce the risk of accidental damage due to inaccurate registration. These margins are typically set heuristically with uniform thickness, which does not reflect the anisotropy and spatial variance of registration error. METHODS A method is described to generate spatially varying safety margins around vital anatomy using statistical models of registration uncertainty. Numerical simulations are used to determine the margin geometry that matches a safety threshold specified by the surgeon. RESULTS The algorithm was applied to CT scans of five temporal bones in the context of mastoidectomy, a common bone milling procedure in ear surgery that must approach vital nerves. Safety margins were generated that satisfied the specified safety levels in every case. CONCLUSIONS Patient safety in image-guided surgery can be increased by incorporating statistical models of registration uncertainty in the generation of safety margins around vital anatomy.
Collapse
Affiliation(s)
- Michael A Siebold
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Neal P Dillon
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Loris Fichera
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert F Labadie
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - J Michael Fitzpatrick
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
30
|
Dillon NP, Fichera L, Wellborn PS, Labadie RF, Webster RJ. Making Robots Mill Bone More Like Human Surgeons: Using Bone Density and Anatomic Information to Mill Safely and Efficiently. PROCEEDINGS OF THE ... IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS. IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS 2016; 2016:1837-1843. [PMID: 28824818 PMCID: PMC5558793 DOI: 10.1109/iros.2016.7759292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surgeons and robots typically use different approaches for bone milling. Surgeons adjust their speed and tool incidence angle constantly, which enables them to efficiently mill porous bone. Surgeons also adjust milling parameters such as speed and depth of cut throughout the procedure based on proximity to sensitive structures like nerves and blood vessels. In this paper we use image-based bone density estimates and segmentations of vital anatomy to make a robot mill more like a surgeon and less like an industrial computer numeric controlled (CNC) milling machine. We produce patient-specific plans optimizing velocity and incidence angles for spherical cutting burrs. These plans are particularly useful in bones of variable density and porosity like the human temporal bone. They result in fast milling in non-critical areas, reducing overall procedure time, and lower forces near vital anatomy. We experimentally demonstrate the algorithm on temporal bone phantoms and show that it reduces mean forces near vital anatomy by 63% and peak forces by 50% in comparison to a CNC-type path, without adding time to the procedure.
Collapse
Affiliation(s)
- Neal P Dillon
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN USA
| | - Loris Fichera
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN USA
| | - Patrick S Wellborn
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN USA
| | - Robert F Labadie
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
31
|
Semi-manual mastoidectomy assisted by human–robot collaborative control – A temporal bone replica study. Auris Nasus Larynx 2016; 43:161-5. [DOI: 10.1016/j.anl.2015.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/08/2015] [Accepted: 08/26/2015] [Indexed: 11/20/2022]
|
32
|
Dillon NP, Siebold MA, Mitchell JE, Blachon GS, Balachandran R, Fitzpatrick JM, Webster RJ. Increasing Safety of a Robotic System for Inner Ear Surgery Using Probabilistic Error Modeling Near Vital Anatomy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9786:97861G. [PMID: 29200595 PMCID: PMC5708556 DOI: 10.1117/12.2214984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy.
Collapse
Affiliation(s)
- Neal P. Dillon
- Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA
| | - Michael A. Siebold
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, USA
| | - Jason E. Mitchell
- Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA
| | - Gregoire S. Blachon
- Vanderbilt University Medical Center, Department of Otolaryngology, Nashville, Tennessee, USA
| | - Ramya Balachandran
- Vanderbilt University Medical Center, Department of Otolaryngology, Nashville, Tennessee, USA
| | - J. Michael Fitzpatrick
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, USA
| | - Robert J. Webster
- Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, USA
- Vanderbilt University Medical Center, Department of Otolaryngology, Nashville, Tennessee, USA
| |
Collapse
|
33
|
Friedrich DT, Scheithauer MO, Greve J, Hoffmann TK, Schuler PJ. Recent advances in robot-assisted head and neck surgery. Int J Med Robot 2016; 13. [DOI: 10.1002/rcs.1744] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel T. Friedrich
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery; Ulm University Medical Center; Germany
| | - Marc O. Scheithauer
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery; Ulm University Medical Center; Germany
| | - Jens Greve
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery; Ulm University Medical Center; Germany
| | - Thomas K. Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery; Ulm University Medical Center; Germany
| | - Patrick J. Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery; Ulm University Medical Center; Germany
| |
Collapse
|
34
|
Kobler JP, Nuelle K, Lexow GJ, Rau TS, Majdani O, Kahrs LA, Kotlarski J, Ortmaier T. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. Int J Comput Assist Radiol Surg 2015; 11:421-36. [PMID: 26410844 DOI: 10.1007/s11548-015-1300-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/10/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE Minimally invasive cochlear implantation is a novel surgical technique which requires highly accurate guidance of a drilling tool along a trajectory from the mastoid surface toward the basal turn of the cochlea. The authors propose a passive, reconfigurable, parallel robot which can be directly attached to bone anchors implanted in a patient's skull, avoiding the need for surgical tracking systems. Prior to clinical trials, methods are necessary to patient specifically optimize the configuration of the mechanism with respect to accuracy and stability. Furthermore, the achievable accuracy has to be determined experimentally. METHODS A comprehensive error model of the proposed mechanism is established, taking into account all relevant error sources identified in previous studies. Two optimization criteria to exploit the given task redundancy and reconfigurability of the passive robot are derived from the model. The achievable accuracy of the optimized robot configurations is first estimated with the help of a Monte Carlo simulation approach and finally evaluated in drilling experiments using synthetic temporal bone specimen. RESULTS Experimental results demonstrate that the bone-attached mechanism exhibits a mean targeting accuracy of [Formula: see text] mm under realistic conditions. A systematic targeting error is observed, which indicates that accurate identification of the passive robot's kinematic parameters could further reduce deviations from planned drill trajectories. CONCLUSION The accuracy of the proposed mechanism demonstrates its suitability for minimally invasive cochlear implantation. Future work will focus on further evaluation experiments on temporal bone specimen.
Collapse
Affiliation(s)
- Jan-Philipp Kobler
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hanover, Germany.
| | - Kathrin Nuelle
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hanover, Germany
| | | | - Thomas S Rau
- Hannover Medical School, 30625 , Hanover, Germany
| | - Omid Majdani
- Hannover Medical School, 30625 , Hanover, Germany
| | - Lueder A Kahrs
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hanover, Germany
| | - Jens Kotlarski
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hanover, Germany
| | - Tobias Ortmaier
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hanover, Germany
| |
Collapse
|
35
|
Individual Optimization of the Insertion of a Preformed Cochlear Implant Electrode Array. Int J Otolaryngol 2015; 2015:724703. [PMID: 26448764 PMCID: PMC4581552 DOI: 10.1155/2015/724703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose. The aim of this study was to show that individual adjustment of the curling behaviour of a preformed cochlear implant (CI) electrode array to the patient-specific shape of the cochlea can improve the insertion process in terms of reduced risk of insertion trauma. Methods. Geometry and curling behaviour of preformed, commercially available electrode arrays were modelled. Additionally, the anatomy of each small, medium-sized, and large human cochlea was modelled to consider anatomical variations. Finally, using a custom-made simulation tool, three different insertion strategies (conventional Advanced Off-Stylet (AOS) insertion technique, an automated implementation of the AOS technique, and a manually optimized insertion process) were simulated and compared with respect to the risk of insertion-related trauma. The risk of trauma was evaluated using a newly developed “trauma risk” rating scale. Results. Using this simulation-based approach, it was shown that an individually optimized insertion procedure is advantageous compared with the AOS insertion technique. Conclusion. This finding leads to the conclusion that, in general, consideration of the specific curling behaviour of a CI electrode array is beneficial in terms of less traumatic insertion. Therefore, these results highlight an entirely novel aspect of clinical application of preformed perimodiolar electrode arrays in general.
Collapse
|
36
|
Dillon NP, Balachandran R, Fitzpatrick JM, Siebold MA, Labadie RF, Wanna GB, Withrow TJ, Webster RJ. A Compact, Bone-Attached Robot for Mastoidectomy. J Med Device 2015; 9:0310031-310037. [PMID: 26336572 DOI: 10.1115/1.4030083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/10/2015] [Indexed: 11/08/2022] Open
Abstract
Otologic surgery often involves a mastoidectomy, which is the removal of a portion of the mastoid region of the temporal bone, to safely access the middle and inner ear. The surgery is challenging because many critical structures are embedded within the bone, making them difficult to see and requiring a high level of accuracy with the surgical dissection instrument, a high-speed drill. We propose to automate the mastoidectomy portion of the surgery using a compact, bone-attached robot. The system described in this paper is a milling robot with four degrees-of-freedom (DOF) that is fixed to the patient during surgery using a rigid positioning frame screwed into the surface of the bone. The target volume to be removed is manually identified by the surgeon pre-operatively in a computed tomography (CT) scan and converted to a milling path for the robot. The surgeon attaches the robot to the patient in the operating room and monitors the procedure. Several design considerations are discussed in the paper as well as the proposed surgical workflow. The mean targeting error of the system in free space was measured to be 0.5 mm or less at vital structures. Four mastoidectomies were then performed in cadaveric temporal bones, and the error at the edges of the target volume was measured by registering a postoperative computed tomography (CT) to the pre-operative CT. The mean error along the border of the milled cavity was 0.38 mm, and all critical anatomical structures were preserved.
Collapse
Affiliation(s)
- Neal P Dillon
- Department of Mechanical Engineering, Vanderbilt University , 2301 Vanderbilt Place , PMB 351592 , Nashville, TN 37235 e-mail:
| | - Ramya Balachandran
- Department of Otolaryngology, Vanderbilt University Medical Center , 1215 21st Avenue South , MCE 10450 , Nashville, TN 37232 e-mail:
| | - J Michael Fitzpatrick
- Department of Electrical Engineering and Computer Science, Vanderbilt University , 2301 Vanderbilt Place , PMB 351679 , Nashville, TN 37235 e-mail:
| | - Michael A Siebold
- Department of Electrical Engineering and Computer Science, Vanderbilt University , 2301 Vanderbilt Place , PMB 351679 , Nashville, TN 37235 e-mail:
| | - Robert F Labadie
- Department of Otolaryngology, Vanderbilt University Medical Center , 1215 21st Avenue South , MCE 10450 , Nashville, TN 37232 e-mail:
| | - George B Wanna
- Department of Otolaryngology, Vanderbilt University Medical Center , 1215 21st Avenue South , MCE 10450 , Nashville, TN 37232 e-mail:
| | - Thomas J Withrow
- Department of Mechanical Engineering, Vanderbilt University , 2301 Vanderbilt Place , PMB 351592 , Nashville, TN 37235 e-mail:
| | - Robert J Webster
- Department of Mechanical Engineering, Vanderbilt University , 2301 Vanderbilt Place , PMB 351592 , Nashville, TN 37235 e-mail:
| |
Collapse
|
37
|
Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation. Int J Comput Assist Radiol Surg 2015; 11:483-93. [PMID: 26183149 DOI: 10.1007/s11548-015-1261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. METHODS An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. RESULTS The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. CONCLUSION The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.
Collapse
|
38
|
Siebold MA, Dillon NP, Webster RJ, Fitzpatrick JM. Incorporating Target Registration Error Into Robotic Bone Milling. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9415. [PMID: 26692630 DOI: 10.1117/12.2082340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Robots have been shown to be useful in assisting surgeons in a variety of bone drilling and milling procedures. Examples include commercial systems for joint repair or replacement surgeries, with in vitro feasibility recently shown for mastoidectomy. Typically, the robot is guided along a path planned on a CT image that has been registered to the physical anatomy in the operating room, which is in turn registered to the robot. The registrations often take advantage of the high accuracy of fiducial registration, but, because no real-world registration is perfect, the drill guided by the robot will inevitably deviate from its planned path. The extent of the deviation can vary from point to point along the path because of the spatial variation of target registration error. The allowable deviation can also vary spatially based on the necessary safety margin between the drill tip and various nearby anatomical structures along the path. Knowledge of the expected spatial distribution of registration error can be obtained from theoretical models or experimental measurements and used to modify the planned path. The objective of such modifications is to achieve desired probabilities for sparing specified structures. This approach has previously been studied for drilling straight holes but has not yet been generalized to milling procedures, such as mastoidectomy, in which cavities of more general shapes must be created. In this work, we present a general method for altering any path to achieve specified probabilities for any spatial arrangement of structures to be protected. We validate the method via numerical simulations in the context of mastoidectomy.
Collapse
Affiliation(s)
- Michael A Siebold
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Neal P Dillon
- Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Robert J Webster
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA ; Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - J Michael Fitzpatrick
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
39
|
Kobler JP, Prielozny L, Lexow GJ, Rau TS, Majdani O, Ortmaier T. Mechanical characterization of bone anchors used with a bone-attached, parallel robot for skull surgery. Med Eng Phys 2015; 37:460-8. [PMID: 25771430 DOI: 10.1016/j.medengphy.2015.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/11/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Bone-attached robots and microstereotactic frames, intended for deep brain stimulation and minimally invasive cochlear implantation, typically attach to a patient's skull via bone anchors. A rigid and reliable link between such devices and the skull is mandatory in order to fulfill the high accuracy demands of minimally invasive procedures while maintaining patient safety. In this paper, a method is presented to experimentally characterize the mechanical properties of the anchor-bone linkage. A custom-built universal testing machine is used to measure the pullout strength as well as the spring constants of bone anchors seated in four different bone substitutes as well as in human cranial bone. Furthermore, the angles at which forces act on the bone anchors are varied to simulate realistic conditions. Based on the experimental results, a substitute material that has mechanical properties similar to those of cranial bone is identified. The results further reveal that the pullout strength of the investigated anchor design is sufficient with respect to the proposed application. However, both the measured load capacity as well as the spring constants vary depending on the load angles. Based on these findings, an alternative bone anchor design is presented and experimentally validated. Furthermore, the results serve as a basis for stiffness simulation and optimization of bone-attached microstereotactic frames.
Collapse
Affiliation(s)
- Jan-Philipp Kobler
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 Hanover, Germany.
| | | | | | | | | | - Tobias Ortmaier
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 Hanover, Germany
| |
Collapse
|
40
|
Kobler JP, Wall S, Lexow GJ, Lang CP, Majdani O, Kahrs LA, Ortmaier T. An experimental evaluation of loads occurring during guided drilling for cochlear implantation. Int J Comput Assist Radiol Surg 2015; 10:1625-37. [PMID: 25673073 DOI: 10.1007/s11548-015-1153-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE During guided drilling for minimally invasive cochlear implantation and related applications, typically forces and torques act on the employed tool guides, which result from both the surgeon's interaction and the bone drilling process. Such loads propagate through the rigid mechanisms and result in deformations of compliant parts, which in turn affect the achievable accuracy. In this paper, the order of magnitude as well as the factors influencing such loads are studied experimentally to facilitate design and optimization of future drill guide prototypes. METHODS The experimental setup to evaluate the occurring loads comprises two six degree of freedom force/torque sensors: one mounted between a manually operated, linearly guided drill handpiece and one below the specimens into which the drilling is carried out. This setup is used to analyze the influences of drilling tool geometry, spindle speed as well as experience of the operator on the resulting loads. RESULTS The results reveal that using a spiral drill results in lower process loads compared with a surgical Lindemann mill. Moreover, in this study, an experienced surgeon applied lower interaction forces compared with untrained volunteers. The measured values further indicate that both the intraoperative handling of the bone-attached drill guide as well as the tool removal after completing the hole can be expected to cause temporary load peaks which exceed the values acquired during the drilling procedure itself. CONCLUSIONS The results obtained using the proposed experimental setup serve as realistic design criteria with respect to the development of future drill guide prototypes. Furthermore, the given values can be used to parameterize simulations for profound stiffness analyses of existing mechanisms.
Collapse
Affiliation(s)
- Jan-Philipp Kobler
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167, Hanover, Germany.
| | - Sergej Wall
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167, Hanover, Germany
| | | | | | - Omid Majdani
- Hannover Medical School, 30625, Hanover, Germany
| | - Lüder A Kahrs
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167, Hanover, Germany
| | - Tobias Ortmaier
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167, Hanover, Germany
| |
Collapse
|
41
|
Mechatronic feasibility of minimally invasive, atraumatic cochleostomy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:181624. [PMID: 25110661 PMCID: PMC4109217 DOI: 10.1155/2014/181624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022]
Abstract
Robotic assistance in the context of lateral skull base surgery, particularly during cochlear implantation procedures, has been the subject of considerable research over the last decade. The use of robotics during these procedures has the potential to provide significant benefits to the patient by reducing invasiveness when gaining access to the cochlea, as well as reducing intracochlear trauma when performing a cochleostomy. Presented herein is preliminary work on the combination of two robotic systems for reducing invasiveness and trauma in cochlear implantation procedures. A robotic system for minimally invasive inner ear access was combined with a smart drilling tool for robust and safe cochleostomy; evaluation was completed on a single human cadaver specimen. Access to the middle ear was successfully achieved through the facial recess without damage to surrounding anatomical structures; cochleostomy was completed at the planned position with the endosteum remaining intact after drilling as confirmed by microscope evaluation.
Collapse
|
42
|
Kobler JP, Schoppe M, Lexow GJ, Rau TS, Majdani O, Kahrs LA, Ortmaier T. Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study. Int J Comput Assist Radiol Surg 2014; 9:1033-43. [PMID: 24728770 DOI: 10.1007/s11548-014-0997-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/21/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE Minimally invasive cochlear implantation is a surgical technique which requires drilling a canal from the mastoid surface toward the basal turn of the cochlea. The choice of an appropriate drilling strategy is hypothesized to have significant influence on the achievable targeting accuracy. Therefore, a method is presented to analyze the contribution of the drilling process and drilling tool to the targeting error isolated from other error sources. METHODS The experimental setup to evaluate the borehole accuracy comprises a drill handpiece attached to a linear slide as well as a highly accurate coordinate measuring machine (CMM). Based on the specific requirements of the minimally invasive cochlear access, three drilling strategies, mainly characterized by different drill tools, are derived. The strategies are evaluated by drilling into synthetic temporal bone substitutes containing air-filled cavities to simulate mastoid cells. Deviations from the desired drill trajectories are determined based on measurements using the CMM. RESULTS Using the experimental setup, a total of 144 holes were drilled for accuracy evaluation. Errors resulting from the drilling process depend on the specific geometry of the tool as well as the angle at which the drill contacts the bone surface. Furthermore, there is a risk of the drill bit deflecting due to synthetic mastoid cells. CONCLUSIONS A single-flute gun drill combined with a pilot drill of the same diameter provided the best results for simulated minimally invasive cochlear implantation, based on an experimental method that may be used for testing further drilling process improvements.
Collapse
Affiliation(s)
- Jan-Philipp Kobler
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hannover, Germany.
| | - Michael Schoppe
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hannover, Germany
| | | | - Thomas S Rau
- Hannover Medical School, 30625 , Hannover, Germany
| | - Omid Majdani
- Hannover Medical School, 30625 , Hannover, Germany
| | - Lüder A Kahrs
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hannover, Germany
| | - Tobias Ortmaier
- Institute of Mechatronic Systems, Leibniz Universität Hannover, 30167 , Hannover, Germany
| |
Collapse
|
43
|
Abstract
HYPOTHESIS During robotic milling of the temporal bone, forces on the cutting burr may be lowered by choice of cutting parameters. BACKGROUND Robotic bone removal systems are used in orthopedic procedures, but they are currently not accurate enough for safe use in otologic surgery. We propose the use of a bone-attached milling robot to achieve the required accuracy and speed. To design such a robot and plan its milling trajectories, it is necessary to predict the forces that the robot must exert and withstand under likely cutting conditions. MATERIALS AND METHODS We measured forces during bone removal for several surgical burr types, drill angles, depths of cut, cutting velocities, and bone types (cortical/surface bone and mastoid) on human temporal bone specimens. RESULTS Lower forces were observed for 5-mm diameter burrs compared with 3-mm burrs for a given bone removal rate. Higher linear cutting velocities and greater cutting depths independently resulted in higher forces. For combinations of velocities and depths that resulted in the same overall bone removal rate, lower forces were observed in parameter sets that combined higher cutting velocities and shallower depths. Lower mean forces and higher variability were observed in the mastoid compared with cortical/surface bone. CONCLUSION Forces during robotic milling of the temporal bone can be predicted from the parameter sets tested in this study. This information can be used to guide the design of a sufficiently rigid and powerful bone-attached milling robot and to plan efficient milling trajectories. To reduce the time of the surgical intervention without creating very large forces, high linear cutting velocities may be combined with shallow depths of cut. Faster and deeper cuts may be used in mastoid bone compared with the cortical bone for a chosen force threshold.
Collapse
|
44
|
Dillon NP, Balachandran R, Dit Falisse AM, Wanna GB, Labadie RF, Withrow TJ, Fitzpatrick JM, Webster RJ. Preliminary Testing of a Compact, Bone-Attached Robot for Otologic Surgery. ACTA ACUST UNITED AC 2014; 9036:903614. [PMID: 25477726 DOI: 10.1117/12.2043875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Otologic surgery often involves a mastoidectomy procedure, in which part of the temporal bone is milled away in order to visualize critical structures embedded in the bone and safely access the middle and inner ear. We propose to automate this portion of the surgery using a compact, bone-attached milling robot. A high level of accuracy is required to avoid damage to vital anatomy along the surgical path, most notably the facial nerve, making this procedure well-suited for robotic intervention. In this study, several of the design considerations are discussed and a robot design and prototype are presented. The prototype is a 4 degrees-of-freedom robot similar to a four-axis milling machine that mounts to the patient's skull. A positioning frame, containing fiducial markers and attachment points for the robot, is rigidly attached to the skull of the patient, and a CT scan is acquired. The target bone volume is manually segmented in the CT by the surgeon and automatically converted to a milling path and robot trajectory. The robot is then attached to the positioning frame and is used to drill the desired volume. The accuracy of the entire system (image processing, planning, robot) was evaluated at several critical locations within or near the target bone volume with a mean free space accuracy result of 0.50 mm or less at all points. A milling test in a phantom material was then performed to evaluate the surgical workflow. The resulting milled volume did not violate any critical structures.
Collapse
Affiliation(s)
- Neal P Dillon
- Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA
| | - Ramya Balachandran
- Vanderbilt University, Department of Otolaryngology, Nashville, Tennessee, USA
| | | | - George B Wanna
- Vanderbilt University, Department of Otolaryngology, Nashville, Tennessee, USA
| | - Robert F Labadie
- Vanderbilt University, Department of Otolaryngology, Nashville, Tennessee, USA
| | - Thomas J Withrow
- Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA
| | - J Michael Fitzpatrick
- Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, Tennessee, USA
| | - Robert J Webster
- Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA ; Vanderbilt University, Department of Otolaryngology, Nashville, Tennessee, USA
| |
Collapse
|
45
|
Wimmer W, Bell B, Huth ME, Weisstanner C, Gerber N, Kompis M, Weber S, Caversaccio M. Cone Beam and Micro-Computed Tomography Validation of Manual Array Insertion for Minimally Invasive Cochlear Implantation. Audiol Neurootol 2013; 19:22-30. [DOI: 10.1159/000356165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
|
46
|
An automated insertion tool for cochlear implants with integrated force sensing capability. Int J Comput Assist Radiol Surg 2013; 9:481-94. [DOI: 10.1007/s11548-013-0936-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/01/2013] [Indexed: 11/26/2022]
|
47
|
Abstract
As minimally invasive surgery has become common in head and neck surgery, the role of robotic surgery has expanded from thyroid surgery and transoral robotic surgery (TORS) of the oropharynx and supraglottic to other areas. Surgeons have advanced the limits of TORS, adapting lasers to the Da Vinci robot for glottic cancer, and combining existing techniques for transoral supraglottic laryngectomy and hypopharyngectomy to perform transoral total laryngectomy. Skull base approaches have been reported with some success in case reports and cadaver models, but the current instrument size and configuration limit the applicability of the current robotic system. Surgeons have reported reconstruction of the head and neck via local and free flaps. Using the previously reported approaches for thyroidectomy via modified facelift incision, neck dissection has also been reported. Future applications of robotic surgery in otolaryngology may be additionally expanded, as several new robotic technologies are under development for endolaryngeal work and neurotology.
Collapse
|
48
|
Kratchman LB, Schurzig D, McRackan TR, Balachandran R, Noble JH, Webster RJ, Labadie RF. A manually operated, advance off-stylet insertion tool for minimally invasive cochlear implantation surgery. IEEE Trans Biomed Eng 2012; 59:2792-800. [PMID: 22851233 DOI: 10.1109/tbme.2012.2210220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current technique for cochlear implantation (CI) surgery requires a mastoidectomy to gain access to the cochlea for electrode array insertion. It has been shown that microstereotactic frames can enable an image-guided, minimally invasive approach to CI surgery called percutaneous cochlear implantation (PCI) that uses a single drill hole for electrode array insertion, avoiding a more invasive mastoidectomy. Current clinical methods for electrode array insertion are not compatible with PCI surgery because they require a mastoidectomy to access the cochlea; thus, we have developed a manually operated electrode array insertion tool that can be deployed through a PCI drill hole. The tool can be adjusted using a preoperative CT scan for accurate execution of the advance off-stylet (AOS) insertion technique and requires less skill to operate than is currently required to implant electrode arrays. We performed three cadaver insertion experiments using the AOS technique and determined that all insertions were successful using CT and microdissection.
Collapse
Affiliation(s)
- Louis B Kratchman
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lecoeur J, Noble JH, Balachandran R, Labadie RF, Dawant BM. Variability of the temporal bone surface's topography: implications for otologic surgery. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2012; 8316:83161B. [PMID: 24027621 PMCID: PMC3766961 DOI: 10.1117/12.911373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Otologic surgery is performed for a variety of reasons including treatment of recurrent ear infections, alleviation of dizziness, and restoration of hearing loss. A typical ear surgery consists of a tympanomastoidectomy in which both the middle ear is explored via a tympanic membrane flap and the bone behind the ear is removed via mastoidectomy to treat disease and/or provide additional access. The mastoid dissection is performed using a high-speed drill to excavate bone based on a pre-operative CT scan. Intraoperatively, the surface of the mastoid component of the temporal bone provides visual feedback allowing the surgeon to guide their dissection. Dissection begins in "safe areas" which, based on surface topography, are believed to be correlated with greatest distance from surface to vital anatomy thus decreasing the chance of injury to the brain, large blood vessels (e.g. the internal jugular vein and internal carotid artery), the inner ear, and the facial nerve. "Safe areas" have been identified based on surgical experience with no identifiable studies showing correlation of the surface with subsurface anatomy. The purpose of our study was to investigate whether such a correlation exists. Through a three-step registration process, we defined a correspondence between each of twenty five clinically-applicable temporal bone CT scans of patients and an atlas and explored displacement and angular differences of surface topography and depth of critical structures from the surface of the skull. The results of this study reflect current knowledge of osteogenesis and anatomy. Based on two features (distance and angular difference), two regions (suprahelical and posterior) of the temporal bone show the least variability between surface and subsurface anatomy.
Collapse
Affiliation(s)
- Jérémy Lecoeur
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|