1
|
Gong L, Wright AR, Hynynen K, Goertz DE. Inducing cavitation within hollow cylindrical radially polarized transducers for intravascular applications. ULTRASONICS 2024; 138:107223. [PMID: 38553135 DOI: 10.1016/j.ultras.2023.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 04/02/2024]
Abstract
Thrombotic occlusions of large blood vessels are increasingly treated with catheter based mechanical approaches, one of the most prominent being to employ aspiration to extract clots through a hollow catheter lumen. A central technical challenge for aspiration catheters is to achieve sufficient suction force to overcome the resistance of clot material entering into the distal tip. In this study, we examine the feasibility of inducing cavitation within hollow cylindrical transducers with a view to ultimately using them to degrade the mechanical integrity of thrombus within the tip of an aspiration catheter. Hollow cylindrical radially polarized PZT transducers with 3.3/2.5 mm outer/inner diameters were assessed. Finite element simulations and hydrophone experiments were used to investigate the pressure field distribution as a function of element length and resonant mode (thickness, length). Operating in thickness mode (∼5 MHz) was found to be associated with the highest internal pressures, estimated to exceed 23 MPa. Cavitation was demonstrated to be achievable within the transducer under degassed water (10 %) conditions using hydrophone detection and high-frequency ultrasound imaging (40 MHz). Cavitation clouds occupied a substantial portion of the transducer lumen, in a manner that was dependent on the pulsing scheme employed (10 and 100 μs pulse lengths; 1.1, 11, and 110 ms pulse intervals). Collectively the results support the feasibility of achieving cavitation within a transducer compatible with mounting in the tip of an aspiration format catheter.
Collapse
Affiliation(s)
- Li Gong
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
| | - Alex R Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
2
|
Venketasubramanian N, Yeo LLL, Tan B, Chan BPL. Sonothrombolysis for Ischemic Stroke. J Cardiovasc Dev Dis 2024; 11:75. [PMID: 38535098 PMCID: PMC10971528 DOI: 10.3390/jcdd11030075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025] Open
Abstract
Stroke is a major cause of death and disability globally, with ischemic stroke being the predominant mechanism. While spontaneous recanalization may occur, significant neuronal injury would have occurred in the interim. Intravenous thrombolysis administered within the first 4.5 h after stroke onset and endovascular thrombectomy within 24 h in patients with a salvageable penumbra improves functional independence. Ultrasound has been shown in both in vivo and in vitro models to enhance clot lysis, even more-so in the presence of thrombolytic agents. The use of transcranial Doppler and transcranial color-coded Doppler ultrasound in acute IS has been reported in case series, case-controlled studies, and clinical trials. While ultrasound at a frequency of 300 kHz increases the risk of intracranial hemorrhage, the 2 MHz range ultrasound aids thrombolysis and improves recanalization without significantly increasing the risk of symptomatic intracranial hemorrhage. Despite this, functional independence was not increased in clinical trials, nor was a benefit shown with the adjunctive use of microbubbles or microspheres. Nonetheless, newer technologies such as endovascular ultrasound, endovascular delivery of microbubbles, and thrombolytic-filled microbubbles await clinical trials. More evidence is needed before sonothrombolysis can be routinely used in the hyperacute management of ischemic stroke.
Collapse
Affiliation(s)
| | - Leonard L. L. Yeo
- Division of Neurology, National University Hospital, Singapore and Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (L.L.L.Y.); (B.T.); (B.P.L.C.)
| | - Benjamin Tan
- Division of Neurology, National University Hospital, Singapore and Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (L.L.L.Y.); (B.T.); (B.P.L.C.)
| | - Bernard P. L. Chan
- Division of Neurology, National University Hospital, Singapore and Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (L.L.L.Y.); (B.T.); (B.P.L.C.)
| |
Collapse
|
3
|
Drakos T, Evripidou G, Damianou C. An in vitro Model for Experimental Evaluation of Sonothrombolysis under Tissue-mimicking Material Conditions. J Med Ultrasound 2023; 31:211-217. [PMID: 38025011 PMCID: PMC10668898 DOI: 10.4103/jmu.jmu_52_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The mechanical properties of therapeutic ultrasound (US) have attracted scientific interest for thrombolysis enhancement in combination with thrombolytic agents and microbubbles (MBs). The aim of the study was to develop an in vitro model to observe how the effects of sonothrombolysis change in the case where a tissue-mimicking material (TMM) is placed in the path of the US beam before the clot. METHODS Fully retracted blood clots were prepared and pulse sonicated for 1 h under various conditions. The system was in a state of real circulating flow with a branch of an open bypass and an occluded tube containing a blood clot, thus mimicking the case of ischemic stroke. The effectiveness of thrombolysis was quantified in milligrams of clots removed. An agar-based TMM was developed around the occluded tube. RESULTS The clot breakdown in a TMM was found to be more pronounced than in water, presumably due to the retention of the acoustic field. A higher level of acoustic power was required to initiate clot lysis (>76 W acoustic power) using only focused US (FUS). The greatest thrombolysis enhancement was observed with the largest chosen pulse duration (PD) and the use of MBs (150 mg clot mass lysis). The synergistic effect of FUS in combination with MBs on the enzymatic fibrinolysis enhanced thrombolysis efficacy by 260% compared to thrombolysis induced using only FUS. A reduction in the degree of clot lysis was detected due to the attenuation factor of the intervening material (30 mg at 1 and 4 ms PD). CONCLUSION In vitro thrombolytic models including a TMM can provide a more realistic evaluation of new thrombolytic protocols. However, higher acoustic power should be considered to compensate for the attenuation factor. The rate of clot lysis is slow and the clinical use of this method will be challenging.
Collapse
Affiliation(s)
| | - Georgios Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
4
|
Tan ZQ, Ooi EH, Chiew YS, Foo JJ, Ng EYK, Ooi ET. A computational framework for the multiphysics simulation of microbubble-mediated sonothrombolysis using a forward-viewing intravascular transducer. ULTRASONICS 2023; 131:106961. [PMID: 36812819 DOI: 10.1016/j.ultras.2023.106961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Sonothrombolysis is a technique that utilises ultrasound waves to excite microbubbles surrounding a clot. Clot lysis is achieved through mechanical damage induced by acoustic cavitation and through local clot displacement induced by acoustic radiation force (ARF). Despite the potential of microbubble-mediated sonothrombolysis, the selection of the optimal ultrasound and microbubble parameters remains a challenge. Existing experimental studies are not able to provide a complete picture of how ultrasound and microbubble characteristics influence the outcome of sonothrombolysis. Likewise, computational studies have not been applied in detail in the context of sonothrombolysis. Hence, the effect of interaction between the bubble dynamics and acoustic propagation on the acoustic streaming and clot deformation remains unclear. In the present study, we report for the first time the computational framework that couples the bubble dynamic phenomena with the acoustic propagation in a bubbly medium to simulate microbubble-mediated sonothrombolysis using a forward-viewing transducer. The computational framework was used to investigate the effects of ultrasound properties (pressure and frequency) and microbubble characteristics (radius and concentration) on the outcome of sonothrombolysis. Four major findings were obtained from the simulation results: (i) ultrasound pressure plays the most dominant role over all the other parameters in affecting the bubble dynamics, acoustic attenuation, ARF, acoustic streaming, and clot displacement, (ii) smaller microbubbles could contribute to a more violent oscillation and improve the ARF simultaneously when they are stimulated at higher ultrasound pressure, (iii) higher microbubbles concentration increases the ARF, and (iv) the effect of ultrasound frequency on acoustic attenuation is dependent on the ultrasound pressure. These results may provide fundamental insight that is crucial in bringing sonothrombolysis closer to clinical implementation.
Collapse
Affiliation(s)
- Zhi Q Tan
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Yeong S Chiew
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ji J Foo
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Eddie Y K Ng
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| |
Collapse
|
5
|
Kim J, Bautista KJB, Deruiter RM, Goel L, Jiang X, Xu Z, Dayton PA. An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:711-719. [PMID: 34932475 PMCID: PMC9134349 DOI: 10.1109/tuffc.2021.3137125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The thrombolysis potential of low-boiling-point (-2 °C) perfluorocarbon phase-change nanodroplets (NDs) has previously been demonstrated on aged clots, and we hypothesized that this efficacy would extend to retracted clots. We tested this hypothesis by comparing sonothrombolysis of both unretracted and retracted clots using ND-mediated ultrasound (US+ND) and microbubble-mediated ultrasound (US+MB), respectively. Assessment data included clot mass reduction, cavitation detection, and cavitation cloud imaging in vitro. Acoustic parameters included a 7.9-MPa peak negative pressure and 180-cycle bursts with 5-Hz repetition (the corresponding duty cycle and time-averaged intensity of 0.09% and 1.87 W/cm2, respectively) based on prior studies. With these parameters, we observed a significantly reduced efficacy of US+MB in the retracted versus unretracted model (the averaged mass reduction rate from 1.83%/min to 0.54%/min). Unlike US+MB, US+ND exhibited less reduction of efficacy in the retracted model (from 2.15%/min to 1.04%/min on average). The cavitation detection results correlate with the sonothrombolysis efficacy results showing that both stable and inertial cavitation generated in a retracted clot by US+ND is higher than that by US+MB. We observed that ND-mediated cavitation shows a tendency to occur inside a clot, whereas MB-mediated cavitation occurs near the surface of a retracted clot, and this difference is more significant with retracted clots compared to unretracted clots. We conclude that ND-mediated sonothrombolysis outperforms MB-mediated therapy regardless of clot retraction, and this advantage of ND-mediated cavitation is emphasized for retracted clots. The primary mechanisms are hypothesized to be sustained cavitation level and cavitation clouds in the proximity of a retracted clot by US+ND.
Collapse
|
6
|
Hendley SA, Bhargava A, Holland CK, Wool GD, Ahmed O, Paul JD, Bader KB. (More than) doubling down: Effective fibrinolysis at a reduced rt-PA dose for catheter-directed thrombolysis combined with histotripsy. PLoS One 2022; 17:e0261567. [PMID: 34982784 PMCID: PMC8726487 DOI: 10.1371/journal.pone.0261567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023] Open
Abstract
Deep vein thrombosis is a major source of morbidity and mortality worldwide. For acute proximal deep vein thrombosis, catheter-directed thrombolytic therapy is an accepted method for vessel recanalization. Thrombolytic therapy is not without risk, including the potential for hemorrhagic bleeding that increases with lytic dose. Histotripsy is a focused ultrasound therapy that generates bubble clouds spontaneously in tissue at depth. The mechanical activity of histotripsy increases the efficacy of thrombolytic therapy at doses consistent with current pharmacomechanical treatments for venous thrombosis. The objective of this study was to determine the influence of lytic dose on histotripsy-enhanced fibrinolysis. Human whole blood clots formed in vitro were exposed to histotripsy and a thrombolytic agent (recombinant tissue plasminogen activator, rt-PA) in a venous flow model perfused with plasma. Lytic was administered into the clot via an infusion catheter at concentrations ranging from 0 (control) to 4.54 μg/mL (a common clinical dose for catheter-directed thrombolysis). Following treatment, perfusate samples were assayed for markers of fibrinolysis, hemolysis, and intact red blood cells and platelets. Fibrinolysis was equivalent between the common clinical dose of rt-PA (4.54 μg/mL) and rt-PA at a reduction to one-twentieth of the common clinical dose (0.23 μg/mL) when combined with histotripsy. Minimal changes were observed in hemolysis for treatment arms with or without histotripsy, potentially due to clot damage from insertion of the infusion catheter. Likewise, histotripsy did not increase the concentration of red blood cells or platelets in the perfusate following treatment compared to rt-PA alone. At the highest lytic dose, a refined histotripsy exposure scheme was implemented to cover larger areas of the clot. The updated exposure scheme improved clot mass loss and fibrinolysis relative to administration of lytic alone. Overall, the data collected in this study indicate the rt-PA dose can be reduced by more than a factor of ten and still promote fibrinolysis when combined with histotripsy.
Collapse
Affiliation(s)
- Samuel A. Hendley
- Committee on Medical Physics, University of Chicago, Chicago, Illinois, United States of America
| | - Aarushi Bhargava
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| | - Christy K. Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Geoffrey D. Wool
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Osman Ahmed
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan D. Paul
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kenneth B. Bader
- Committee on Medical Physics, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
7
|
Bezer JH, Koruk H, Rowlands CJ, Choi JJ. Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3327-3338. [PMID: 32919812 PMCID: PMC7605868 DOI: 10.1016/j.ultrasmedbio.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/04/2023]
Abstract
Mechanical effects of microbubbles on tissues are central to many emerging ultrasound applications. Here, we investigated the acoustic radiation force a microbubble exerts on tissue at clinically relevant therapeutic ultrasound parameters. Individual microbubbles administered into a wall-less hydrogel channel (diameter: 25-100 µm, Young's modulus: 2-8.7 kPa) were exposed to an acoustic pulse (centre frequency: 1 MHz, pulse length: 10 ms, peak-rarefactional pressures: 0.6-1.0 MPa). Using high-speed microscopy, each microbubble was tracked as it pushed against the hydrogel wall. We found that a single microbubble can transiently deform a soft tissue-mimicking material by several micrometres, producing tissue loading-unloading curves that were similar to those produced using other indentation-based methods. Indentation depths were linked to gel stiffness. Using a mathematical model fitted to the deformation curves, we estimated the radiation force on each bubble (typically tens of nanonewtons) and the viscosity of the gels. These results provide insight into the forces exerted on tissues during ultrasound therapy and indicate a potential source of bio-effects.
Collapse
Affiliation(s)
- James H Bezer
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Hasan Koruk
- Mechanical Engineering Department, MEF University, Istanbul, Turkey
| | | | - James J Choi
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Papadopoulos N, Yiallouras C, Damianou C. The Enhancing Effect of Focused Ultrasound on TNK-Tissue Plasminogen Activator-Induced Thrombolysis Using an In Vitro Circulating Flow Model. J Stroke Cerebrovasc Dis 2016; 25:2891-2899. [PMID: 27599905 DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/30/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The limited efficacy of thrombolytic therapy in patients with ischemic stroke has created the need to use focused ultrasound (FUS) energy as a way to enhance thrombolysis efficacy (sonothrombolysis). Using an in vitro circulating flow model, we evaluated the role of physical parameters on tenecteplase (TNK-tPA)-mediated thrombolysis. MATERIALS AND METHODS Fully retracted porcine blood clots were used for the proposed experimental study. To provide a more realistic clinical environment of stroke, the study was conducted under realistic flow conditions and TNK-tPA concentrations. Two spherically FUS transducers (4-cm diameter), focusing at 10 cm and operating at .6 and 1.05 MHz, respectively, were used. Pulsed ultrasound protocols that maintained a localized temperature elevation at the focus of 1°C were applied. Thrombolysis efficacy was measured in milligram of mass clot removed. RESULTS The effect of physical parameters such as temperature, FUS frequency, acoustic power (AP), FUS energy, and microbubble (MB) administration on thrombolysis efficacy was examined. CONCLUSIONS Study findings established that higher FUS frequencies (1 MHz) are associated with enhanced thrombolysis compared to lower FUS frequencies (.6 MHz). Furthermore, an increase in the linear relationship between AP and thrombolysis efficacy was exhibited. Also, the outcome of the study showed that the combination of 1-MHz FUS pulses with MBs strongly enhanced the enzymatic thrombolytic efficacy of TNK-tPA, because with 30 minutes of treatment, 1050 mg of clot was removed through nonthermal mechanisms. Taking into consideration that stroke is time dependent, this thrombolytic rate should be sufficient for timely recanalization of the occluded cerebral artery.
Collapse
Affiliation(s)
| | | | - Christakis Damianou
- Electrical Engineering Department, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
9
|
Abstract
Thrombo-occlusive disease is a leading cause of morbidity and mortality. In this chapter, the use of ultrasound to accelerate clot breakdown alone or in combination with thrombolytic drugs will be reported. Primary thrombus formation during cardiovascular disease and standard treatment methods will be discussed. Mechanisms for ultrasound enhancement of thrombolysis, including thermal heating, radiation force, and cavitation, will be reviewed. Finally, in-vitro, in-vivo and clinical evidence of enhanced thrombolytic efficacy with ultrasound will be presented and discussed.
Collapse
Affiliation(s)
- Kenneth B Bader
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Guillaume Bouchoux
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Bader KB, Gruber MJ, Holland CK. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:187-96. [PMID: 25438846 PMCID: PMC4258471 DOI: 10.1016/j.ultrasmedbio.2014.08.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 05/03/2023]
Abstract
The use of ultrasound and microbubbles as an effective adjuvant to thrombolytics has been reported in vitro, ex vivo and in vivo. However, the specific mechanisms underlying ultrasound-enhanced thrombolysis have yet to be elucidated. We present visual observations illustrating two mechanisms of ultrasound-enhanced thrombolysis: acoustic cavitation and radiation force. An in vitro flow model was developed to observe human whole blood clots exposed to human fresh-frozen plasma, recombinant tissue-type plasminogen activator (0, 0.32, 1.58 or 3.15 μg/mL) and the ultrasound contrast agent Definity (2 μL/mL). Intermittent, continuous-wave ultrasound (120 kHz, 0.44 MPa peak-to-peak pressure) was used to insonify the perfusate. Ultraharmonic emissions indicative of stable cavitation were monitored with a passive cavitation detector. The clot was observed with an inverted microscope, and images were recorded with a charge-coupled device camera. The images were post-processed to determine the time-dependent clot diameter and root-mean-square velocity of the clot position. Clot lysis occurred preferentially surrounding large, resonant-sized bubbles undergoing stable oscillations. Ultraharmonic emissions from stable cavitation were found to correlate with the lytic rate. Clots were observed to translate synchronously with the initiation and cessation of the ultrasound exposure. The root-mean-square velocity of the clot correlated with the lytic rate. These data provide visual documentation of stable cavitation activity and radiation force during sub-megahertz sonothrombolysis. The observations of this study suggest that the process of clot lysis is complex, and both stable cavitation and radiation force are mechanistically responsible for this beneficial bio-effect in this in vitro model.
Collapse
Affiliation(s)
- Kenneth B Bader
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Matthew J Gruber
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Acconcia C, Leung BYC, Manjunath A, Goertz DE. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2134-2150. [PMID: 24882525 DOI: 10.1016/j.ultrasmedbio.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
The use of ultrasound-stimulated microbubbles (USMBs) to promote thrombolysis is well established, but there remains considerable uncertainty about the mechanisms of this process. Here we examine the microscale interactions between individual USMBs and fibrin clots as a function of bubble size, exposure conditions and clot type. Microbubbles (n = 185) were placed adjacent to clot boundaries ("coarse" or "fine") using optical tweezers and exposed to 1-MHz ultrasound as a function of pressure (0.1-0.39 MPa). High-speed (10 kfps) imaging was employed, and clots were subsequently assessed with 2-photon microscopy. For fine clots, 46% of bubbles "embedded" within 10 μm of the clot boundary at pressures of 0.1 and 0.2 MPa, whereas at 0.39 MPa, 53% of bubbles penetrated and transited into the clots with an incidence inversely related to their diameter. A substantial fraction of penetrating bubbles induced fibrin network damage and promoted the uptake of nanobeads. In coarse clots, penetration occurred more readily and at lower pressures than in fine clots. The results therefore provide direct evidence of therapeutically relevant effects of USMBs and indicate their dependence on size, exposure conditions and clot properties.
Collapse
Affiliation(s)
- Christopher Acconcia
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Ben Y C Leung
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Ahadi G, Welch CS, Grimm MJ, Fisher DJ, Zadicario E, Ernström K, Voie AH, Hölscher T. Transcranial sonothrombolysis using high-intensity focused ultrasound: impact of increasing output power on clot fragmentation. J Ther Ultrasound 2013; 1:22. [PMID: 25512864 PMCID: PMC4265953 DOI: 10.1186/2050-5736-1-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The primary goal of this study was to investigate the relationship between increasing output power levels and clot fragmentation during high-intensity focused ultrasound (HIFU)-induced thrombolysis. METHODS A HIFU headsystem, designed for brain applications in humans, was used for this project. A human calvarium was mounted inside the water-filled hemispheric transducer. Artificial thrombi were placed inside the skull and located at the natural focus point of the transducer. Clots were exposed to a range of acoustic output power levels from 0 to 400 W. The other HIFU operating parameters remained constant. To assess clot fragmentation, three filters of different mesh pore sizes were used. To assess sonothrombolysis efficacy, the clot weight loss was measured. RESULTS No evidence of increasing clot fragmentation was found with increasing acoustic intensities in the majority of the study groups of less than 400 W. Increasing clot lysis could be observed with increasing acoustic output powers. CONCLUSION Transcranial sonothrombolysis could be achieved in vitro within seconds in the absence of tPA and without producing relevant clot fragmentation, using acoustic output powers of <400 W.
Collapse
Affiliation(s)
- Golnaz Ahadi
- Brain Ultrasound Research Laboratory (BURL), University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA ; Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Christian S Welch
- Department of Radiology, University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA
| | - Michele J Grimm
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - David J Fisher
- Brain Ultrasound Research Laboratory (BURL), University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA ; Department of Radiology, University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA
| | | | - Karin Ernström
- Department of Family and Preventive Medicine, University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA
| | - Arne H Voie
- Brain Ultrasound Research Laboratory (BURL), University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA ; Department of Radiology, University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA
| | - Thilo Hölscher
- Brain Ultrasound Research Laboratory (BURL), University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA ; Department of Radiology, University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA ; Department of Neurosciences, University of California, San Diego, 200 West Arbor Drive, San Diego, CA 92103-8756, USA
| |
Collapse
|
13
|
Huang CC, Chen PY, Shih CC. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Med Phys 2013; 40:042901. [DOI: 10.1118/1.4794493] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|