1
|
Pan M, Li Q, Song J, Wang B, Wang W, Zhang R. Understanding the Spatio-Temporal Coupling of Spikes and Spindles in Focal Epilepsy Through a Network-Level Computational Model. Int J Neural Syst 2025; 35:2550018. [PMID: 40084544 DOI: 10.1142/s0129065725500182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The electrophysiological findings have shown that epileptiform spikes triggering sleep spindles within 1[Formula: see text]s across multiple channels are commonly observed during sleep in focal epilepsy (FE). Such spatio-temporal couplings of spikes and spindles (STCSSs) are defined as a kind of pathological waves, and frequent emergence of them may cause the degradation of cognitive function for FE patients. However, the neural mechanisms underlying STCSSs are not well understood. To this end, this work first develops a neural mass network model for focal epilepsy (FE-NMNM) with multiple thalamocortical columns being its nodes and the long-range synaptic interactions of thalamocortical columns being its edges, where each thalamocortical column is extended on the basis of Costa model and then they are connected through excitatory synapses between pyramidal cells. Then, how the cortico-cortical connectivity affects the evolution of STCSSs across the network is especially discussed by simulations in two cases, where the inter-ictal state and the ictal state are considered separately. Simulation results demonstrate that: (1) the more STCSSs occur in a more extensive area when the cortico-cortical connectivity becomes stronger, and the significant increase of coupling discharges is attributed to the presence of abundant spikes; (2) when the connectivity is excessively strong, the cortical hyperexcitability will happen, thereby inducing massive spike discharges which may further inhibit the occurrence of spindles, and hence, resulting in the disappearance of STCSSs. The obtained results provide a mechanistic insight into STCSSs, and suggest that such coupling patterns could reflect widespread network dysfunction in FE, thereby potentially advancing therapeutic strategies for FE.
Collapse
Affiliation(s)
- Min Pan
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Qiang Li
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Jiangling Song
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Bo Wang
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Wenhua Wang
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Rui Zhang
- School of Mathematics, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| |
Collapse
|
2
|
Yuan S, Huang H, Cai B, Li J, Zhang M, Luo J. Altered metabolic-functional coupling in the epileptogenic network could predict surgical outcomes of mesial temporal lobe epilepsy. Front Neurosci 2023; 17:1165982. [PMID: 37360171 PMCID: PMC10286900 DOI: 10.3389/fnins.2023.1165982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Objective To investigate the relationship between glucose metabolism and functional activity in the epileptogenic network of patients with mesial temporal lobe epilepsy (MTLE) and to determine whether this relationship is associated with surgical outcomes. Methods 18F-FDG PET and resting-state functional MRI (rs-fMRI) scans were performed on a hybrid PET/MR scanner in 38 MTLE patients with hippocampal sclerosis (MR-HS), 35 MR-negative patients and 34 healthy controls (HC). Glucose metabolism was measured using 18F-FDG PET standardized uptake value ratio (SUVR) relative to cerebellum; Functional activity was obtained by fractional amplitude of low-frequency fluctuation (fALFF). The betweenness centrality (BC) of metabolic covariance network and functional network were calculated using graph theoretical analysis. Differences in SUVR, fALFF, BC and the spatial voxel-wise SUVR-fALFF couplings of the epileptogenic network, consisting of default mode network (DMN) and thalamus, were evaluated by Mann-Whitney U test (using the false discovery rate [FDR] for multiple comparison correction). The top ten SUVR-fALFF couplings were selected by Fisher score to predict surgical outcomes using logistic regression model. Results The results showed decreased SUVR-fALFF coupling in the bilateral middle frontal gyrus (PFDR = 0.0230, PFDR = 0.0296) in MR-HS patients compared to healthy controls. Coupling in the ipsilateral hippocampus was marginally increased (PFDR = 0.0802) in MR-HS patients along with decreased BC of metabolic covariance network and functional network (PFDR = 0.0152; PFDR = 0.0429). With Fisher score ranking, the top ten SUVR-fALFF couplings in regions from DMN and thalamic subnuclei could predict surgical outcomes with the best performance being a combination of ten SUVR-fALFF couplings with an AUC of 0.914. Conclusion These findings suggest that the altered neuroenergetic coupling in the epileptogenic network is associated with surgical outcomes of MTLE patients, which may provide insight into their pathogenesis and help with preoperative evaluation.
Collapse
Affiliation(s)
- Siyu Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyang Cai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwei Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Xu H, Chen K, Zhu H, Bu J, Yang L, Chen F, Ma H, Qu X, Zhang R, Liu H. Neurovascular coupling changes in patients with magnetic resonance imaging negative focal epilepsy. Epilepsy Behav 2023; 138:109035. [PMID: 36535109 DOI: 10.1016/j.yebeh.2022.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Brain neuron activity is closely related to cerebral blood flow (CBF) changes. Alterations in the regional homogeneity (ReHo) and CBF occur in patients with magnetic resonance imaging negative focal epilepsy (FEP-MRI-). However, the coupling alterations of ReHo and CBF in FEP-MRI- remain unclear. The study aims to explore neurovascular coupling alterations and their clinical implication in FEP-MRI-. We collected resting-state magnetic resonance imaging (MRI) data from 31 healthy controls (HCs) and 48 patients with FEP-MRI-,including three-dimensional (3D) T1-weighted imaging, 3D arterial spin labeling (ASL) imaging,and resting-state functional MRI (rs-fMRI). The CBF and ReHo values were calculated from the ASL and rs-fMRI data, respectively. The CBF/ReHo ratio per voxel and whole-brain CBF-ReHo coupling were compared between the two groups. Correlation analysis involved the CBF/ReHo ratio and clinical indicators in FEP-MRI-. Patients with FEP-MRI- showed significantly increased cross-subject CBF-ReHo and global cross-voxel CBF-ReHo coupling. The CBF/ReHo ratio was higher in the bilateral orbitofrontal gyrus, right parietal lobe, and right middle frontal gyrus of patients with FEP-MRI-. Nevertheless, this ratio was lower in the bilateral supplementary motor areas, the left middle and posterior cingulate gyrus, and the right central sulcus cover. The CBF/ReHo ratio was markedly correlated with cognitive function, memory, intelligence, and epilepsy duration in the above abnormal brain regions. CBF/ReHo ratio may be useful as an indicator of neuropathological mechanisms. These results support the hypothesis that CBF/ReHo ratio relates to the neuropathological mechanisms of FEP-MRI-. Furthermore, it offers new perspectives for studying the mechanisms of MRI-negative epilepsy.
Collapse
Affiliation(s)
- Honghao Xu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Kefan Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jinxin Bu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lu Yang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Fangqing Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Haiyan Ma
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xuefeng Qu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| | - Hongyi Liu
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
4
|
Liu H, Xiang Y, Liu J, Feng J, Du S, Luo T, Li Y, Zeng C. Diffusion kurtosis imaging and diffusion tensor imaging parameters applied to white matter and gray matter of patients with anti-N-methyl-D-aspartate receptor encephalitis. Front Neurosci 2022; 16:1030230. [PMID: 36507336 PMCID: PMC9730699 DOI: 10.3389/fnins.2022.1030230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives To compare parameters of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) to evaluate which can better describe the microstructural changes of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patients and to characterize the non-Gaussian diffusion patterns of the whole brain and their correlation with neuropsychological impairments in these patients. Materials and methods DTI and DKI parameters were measured in 57 patients with anti-NMDAR encephalitis and 42 healthy controls. Voxel-based analysis was used to evaluate group differences between white matter and gray matter separately. The modified Rankin Scale (mRS) was used to evaluate the severity of the neurofunctional recovery of patients, the Montreal Cognitive Assessment (MoCA) was used to assess global cognitive performance, and the Hamilton Depression Scale (HAMD) and fatigue severity scale (FSS) were used to evaluate depressive and fatigue states. Results Patients with anti-NMDAR encephalitis showed significantly decreased radial kurtosis (RK) in the right extranucleus in white matter (P < 0.001) and notably decreased kurtosis fractional anisotropy (KFA) in the right precuneus, the right superior parietal gyrus (SPG), the left precuneus, left middle occipital gyrus, and left superior occipital gyrus in gray matter (P < 0.001). Gray matter regions with decreased KFA overlapped with those with decreased RK in the left middle temporal gyrus, superior temporal gyrus (STG), supramarginal gyrus (SMG), postcentral gyrus (POCG), inferior parietal but supramarginal gyrus, angular gyrus (IPL) and angular gyrus (ANG) (P < 0.001). The KFA and RK in the left ANG, IPL and POCG correlated positively with MoCA scores. KFA and RK in the left ANG, IPL, POCG and SMG correlated negatively with mRS scores. KFA in the left precuneus and right SPG as well as RK in the left STG correlated negatively with mRS scores. No significant correlation between KFA and RK in the abnormal brain regions and HAMD and FSS scores was found. Conclusion The microstructural changes in gray matter were much more extensive than those in white matter in patients with anti-NMDAR encephalitis. The brain damage reflected by DKI parameters, which have higher sensitivity than parameters of DTI, correlated with cognitive impairment and the severity of the neurofunctional recovery.
Collapse
Affiliation(s)
- Hanjing Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yayun Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yongmei Li,
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Chun Zeng,
| |
Collapse
|
5
|
Guo Y, Lv X, Wei Q, Wu Y, Chen Y, Ji Y, Hou Q, Lv H, Zhou N, Wang K, Tian Y. Impaired neurovascular coupling and cognitive deficits in anti-N-methyl-D-aspartate receptor encephalitis. Brain Imaging Behav 2022; 16:1065-1076. [PMID: 34735667 DOI: 10.1007/s11682-021-00588-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a recently identified autoimmune disorder with heterogeneous neurological, psychiatric, and cognitive manifestations. The NMDAR is a key signaling node for neurovascular coupling, the mechanism by which cerebral blood perfusion is enhanced to meet local metabolic requirements from increased neuronal activity. Therefore, anti-NMDAR encephalitis may disrupt neurovascular coupling and induce cognitive deficits. This study examined neurovascular coupling and cognitive function in anti-NMDAR encephalitis patients to identify prognostic biomarkers, reveal potential pathogenic mechanisms, and provide clues to possible therapeutic strategies. In this study, twenty-three anti-NMDAR encephalitis patients and thirty healthy controls received neuropsychological testing and multimodal magnetic resonance imaging (MRI). Cerebral blood flow (CBF) was calculated from arterial spin labeling, and regional homogeneity (ReHo) was computed from functional MRI. Pearson's correlation coefficients between CBF and ReHo were calculated to obtain neurovascular coupling. At the whole gray matter level, CBF‒ReHo coupling was reduced in patients compared to healthy controls. At the regional level, CBF‒ReHo was significantly lower among patients in the precentral gyrus, frontal gyrus, insula, cuneus, inferior parietal lobe, supramarginal gyrus, angular gyrus, precuneus, temporal gyrus, and temporal pole. Reduced CBF‒ReHo in the left superior medial frontal gyrus of patients was significantly correlated with a deficit in verbal inhibition control, and the reduced CBF‒ReHo in the left insula was significantly correlated with impaired executive function. In conclusion, anti-NMDAR encephalitis is associated with both global and regional disruptions in neurovascular coupling that may in turn lead to deficits in specific cognitive domains.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Xinyi Lv
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Yang Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Qiangqiang Hou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Huaming Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Nong Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 230022, Hefei, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, 230022, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230022, Hefei, China.
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Anhui Province, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230022, Hefei, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 230022, Hefei, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, 230022, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230022, Hefei, China.
| |
Collapse
|
6
|
Yin L, Gao DS, Hu JM, Zhong C, Xi W. Long-term development of dynamic changes in neurovascular coupling after acute temporal lobe epilepsy. Brain Res 2022; 1784:147858. [PMID: 35245486 DOI: 10.1016/j.brainres.2022.147858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/25/2022]
Abstract
Epilepsy is an abnormal brain state that may be induced by synchronous neuronal activation and also abnormalities in energy metabolism or the oxygen supply vascular system. Neurovascular coupling (NVC), the relationship between neuron, capillary, and penetrating artery, remains unexplored on a fine-scale with respect to the pathology process after acute temporal lobe epilepsy (TLE). Here we use two-photon microscopy (TPM) to provide high temporal-spatial resolution imaging to identify changes in NVC during spontaneous and electro-stimulated (ES) states in awake mice. Implantation of a long-term craniotomy window allowed TPM recording of the pathological development after the acute Kainic Acid temporal lobe epilepsy model. Our results provide direct evidence that the capillary and penetrating artery are not correlated to rhythmic neuronal activity during acute epilepsy. During the CSD period, NVC shows a strong correlation. We demonstrate that NVC exhibits nonlinear dynamics after status epilepticus. Furthermore, the vascular correlation to neuronal signals in spontaneous and ES states shows dynamic changes which correlate to the evolution after acute TLE. Understanding NVC in all TLE stages, from the acute through the TLE pathological development, may provide new therapeutic pathways.
Collapse
Affiliation(s)
- Liu Yin
- Interdisciplinary Institute of Neuroscience and Technology, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Kaixuan Road 258th, Hangzhou, 310020, PR China
| | - Dave Schwinn Gao
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, PR China
| | - Jia Ming Hu
- Interdisciplinary Institute of Neuroscience and Technology, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Kaixuan Road 258th, Hangzhou, 310020, PR China
| | - Chen Zhong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China. Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Kaixuan Road 258th, Hangzhou, 310020, PR China; Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and instrument Science, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
7
|
Suarez A, Valdes-Hernandez PA, Moshkforoush A, Tsoukias N, Riera J. Arterial blood stealing as a mechanism of negative BOLD response: From the steady-flow with nonlinear phase separation to a windkessel-based model. J Theor Biol 2021; 529:110856. [PMID: 34363836 PMCID: PMC8507599 DOI: 10.1016/j.jtbi.2021.110856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/22/2021] [Accepted: 08/01/2021] [Indexed: 01/07/2023]
Abstract
Blood Oxygen Level Dependent (BOLD) signal indirectly characterizes neuronal activity by measuring hemodynamic and metabolic changes in the nearby microvasculature. A deeper understanding of how localized changes in electrical, metabolic and hemodynamic factors translate into a BOLD signal is crucial for the interpretation of functional brain imaging techniques. While positive BOLD responses (PBR) are widely considered to be linked with neuronal activation, the origins of negative BOLD responses (NBR) have remained largely unknown. As NBRs are sometimes observed in close proximity of regions with PBR, a blood "stealing" effect, i.e., redirection of blood from a passive periphery to the area with high neuronal activity, has been postulated. In this study, we used the Hagen-Poiseuille equation to model hemodynamics in an idealized microvascular network that account for the particulate nature of blood and nonlinearities arising from the red blood cell (RBC) distribution (i.e., the Fåhraeus, Fåhraeus-Lindqvist and the phase separation effects). Using this detailed model, we evaluate determinants driving this "stealing" effect in a microvascular network with geometric parameters within physiological ranges. Model simulations predict that during localized cerebral blood flow (CBF) increases due to neuronal activation-hyperemic response, blood from surrounding vessels is reallocated towards the activated region. This stealing effect depended on the resistance of the microvasculature and the uneven distribution of RBCs at vessel bifurcations. A parsimonious model consisting of two-connected windkessel regions sharing a supplying artery was proposed to simulate the stealing effect with a minimum number of parameters. Comparison with the detailed model showed that the parsimonious model can reproduce the observed response for hematocrit values within the physiological range for different species. Our novel parsimonious model promise to be of use for statistical inference (top-down analysis) from direct blood flow measurements (e.g., arterial spin labeling and laser Doppler/Speckle flowmetry), and when combined with theoretical models for oxygen extraction/diffusion will help account for some types of NBRs.
Collapse
Affiliation(s)
- Alejandro Suarez
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Pedro A Valdes-Hernandez
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States; Department of Community Dentistry and Behavioral Science, University of Florida, United States
| | - Arash Moshkforoush
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Nikolaos Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jorge Riera
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.
| |
Collapse
|
8
|
Suarez A, Valdés-Hernández PA, Bernal B, Dunoyer C, Khoo HM, Bosch-Bayard J, Riera JJ. Identification of Negative BOLD Responses in Epilepsy Using Windkessel Models. Front Neurol 2021; 12:659081. [PMID: 34690906 PMCID: PMC8531269 DOI: 10.3389/fneur.2021.659081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Alongside positive blood oxygenation level–dependent (BOLD) responses associated with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are typically found in epileptic patients. Previous studies suggest that, in general, up to four mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these mechanisms from BOLD signals are pivotal for the improvement of the specificity of the electroencephalography–functional magnetic resonance imaging (EEG-fMRI) image modality to identify the seizure-onset zones in refractory local epilepsy. This requires models with physiological interpretation that furnish the understanding of how these mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel model with viscoelastic compliance/inductance in combination with dynamic models of both neuronal population activity and tissue/blood O2 to classify the hemodynamic response functions (HRFs) linked to the above mechanisms in the irritative zones of epileptic patients. First, we evaluated the most relevant imprints on the BOLD response caused by variations of key model parameters. Second, we demonstrated that a general linear model is enough to accurately represent the four different types of NBRs. Third, we tested the ability of a machine learning classifier, built from a simulated ensemble of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones. Cross-validation indicates that these four mechanisms can be classified from realistic fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the presence of some of these mechanisms. We concluded that a proper identification and interpretation of NBR mechanisms in epilepsy can be performed by combining general linear models and biophysically inspired models.
Collapse
Affiliation(s)
- Alejandro Suarez
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| | | | - Byron Bernal
- Nicklaus Children Hospital, Miami, FL, United States
| | | | - Hui Ming Khoo
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurosurgery, Osaka University, Suita, Japan
| | - Jorge Bosch-Bayard
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jorge J Riera
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| |
Collapse
|
9
|
Yang F, Li J, Song Y, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Ma H, Schwartz TH. Mesoscopic Mapping of Ictal Neurovascular Coupling in Awake Behaving Mice Using Optical Spectroscopy and Genetically Encoded Calcium Indicators. Front Neurosci 2021; 15:704834. [PMID: 34366781 PMCID: PMC8343016 DOI: 10.3389/fnins.2021.704834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Unambiguously identifying an epileptic focus with high spatial resolution is a challenge, especially when no anatomic abnormality can be detected. Neurovascular coupling (NVC)-based brain mapping techniques are often applied in the clinic despite a poor understanding of ictal NVC mechanisms, derived primarily from recordings in anesthetized animals with limited spatial sampling of the ictal core. In this study, we used simultaneous wide-field mesoscopic imaging of GCamp6f and intrinsic optical signals (IOS) to record the neuronal and hemodynamic changes during acute ictal events in awake, behaving mice. Similar signals in isoflurane-anesthetized mice were compared to highlight the unique characteristics of the awake condition. In awake animals, seizures were more focal at the onset but more likely to propagate to the contralateral hemisphere. The HbT signal, derived from an increase in cerebral blood volume (CBV), was more intense in awake mice. As a result, the “epileptic dip” in hemoglobin oxygenation became inconsistent and unreliable as a mapping signal. Our data indicate that CBV-based imaging techniques should be more accurate than blood oxygen level dependent (BOLD)-based imaging techniques for seizure mapping in awake behaving animals.
Collapse
Affiliation(s)
- Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Yan Song
- School of Nursing, Beihua University, Jilin City, China
| | - Mingrui Zhao
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - James E Niemeyer
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Ma
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| | - Theodore H Schwartz
- Department of Neurological Surgery, Brain and Mind Research Institute, New York Presbyterian Hospital, Weill Cornell Medicine of Cornell University, New York, NY, United States
| |
Collapse
|
10
|
Chen SF, Pan HY, Huang CR, Huang JB, Tan TY, Chen NC, Hsu CY, Chuang YC. Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy. J Pers Med 2021; 11:jpm11040313. [PMID: 33920691 PMCID: PMC8073240 DOI: 10.3390/jpm11040313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
Patients with epilepsy frequently experience autonomic dysfunction and impaired cerebral autoregulation. The present study investigates autonomic function and cerebral autoregulation in patients with epilepsy to determine whether these factors contribute to impaired autoregulation. A total of 81 patients with epilepsy and 45 healthy controls were evaluated, assessing their sudomotor, cardiovagal, and adrenergic functions using a battery of autonomic nervous system (ANS) function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial Doppler examination during the breath-holding test, the Valsalva maneuver, and the head-up tilting test. Autonomic functions were impaired during the interictal period in patients with epilepsy compared to healthy controls. The three indices of cerebral autoregulation—the breath-holding index (BHI), an autoregulation index calculated in phase II of the Valsalva maneuver (ASI), and cerebrovascular resistance measured in the second minute during the head-up tilting test (CVR2-min)—all decreased in patients with epilepsy. ANS dysfunction correlated significantly with impairment of cerebral autoregulation (measured by BHI, ASI, and CVR2-min), suggesting that the increased autonomic dysfunction in patients with epilepsy may augment the dysregulation of cerebral blood flow. Long-term epilepsy, a high frequency of seizures, and refractory epilepsy, particularly temporal lobe epilepsy, may contribute to advanced autonomic dysfunction and impaired cerebral autoregulation. These results have implications for therapeutic interventions that aim to correct central autonomic dysfunction and impairment of cerebral autoregulation, particularly in patients at high risk for sudden, unexplained death in epilepsy.
Collapse
Affiliation(s)
- Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Yung Pan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jyun-Bin Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Teng-Yeow Tan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Wang J, Shan Y, Dai J, Cui B, Shang K, Yang H, Chen Z, Shan B, Zhao G, Lu J. Altered coupling between resting-state glucose metabolism and functional activity in epilepsy. Ann Clin Transl Neurol 2020; 7:1831-1842. [PMID: 32860354 PMCID: PMC7545617 DOI: 10.1002/acn3.51168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Altered functional activities and hypometabolism have been found in medial temporal lobe epilepsy patients with hippocampal sclerosis (mTLE-HS). Hybrid PET/MR scanners provide opportunities to explore the relationship between resting-state energy consumption and functional activities, but whether repeated seizures disturb the bioenergetic coupling and its relationship with seizure outcomes remain unknown. METHODS 18 F-FDG PET and resting-state functional MRI (rs-fMRI) scans were performed with hybrid PET/MR in 26 patients with mTLE-HS and in healthy controls. Energy consumption was quantified by 18 F-FDG standardized uptake value ratio(SUVR) relative to cerebellum. Spontaneous neural activities were estimated using regional homogeneity (ReHo), fractional amplitude of low frequency fluctuations (fALFF) from rs-fMRI. Between-group differences in SUVR and rs-fMRI derived metrics were evaluated by two-sample t test. Voxel-wise spatial correlations were explored between SUVR and ReHo, fALFF across gray matter and compared between groups. Furthermore, the relationships between altered fALFF/SUVR and ReHo/SUVR coupling and surgical outcomes were evaluated. RESULTS Both the patients and healthy controls showed significant positive correlations between SUVR and rs-fMRI metrics. Spatial correlations between SUVR and fMRI-derived metrics across gray matter were significantly higher in patients with mTLE-HS compared with healthy controls (fALFF/SUVR, P < 0.001; ReHo/SUVR, P = 0.022). Higher fALFF/SUVR couplings were found in patients who had Engel class IA after surgery than all other (P = 0.025), while altered ReHo/SUVR couplings (P = 0.097) were not. CONCLUSION These findings demonstrated altered bioenergetic coupling across gray matter and its relationship with seizure outcomes, which may provide novel insights into pathogenesis of mTLE-HS and potential biomarkers for epilepsy surgery planning.
Collapse
Affiliation(s)
- Jingjuan Wang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Yi Shan
- Department of RadiologyXuanwu Hospital Capital Medical UniversityBeijingChina
- Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| | - Jindong Dai
- Department of NeurosurgeryBeijing Haidian Section of Peking University Third HospitalBeijingChina
- Department of Functional NeurosurgeryXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Bixiao Cui
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Kun Shang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | - Hongwei Yang
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
| | | | - Baoci Shan
- Division of Nuclear Technology and ApplicationsInstitute of High Energy PhysicsChinese Academy of SciencesBeijingChina
- Beijing Engineering Research Center of Radiographic Techniques and EquipmentBeijingChina
- CAS Centre for Excellence in Brain Science and Intelligent TechnologyShanghaiChina
| | - Guoguang Zhao
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jie Lu
- Department of Nuclear MedicineXuanwu Hospital Capital Medical UniversityBeijingChina
- Department of RadiologyXuanwu Hospital Capital Medical UniversityBeijingChina
- Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
| |
Collapse
|
12
|
Peng B, Li J, Li X, Wang X, Zhu H, Liang W, Liang H, Chen W. Neuropsychological Deficits in Patients with Electrical Status Epilepticus During Sleep: A Non-invasive Analysis of Neurovascular Coupling. Brain Topogr 2020; 33:375-383. [PMID: 32128654 DOI: 10.1007/s10548-020-00759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022]
Abstract
To evaluate the effects of electrical status epilepticus during sleep (ESES) on cerebral blood flow (CBF) and explore the associated neuro-vascular coupling and neuropsychological deficits. 19 ESES patients were recruited to undergo real-time transcranial doppler ultrasonography (TCD) and video-EEG monitoring (vEEG). Patients were grouped based on their cognitive functions or their EEG patterns. The mean cerebral blood flow velocity (CBFVm) of the unilateral middle cerebral artery was measured using TCD and was used to calculate various relevant parameters. The 19 patients participated in a total of 54 effective TCD-vEEG monitoring sessions. We found a significant effect of clinical severity for the following measurements: spike wave index (SWI), peak and average deep sleep stage (N3) CBFVm, peak, average and minimum deep sleep and awake CBFVm, and CBFVm oscillations during deep sleep. Nevertheless, CBFVm oscillations were not related to SWI. Furthermore, CBFVm oscillations revealed a statistically significant difference between the near-ESES and asymmetric-ESES groups. CBFVm oscillations may reflect the neuro-vascular coupling process associated with ESES disfunction. Understanding the relationship between CBFVm oscillations and epileptic activity will be important for assessing the neuropsychological damage associated with ESES and for developing treatment options for this and other diseases.
Collapse
Affiliation(s)
- Bingwei Peng
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China.
| | - Jialing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Xiuying Wang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Haixia Zhu
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Wei Liang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Huici Liang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Wenxiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 318# Ren Min Road, Guangzhou, Guangdong, 510120, P.R. China
| |
Collapse
|
13
|
Wu M, Wan T, Ding M, Wan X, Du Y, She J. A New Unsupervised Detector of High-Frequency Oscillations in Accurate Localization of Epileptic Seizure Onset Zones. IEEE Trans Neural Syst Rehabil Eng 2018; 26:2280-2289. [DOI: 10.1109/tnsre.2018.2877820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Moshkforoush A, Valdes-Hernandez PA, Rivera-Espada DE, Mori Y, Riera J. waveCSD: A method for estimating transmembrane currents originated from propagating neuronal activity in the neocortex: Application to study cortical spreading depression. J Neurosci Methods 2018; 307:106-124. [PMID: 29997062 PMCID: PMC6086575 DOI: 10.1016/j.jneumeth.2018.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent years have witnessed an upsurge in the development of methods for estimating current source densities (CSDs) in the neocortical tissue from their recorded local field potential (LFP) reflections using microelectrode arrays. Among these, methods utilizing linear arrays work under the assumption that CSDs vary as a function of cortical depth; whereas they are constant in the tangential direction, infinitely or in a confined cylinder. This assumption is violated in the analysis of neuronal activity propagating along the neocortical sheet, e.g. propagation of alpha waves or cortical spreading depression. NEW METHOD Here, we developed a novel mathematical method (waveCSD) for CSD analysis of LFPs associated with a planar wave of neocortical neuronal activity propagating at a constant velocity towards a linear probe. RESULTS Results show that the algorithm is robust to the presence of noise in LFP data and uncertainties in knowledge of propagation velocity. Also, results show high level of accuracy of the method in a wide range of electrode resolutions. Using in vivo experimental recordings from the rat neocortex, we employed waveCSD to characterize transmembrane currents associated with cortical spreading depressions. COMPARISON WITH EXISTING METHOD(S) Simulation results indicate that waveCSD has a significantly higher reconstruction accuracy compared to the widely-used inverse CSD method (iCSD), and the regularized kernel CSD method (kCSD), in the analysis of CSDs originating from propagating neuronal activity. CONCLUSIONS The waveCSD method provides a theoretical platform for estimation of transmembrane currents from their LFPs in experimental paradigms involving wave propagation.
Collapse
Affiliation(s)
- Arash Moshkforoush
- Department Biomedical Engineering, Florida International University, United States
| | | | | | - Yoichiro Mori
- Department of Mathematics, University of Minnesota Twin Cities, United States
| | - Jorge Riera
- Department Biomedical Engineering, Florida International University, United States.
| |
Collapse
|
15
|
Deshmukh A, Leichner J, Bae J, Song Y, Valdés-Hernández PA, Lin WC, Riera JJ. Histological Characterization of the Irritative Zones in Focal Cortical Dysplasia Using a Preclinical Rat Model. Front Cell Neurosci 2018; 12:52. [PMID: 29867355 PMCID: PMC5968101 DOI: 10.3389/fncel.2018.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
Current clinical practice in focal epilepsy involves brain source imaging (BSI) to localize brain areas where from interictal epileptiform discharges (IEDs) emerge. These areas, named irritative zones, have been useful to define candidate seizures-onset zones during pre-surgical workup. Since human histological data are mostly available from final resected zones, systematic studies characterizing pathophysiological mechanisms and abnormal molecular/cellular substrates in irritative zones—independent of them being epileptogenic—are challenging. Combining BSI and histological analysis from all types of irritative zones is only possible through the use of preclinical animal models. Here, we recorded 32-channel spontaneous electroencephalographic data from rats that have focal cortical dysplasia (FCD) and chronic seizures. BSI for different IED subtypes was performed using the methodology presented in Bae et al. (2015). Post-mortem brain sections containing irritative zones were stained to quantify anatomical, functional, and inflammatory biomarkers specific for epileptogenesis, and the results were compared with those obtained using the contralateral healthy brain tissue. We found abnormal anatomical structures in all irritative zones (i.e., larger neuronal processes, glioreactivity, and vascular cuffing) and larger expressions for neurotransmission (i.e., NR2B) and inflammation (i.e., ILβ1, TNFα and HMGB1). We conclude that irritative zones in this rat preclinical model of FCD comprise abnormal tissues disregarding whether they are actually involved in icto-genesis or not. We hypothesize that seizure perpetuation happens gradually; hence, our results could support the use of IED-based BSI for the early diagnosis and preventive treatment of potential epileptic foci. Further verifications in humans are yet needed.
Collapse
Affiliation(s)
- Abhay Deshmukh
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jared Leichner
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jihye Bae
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Yinchen Song
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Pedro A Valdés-Hernández
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Wei-Chiang Lin
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Jorge J Riera
- Neuronal Mass Dynamics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
16
|
Song Y, Garcia S, Frometa Y, Ramella-Roman JC, Soltani M, Almadi M, Riera JJ, Lin WC. Quantitative assessment of hemodynamic and structural characteristics of in vivo brain tissue using total diffuse reflectance spectrum measured in a non-contact fashion. BIOMEDICAL OPTICS EXPRESS 2017; 8:78-103. [PMID: 28101403 PMCID: PMC5231317 DOI: 10.1364/boe.8.000078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 05/03/2023]
Abstract
Here we present a new methodology that investigates the intrinsic structural and hemodynamic characteristics of in vivo brain tissue, in a non-contact fashion, and can be easily incorporated in an intra-operative environment. Within this methodology, relative total diffuse reflectance spectra (RTD(λ)) were acquired from targets using a hybrid spectroscopy imaging system. A spectral interpretation algorithm was subsequently applied to RTD(λ) to retrieve optical properties related to the compositional and structural characteristics of each target. Estimation errors of the proposed methodology were computationally evaluated using a Monte Carlo simulation model for photon migration under various conditions. It was discovered that this new methodology could handle moderate noise and achieve very high accuracy, but only if the refractive index of the target is known. The accuracy of the technique was also validated using a series of tissue phantom studies, and consistent and accurate estimates of μs'(λ)/μa(λ) were obtained from all the phantoms tested. Finally, a small-scale animal study was conducted to demonstrate the clinical utility of the reported method, wherein a forepaw stimulation model was utilized to induce transient hemodynamic responses in somatosensory cortices. With this approach, significant stimulation-related changes (p < 0.001) in cortical hemodynamic and structural characteristics were successfully measured.
Collapse
|