1
|
Cui J, Hollingsworth NA, Wright SM. A Review of Current Control and Decoupling Methods for MRI Transmit Arrays. IEEE Rev Biomed Eng 2025; 18:388-400. [PMID: 38194402 DOI: 10.1109/rbme.2024.3351713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.
Collapse
|
2
|
Orzada S, Fiedler TM, Ladd ME. Hybrid algorithms for SAR matrix compression and the impact of post-processing on SAR calculation complexity. Magn Reson Med 2024; 92:2696-2706. [PMID: 39056341 DOI: 10.1002/mrm.30235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE This study proposes faster virtual observation point (VOP) compression as well as post-processing algorithms for specific absorption rate (SAR) matrix compression. Furthermore, it shows the relation between the number of channels and the computational burden for VOP-based SAR calculation. METHODS The proposed new algorithms combine the respective benefits of two different criteria for determining upper boundedness of SAR matrices by the VOPs. Comparisons of the old and new algorithms are performed for head coil arrays with various channel counts. The new post-processing algorithm is used to post-process the VOP sets of nine arrays, and the number of VOPs for a fixed median relative overestimation is compared. RESULTS The new algorithms are faster than the old algorithms by a factor of two to more than 10. The compression efficiency (number of VOPs relative to initial number of SAR matrices) is identical. For a fixed median relative overestimation, the number of VOPs increases logarithmically with the number of RF coil channels when post-processing is applied. CONCLUSION The new algorithms are much faster than previous algorithms. Post-processing is very beneficial for online SAR supervision of MRI systems with high channel counts, since for a given number of VOPs the relative SAR overestimation can be lowered.
Collapse
Affiliation(s)
- Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Aghaeifar A, Bosch D, Heule R, Williams S, Ehses P, Mauconduit F, Scheffler K. Intra-scan RF power amplifier drift correction. Magn Reson Med 2024; 92:645-659. [PMID: 38469935 DOI: 10.1002/mrm.30078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE The drift in radiofrequency (RF) power amplifiers (RFPAs) is assessed and several contributing factors are investigated. Two approaches for prospective correction of drift are proposed and their effectiveness is evaluated. METHODS RFPA drift assessment encompasses both intra-pulse and inter-pulse drift analyses. Scan protocols with varying flip angle (FA), RF length, and pulse repetition time (TR) are used to gauge the influence of these parameters on drift. Directional couplers (DICOs) monitor the forward waveforms of the RFPA outputs. DICOs data is stored for evaluation, allowing calculation of correction factors to adjust RFPAs' transmit voltage. Two correction methods, predictive and run-time, are employed: predictive correction necessitates a calibration scan, while run-time correction calculates factors during the ongoing scan. RESULTS RFPA drift is indeed influenced by the RF duty-cycle, and in the cases examined with a maximum duty-cycle of 66%, the potential drift is approximately 41% or 15%, depending on the specific RFPA revision. Notably, in low transmit voltage scenarios, FA has minimal impact on RFPA drift. The application of predictive and run-time drift correction techniques effectively reduces the average drift from 10.0% to less than 1%, resulting in enhanced MR signal stability. CONCLUSION Utilizing DICO recordings and implementing a feedback mechanism enable the prospective correction of RFPA drift. Having a calibration scan, predictive correction can be utilized with fewer complexity; for enhanced performance, a run-time approach can be employed.
Collapse
Affiliation(s)
- Ali Aghaeifar
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Rahel Heule
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
- Center for MR Research, University Children's Hospital, Zurich, Switzerland
| | - Sydney Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
| | - Philipp Ehses
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Klaus Scheffler
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
5
|
Wijnen JP, Seiberlich N, Golay X. Will standardization kill innovation? MAGMA (NEW YORK, N.Y.) 2023; 36:525-528. [PMID: 37632642 DOI: 10.1007/s10334-023-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Affiliation(s)
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|
6
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
7
|
Gudino N, Littin S. Advancements in Gradient System Performance for Clinical and Research MRI. J Magn Reson Imaging 2023; 57:57-70. [PMID: 36073722 DOI: 10.1002/jmri.28421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 02/03/2023] Open
Abstract
In magnetic resonance imaging (MRI), spatial field gradients are applied along each axis to encode the location of the nuclear spin in the frequency domain. During recent years, the development of new gradient technologies has been focused on the generation of stronger and faster gradient fields for imaging with higher spatial and temporal resolution. This benefits imaging methods, such as brain diffusion and functional MRI, and enables human imaging at ultra-high field MRI. In addition to improving gradient performance, new technologies have been presented to minimize peripheral nerve stimulation and gradient-related acoustic noise, both generated by the rapid switching of strong gradient fields. This review will provide a general background on the gradient system and update on the state-of-the-art gradient technology. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Natalia Gudino
- MRI Engineering Core, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Sebastian Littin
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Monitoring Junction Temperature of RF MOSFET under Its Working Condition Using Fiber Bragg Grating. MICROMACHINES 2022; 13:mi13030463. [PMID: 35334755 PMCID: PMC8950755 DOI: 10.3390/mi13030463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
When a high-power radio frequency (RF) metal oxide semiconductor field effect transistor (MOSFET) works in low-efficiency situations, considerable power is dissipated into heat, resulting in an excessive junction temperature and a likely failure. In this study, an optical fiber Bragg grating (FBG) sensor is installed on the die of a high-power RF MOSFET. The temperature change of RF MOSFET with the change of input signal is obtained by using the temperature frequency shift characteristic of the FBG reflected signal. Furthermore, the fast and repetitive capture of junction temperature by FBG reveals details of the temperature variation within each RF pulse, which is correctly correlated with input signals. The results show that besides monitoring the temperature accumulation of the chip for a long time, the FBG can also capture junction temperature details of the chip within each pulse period. Finally, a Cauer-type thermal model of the RF MOSFET was constructed based on the temperature information captured by the FBG.
Collapse
|
9
|
Godinez F, Tomi-Tricot R, Quesson B, Barthel M, Lykowsky G, Scott G, Razavi R, Hajnal J, Malik S. An 8 channel parallel transmit system with current sensor feedback for MRI-guided interventional applications. Phys Med Biol 2021; 66. [PMID: 34649230 DOI: 10.1088/1361-6560/ac2fbe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022]
Abstract
Background.Parallel transmit (pTx) has introduced many benefits to magnetic resonance imaging (MRI) with regard to decreased specific absorption rates and improved transmit field homogeneity, of particular importance in applications at higher magnetic field strengths. PTx has also been proposed as a solution to mitigating dangerous RF induced heating of elongated conductive devices such as those used in cardiac interventions. In this work we present a system that can augment a conventional scanner with pTx, in particular for use in interventional MRI for guidewire safety, by adjusting the amplitude and phase of each channel right before the start of the imaging pulses.Methods.The pTx system was designed to work in-line with a 1.5 T MRI while the RF synthesis and imaging control was maintained on the host MR scanner. The add-on pTx system relies on the RF transmit signal, unblanking pulse, and a protocol driven trigger from the scanner. The RF transmit was split into multiple fully modulated transmit signals to drive an array of custom transceiver coils. The performance of the 8-channel implementation was tested with regards to active and real-time control of RF induced currents on a standard guidewire, heating mitigation tests, and anatomical imaging in sheep.Results. The pTx system was intended to update RF shims in real-time and it was demonstrated that the safe RF shim could be determined while the guidewire is moved. The anatomical imaging demonstrated that cardiac anatomy and neighbouring superficial structures could be fully characterized with the pTx system inline.Conclusion.We have presented the design and performance of a real-time feedback control pTx system capable of adding such capabilities to a conventional MRI with the focus of guidewire imaging in cardiac interventional MRI applications.
Collapse
Affiliation(s)
- Felipe Godinez
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Centre for the Developing Brain, King's College London, London, United kingdom.,Department of Radiology, University of California Davis, Sacramento, California, United States of America
| | - Raphael Tomi-Tricot
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Bruno Quesson
- Centre de recherche Cardio-Thoracique de Bordeaux/IHU Liryc, INSERM U1045-University of Bordeaux, Pessac, France
| | | | | | - Greig Scott
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Department of Congenital Cardiology, Evelina London Children's Healthcare, Guys and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Joseph Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Centre for the Developing Brain, King's College London, London, United kingdom
| | - Shaihan Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United kingdom.,Centre for the Developing Brain, King's College London, London, United kingdom
| |
Collapse
|
10
|
Godinez F, Tomi-Tricot R, Delcey M, Williams SE, Mooiweer R, Quesson B, Razavi R, Hajnal JV, Malik SJ. Interventional cardiac MRI using an add-on parallel transmit MR system: In vivo experience in sheep. Magn Reson Med 2021; 86:3360-3372. [PMID: 34286866 DOI: 10.1002/mrm.28931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE We present in vivo testing of a parallel transmit system intended for interventional MR-guided cardiac procedures. METHODS The parallel transmit system was connected in-line with a conventional 1.5 Tesla MRI system to transmit and receive on an 8-coil array. The system used a current sensor for real-time feedback to achieve real-time current control by determining coupling and null modes. Experiments were conducted on 4 Charmoise sheep weighing 33.9-45.0 kg with nitinol guidewires placed under X-ray fluoroscopy in the atrium or ventricle of the heart via the femoral vein. Heating tests were done in vivo and post-mortem with a high RF power imaging sequence using the coupling mode. Anatomical imaging was done using a combination of null modes optimized to produce a useable B1 field in the heart. RESULTS Anatomical imaging produced cine images of the heart comparable in quality to imaging with the quad mode (all channels with the same amplitude and phase). Maximum observed temperature increases occurred when insulation was stripped from the wire tip. These were 4.1℃ and 0.4℃ for the coupling mode and null modes, respectively for the in vivo case; increasing to 6.0℃ and 1.3℃, respectively for the ex vivo case, because cooling from blood flow is removed. Heating < 0.1℃ was observed when insulation was not stripped from guidewire tips. In all tests, the parallel transmit system managed to reduce the temperature at the guidewire tip. CONCLUSION We have demonstrated the first in vivo usage of an auxiliary parallel transmit system employing active feedback-based current control for interventional MRI with a conventional MRI scanner.
Collapse
Affiliation(s)
- Felipe Godinez
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raphael Tomi-Tricot
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Marylène Delcey
- Centre de Recherche Cardio, Thoracique de Bordeaux/IHU Liryc, INSERM U1045-University of Bordeaux, Pessac, France.,Siemens Healthcare, Saint-Denis, France
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Bruno Quesson
- Centre de Recherche Cardio, Thoracique de Bordeaux/IHU Liryc, INSERM U1045-University of Bordeaux, Pessac, France
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Shaihan J Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Gudino N, de Zwart JA, Duyn JH. Eight-channel parallel transmit-receive system for 7 T MRI with optically controlled and monitored on-coil current-mode RF amplifiers. Magn Reson Med 2020; 84:3494-3501. [PMID: 32662913 DOI: 10.1002/mrm.28392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To demonstrate a practical implementation of an eight-channel parallel-transmit system for brain imaging at 7 T based on on-coil amplifier technology. METHODS An eight-channel parallel transmit-receive system was built with optimized on-coil switch-mode current RF power amplifiers. The amplifiers were optically controlled from an eight-channel interface that was connected to a 7 T MRI scanner. The interface also optically received a down-converted version of the coil current sensed in each amplifier for monitoring and feedback adjustments. RESULTS Each on-coil amplifier delivered more than 100 W peak power and provided enough amplifier decoupling (<-15 dB) for the implemented eight-channel array configuration. Phantom and human images were acquired to demonstrate practical operation of this new technology in a 7 T MRI scanner. CONCLUSION Further development and improvement of previously demonstrated on-coil technology led to successful implementation of an eight-channel parallel-transmit system able to deliver strong B1 fields for typical brain imaging applications. This is an important step forward toward implementation of on-coil RF amplification for high-field MRI.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Winter L, Silemek B, Petzold J, Pfeiffer H, Hoffmann W, Seifert F, Ittermann B. Parallel transmission medical implant safety testbed: Real‐time mitigation of RF induced tip heating using time‐domain E‐field sensors. Magn Reson Med 2020; 84:3468-3484. [DOI: 10.1002/mrm.28379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Lukas Winter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Berk Silemek
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Johannes Petzold
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Harald Pfeiffer
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Werner Hoffmann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Frank Seifert
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Bernd Ittermann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| |
Collapse
|
13
|
A Platform for 4-Channel Parallel Transmission MRI at 3 T: Demonstration of Reduced Radiofrequency Heating in a Test Object Containing an Implanted Wire. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Gudino N, Duan Q, de Zwart JA, Murphy-Boesch J, Dodd SJ, Merkle H, van Gelderen P, Duyn JH. Optically controlled switch-mode current-source amplifiers for on-coil implementation in high-field parallel transmission. Magn Reson Med 2015; 76:340-9. [PMID: 26256671 DOI: 10.1002/mrm.25857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/23/2015] [Accepted: 07/12/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE We tested the feasibility of implementing parallel transmission (pTX) for high-field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of an RF transmit coil. METHOD We designed a current-source switch-mode amplifier based on miniaturized, nonmagnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring interchannel coupling and phase adjustment in a two-channel setup. RESULTS The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between two coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. CONCLUSION We propose an optically controlled miniaturized RF amplifier for on-coil implementation at high fields that should facilitate implementation of high-density pTX arrays. Magn Reson Med 76:340-349, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Duan
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joe Murphy-Boesch
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hellmut Merkle
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter van Gelderen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Cui J, Bosshard JC, Rispoli JV, Dimitrov IE, Cheshkov S, McDougall MP, Malloy C, Wright SM. A Switched-Mode Breast Coil for 7 T MRI Using Forced-Current Excitation. IEEE Trans Biomed Eng 2015; 62:1777-83. [PMID: 25706501 DOI: 10.1109/tbme.2015.2403850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In high-field magnetic resonance imaging, the radio frequency wavelength within the human body is comparable to anatomical dimensions, resulting in B1 inhomogeneity and nonuniform sensitivity patterns. Thus, this relatively short wavelength presents engineering challenges for RF coil design. In this study, a bilateral breast coil for (1)H imaging at 7 T was designed and constructed using forced-current excitation. By forcing equal current through the coil elements, we reduce the effects of coupling between the elements to simplify tuning and to ensure a uniform field across both breasts. To combine the benefits of the higher power efficiency of a unilateral coil with the bilateral coverage of a bilateral coil, a switching circuit was implemented to allow the coil to be reconfigured for imaging the left, right, or both breasts.
Collapse
|
16
|
Feng K, Wright SM. Rapid slice excitation without B0 gradients using large array coils. Quant Imaging Med Surg 2014; 4:145-51. [PMID: 24834427 DOI: 10.3978/j.issn.2223-4292.2014.04.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 11/14/2022]
Abstract
In a large transmit planar pair phased array with the same power level in each channel, it is shown that controlling the phase shift between neighboring channels can yield different transmit slice thickness. Similarly, variation of the power level can move the slice less or further into the subject for imaging. The technique may be of particular interest as it allows curved slice excitation. These excitation patterns are achieved without complicated RF pulse sequences, i.e., without the use of multi-dimensional RF pulses. Simple simulations based on Biot-Savart law are used to predict the effect of the phase offset and power level variation. Planar and cylindrical formed planar pair coil arrays are both simulated and later built and tested using an MR scanner. The array is flexible and formed around the surface of objects under study, and the excitation is near the surface. Simulation results are compared with actual MRI images with good agreement. This technique is potentially useful for slice excitation in very rapid or ultra-short echo sequences.
Collapse
Affiliation(s)
- Ke Feng
- 1 Department of Electrical and Computer Engineering, 2 Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA ; 3 Department of Radiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Steven M Wright
- 1 Department of Electrical and Computer Engineering, 2 Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA ; 3 Department of Radiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
17
|
|
18
|
Gudino N, Griswold MA. Multi-turn transmit coil to increase b1 efficiency in current source amplification. Magn Reson Med 2013; 69:1180-5. [PMID: 23401060 DOI: 10.1002/mrm.24612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/08/2012] [Accepted: 11/30/2012] [Indexed: 11/12/2022]
Abstract
PURPOSE A multi-turn transmit surface coil design was presented to improve B1 efficiency when used with current source amplification. METHODS Three different coil designs driven by an on-coil current-mode class-D amplifier with current envelope feedback were tested on the benchtop and through imaging in a 1.5 T scanner. Case temperature of the power field-effect transistor at the amplifier output stage was measured to evaluate heat dissipation for the different current levels and coil configurations. In addition, a lower power rated device was tested to exploit the potential gain in B1 obtained with the multi-turn coil. RESULTS As shown both on the benchtop and in a 1.5 T scanner, B1 was increased by almost 3-fold without increasing heat dissipation on the power device at the amplifier's output using a multi-turn surface coil. Similar gain was obtained when connecting a lower power rated field-effect transistor to the multi-turn coil. CONCLUSION In addition to reduce heat dissipation per B1 in the device, higher B1 per current efficiency allows the use of field-effect transistors with lower current ratings and lower port capacitances, which could improve the overall performance of the on-coil current source transmit system.
Collapse
Affiliation(s)
- N Gudino
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|