1
|
Deng X, Cui J, Zhao J, Bai J, Li J, Li K. The research progress on effective connectivity in adolescent depression based on resting-state fMRI. Front Neurol 2025; 16:1498049. [PMID: 39995788 PMCID: PMC11847690 DOI: 10.3389/fneur.2025.1498049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction The brain's spontaneous neural activity can be recorded during rest using resting state functional magnetic resonance imaging (rs-fMRI), and intricate brain functional networks and interaction patterns can be discovered through correlation analysis. As a crucial component of rs-fMRI analysis, effective connectivity analysis (EC) may provide a detailed description of the causal relationship and information flow between different brain areas. It has been very helpful in identifying anomalies in the brain activity of depressed teenagers. Methods This study explored connectivity abnormalities in brain networks and their impact on clinical symptoms in patients with depression through resting state functional magnetic resonance imaging (rs-fMRI) and effective connectivity (EC) analysis. We first introduce some common EC analysis methods, discuss their application background and specific characteristics. Results EC analysis reveals information flow problems between different brain regions, such as the default mode network, the central executive network, and the salience network, which are closely related to symptoms of depression, such as low mood and cognitive impairment. This review discusses the limitations of existing studies while summarizing the current applications of EC analysis methods. Most of the early studies focused on the static connection mode, ignoring the causal relationship between brain regions. However, effective connection can reflect the upper and lower relationship of brain region interaction, and provide help for us to explore the mechanism of neurological diseases. Existing studies focus on the analysis of a single brain network, but rarely explore the interaction between multiple key networks. Discussion To do so, we can address these issues by integrating multiple technologies. The discussion of these issues is reflected in the text. Through reviewing various methods and applications of EC analysis, this paper aims to explore the abnormal connectivity patterns of brain networks in patients with depression, and further analyze the relationship between these abnormalities and clinical symptoms, so as to provide more accurate theoretical support for early diagnosis and personalized treatment of depression.
Collapse
Affiliation(s)
- Xuan Deng
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Jiajing Cui
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Jinyuan Zhao
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Jinji Bai
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Junfeng Li
- Department of Radiology, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Kefeng Li
- Artificial Intelligence Drug Discovery Center, Faculty of Applied Sciences, Macau Polytechnic University, Macau, China
| |
Collapse
|
2
|
Wang Y, Qiao C, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. A Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development. IEEE Trans Biomed Eng 2024; 71:3390-3401. [PMID: 38968024 PMCID: PMC11700232 DOI: 10.1109/tbme.2024.3423803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Brain dynamic effective connectivity (dEC), characterizes the information transmission patterns between brain regions that change over time, which provides insight into the biological mechanism underlying brain development. However, most existing methods predominantly capture fixed or temporally invariant EC, leaving dEC largely unexplored. METHODS Herein we propose a deep dynamic causal learning model specifically designed to capture dEC. It includes a dynamic causal learner to detect time-varying causal relationships from spatio-temporal data, and a dynamic causal discriminator to validate these findings by comparing original and reconstructed data. RESULTS Our model outperforms established baselines in the accuracy of identifying dynamic causalities when tested on the simulated data. When applied to the Philadelphia Neurodevelopmental Cohort, the model uncovers distinct patterns in dEC networks across different age groups. Specifically, the evolution process of brain dEC networks in young adults is more stable than in children, and significant differences in information transfer patterns exist between them. CONCLUSION This study highlights the brain's developmental trajectory, where networks transition from undifferentiated to specialized structures with age, in accordance with the improvement of an individual's cognitive and information processing capability. SIGNIFICANCE The proposed model consists of the identification and verification of dynamic causality, utilizing the spatio-temporal fusing information from fMRI. As a result, it can accurately detect dEC and characterize its evolution over age.
Collapse
|
3
|
Ji J, Zou A, Liu J, Yang C, Zhang X, Song Y. A Survey on Brain Effective Connectivity Network Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1879-1899. [PMID: 34469315 DOI: 10.1109/tnnls.2021.3106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human brain effective connectivity characterizes the causal effects of neural activities among different brain regions. Studies of brain effective connectivity networks (ECNs) for different populations contribute significantly to the understanding of the pathological mechanism associated with neuropsychiatric diseases and facilitate finding new brain network imaging markers for the early diagnosis and evaluation for the treatment of cerebral diseases. A deeper understanding of brain ECNs also greatly promotes brain-inspired artificial intelligence (AI) research in the context of brain-like neural networks and machine learning. Thus, how to picture and grasp deeper features of brain ECNs from functional magnetic resonance imaging (fMRI) data is currently an important and active research area of the human brain connectome. In this survey, we first show some typical applications and analyze existing challenging problems in learning brain ECNs from fMRI data. Second, we give a taxonomy of ECN learning methods from the perspective of computational science and describe some representative methods in each category. Third, we summarize commonly used evaluation metrics and conduct a performance comparison of several typical algorithms both on simulated and real datasets. Finally, we present the prospects and references for researchers engaged in learning ECNs.
Collapse
|
4
|
Degras D, Ting CM, Ombao H. Markov-switching state-space models with applications to neuroimaging. Comput Stat Data Anal 2022. [DOI: 10.1016/j.csda.2022.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Perera D, Wang YK, Lin CT, Nguyen H, Chai R. Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166230. [PMID: 36015991 PMCID: PMC9414352 DOI: 10.3390/s22166230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 05/28/2023]
Abstract
This paper discusses a novel approach to an EEG (electroencephalogram)-based driver distraction classification by using brain connectivity estimators as features. Ten healthy volunteers with more than one year of driving experience and an average age of 24.3 participated in a virtual reality environment with two conditions, a simple math problem-solving task and a lane-keeping task to mimic the distracted driving task and a non-distracted driving task, respectively. Independent component analysis (ICA) was conducted on the selected epochs of six selected components relevant to the frontal, central, parietal, occipital, left motor, and right motor areas. Granger-Geweke causality (GGC), directed transfer function (DTF), partial directed coherence (PDC), and generalized partial directed coherence (GPDC) brain connectivity estimators were used to calculate the connectivity matrixes. These connectivity matrixes were used as features to train the support vector machine (SVM) with the radial basis function (RBF) and classify the distracted and non-distracted driving tasks. GGC, DTF, PDC, and GPDC connectivity estimators yielded the classification accuracies of 82.27%, 70.02%, 86.19%, and 80.95%, respectively. Further analysis of the PDC connectivity estimator was conducted to determine the best window to differentiate between the distracted and non-distracted driving tasks. This study suggests that the PDC connectivity estimator can yield better classification accuracy for driver distractions.
Collapse
Affiliation(s)
- Dulan Perera
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yu-Kai Wang
- School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Chin-Teng Lin
- School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hung Nguyen
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Rifai Chai
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
6
|
Zhang L, Huang G, Liang Z, Li L, Zhang Z. Estimating scale-free dynamic effective connectivity networks from fMRI using group-wise spatial–temporal regularizations. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Vaughn KA, DeMaster D, Kook JH, Vannucci M, Ewing-Cobbs L. Effective connectivity in the default mode network after paediatric traumatic brain injury. Eur J Neurosci 2022; 55:318-336. [PMID: 34841600 PMCID: PMC9198945 DOI: 10.1111/ejn.15546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Children who experience a traumatic brain injury (TBI) are at elevated risk for a range of negative cognitive and neuropsychological outcomes. Identifying which children are at greatest risk for negative outcomes can be difficult due to the heterogeneity of TBI. To address this barrier, the current study applied a novel method of characterizing brain connectivity networks, Bayesian multi-subject vector autoregressive modelling (BVAR-connect), which used white matter integrity as priors to evaluate effective connectivity-the time-dependent relationship in functional magnetic resonance imaging (fMRI) activity between two brain regions-within the default mode network (DMN). In a prospective longitudinal study, children ages 8-15 years with mild to severe TBI underwent diffusion tensor imaging and resting state fMRI 7 weeks after injury; post-concussion and anxiety symptoms were assessed 7 months after injury. The goals of this study were to (1) characterize differences in positive effective connectivity of resting-state DMN circuitry between healthy controls and children with TBI, (2) determine if severity of TBI was associated with differences in DMN connectivity and (3) evaluate whether patterns of DMN effective connectivity predicted persistent post-concussion symptoms and anxiety. Healthy controls had unique positive connectivity that mostly emerged from the inferior temporal lobes. In contrast, children with TBI had unique effective connectivity among orbitofrontal and parietal regions. These positive orbitofrontal-parietal DMN effective connectivity patterns also differed by TBI severity and were associated with persisting behavioural outcomes. Effective connectivity may be a sensitive neuroimaging marker of TBI severity as well as a predictor of chronic post-concussion symptoms and anxiety.
Collapse
Affiliation(s)
- Kelly A. Vaughn
- University of Texas Health Science Center at Houston,,Corresponding Author
| | - Dana DeMaster
- University of Texas Health Science Center at Houston
| | | | | | | |
Collapse
|
8
|
Orkan Olcay B, Özgören M, Karaçalı B. On the characterization of cognitive tasks using activity-specific short-lived synchronization between electroencephalography channels. Neural Netw 2021; 143:452-474. [PMID: 34273721 DOI: 10.1016/j.neunet.2021.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Accurate characterization of brain activity during a cognitive task is challenging due to the dynamically changing and the complex nature of the brain. The majority of the proposed approaches assume stationarity in brain activity and disregard the systematic timing organization among brain regions during cognitive tasks. In this study, we propose a novel cognitive activity recognition method that captures the activity-specific timing parameters from training data that elicits maximal average short-lived pairwise synchronization between electroencephalography signals. We evaluated the characterization power of the activity-specific timing parameter triplets in a motor imagery activity recognition framework. The activity-specific timing parameter triplets consist of latency of the maximally synchronized signal segments from activity onset Δt, the time lag between maximally synchronized signal segments τ, and the duration of the maximally synchronized signal segments w. We used cosine-based similarity, wavelet bi-coherence, phase-locking value, phase coherence value, linearized mutual information, and cross-correntropy to calculate the channel synchronizations at the specific timing parameters. Recognition performances as well as statistical analyses on both BCI Competition-III dataset IVa and PhysioNet Motor Movement/Imagery dataset, indicate that the inter-channel short-lived synchronization calculated using activity-specific timing parameter triplets elicit significantly distinct synchronization profiles for different motor imagery tasks and can thus reliably be used for cognitive task recognition purposes.
Collapse
Affiliation(s)
- B Orkan Olcay
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| | - Murat Özgören
- Department of Biophysics, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus.
| | - Bilge Karaçalı
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
9
|
Ting CM, Samdin SB, Tang M, Ombao H. Detecting Dynamic Community Structure in Functional Brain Networks Across Individuals: A Multilayer Approach. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:468-480. [PMID: 33044929 DOI: 10.1109/tmi.2020.3030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
OBJECTIVE We present a unified statistical framework for characterizing community structure of brain functional networks that captures variation across individuals and evolution over time. Existing methods for community detection focus only on single-subject analysis of dynamic networks; while recent extensions to multiple-subjects analysis are limited to static networks. METHOD To overcome these limitations, we propose a multi-subject, Markov-switching stochastic block model (MSS-SBM) to identify state-related changes in brain community organization over a group of individuals. We first formulate a multilayer extension of SBM to describe the time-dependent, multi-subject brain networks. We develop a novel procedure for fitting the multilayer SBM that builds on multislice modularity maximization which can uncover a common community partition of all layers (subjects) simultaneously. By augmenting with a dynamic Markov switching process, our proposed method is able to capture a set of distinct, recurring temporal states with respect to inter-community interactions over subjects and the change points between them. RESULTS Simulation shows accurate community recovery and tracking of dynamic community regimes over multilayer networks by the MSS-SBM. Application to task fMRI reveals meaningful non-assortative brain community motifs, e.g., core-periphery structure at the group level, that are associated with language comprehension and motor functions suggesting their putative role in complex information integration. Our approach detected dynamic reconfiguration of modular connectivity elicited by varying task demands and identified unique profiles of intra and inter-community connectivity across different task conditions. CONCLUSION The proposed multilayer network representation provides a principled way of detecting synchronous, dynamic modularity in brain networks across subjects.
Collapse
|
10
|
Phang CR, Ko LW. Intralobular and Interlobular Parietal Functional Network Correlated to MI-BCI Performance. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2671-2680. [PMID: 33201822 DOI: 10.1109/tnsre.2020.3038657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain-computer interface (BCI) brings hope to patients suffering from neuromuscular diseases, by allowing the control of external devices using neural signals from the central nervous system. However, a portion of individuals was unable to operate BCI with high efficacy. This research aimed to study the brain-wide functional connectivity differences that contributed to BCI performance, and investigate the relationship between task-related connectivity strength and BCI performance. Functional connectivity was estimated using pairwise Pearson's correlation from the EEG of 48 subjects performing left or right hand motor imagery (MI) tasks. The classification accuracy of linear support vector machine (SVM) to distinguish both tasks were used to represent MI-BCI performance. The significant differences in connectivity strengths were examined using Welch's T-test. The association between accuracy and connection strength was studied using correlation model. Three intralobular and fourteen interlobular connections from the parietal lobe showed a correlation of 0.31 and -0.34 respectively. Results indicate that alpha wave connectivity from 8 Hz to 13 Hz was more related to classification performance compared to high-frequency waves. Subject-independent trial-based analysis shows that MI trials executed with stronger intralobular and interlobular parietal connections performed significantly better than trials with weaker connections. Further investigation from an independent MI dataset reveals several similar connections that were correlated with MI-BCI performance. The functional connectivity of the parietal lobe could potentially allow prediction of MI-BCI performance and enable implementation of neurofeedback training for users to improve the usability of MI-BCI.
Collapse
|
11
|
Phang CR, Noman F, Hussain H, Ting CM, Ombao H. A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns. IEEE J Biomed Health Inform 2020; 24:1333-1343. [DOI: 10.1109/jbhi.2019.2941222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Huang SG, Samdin SB, Ting CM, Ombao H, Chung MK. Statistical model for dynamically-changing correlation matrices with application to brain connectivity. J Neurosci Methods 2020; 331:108480. [PMID: 31760059 PMCID: PMC7739896 DOI: 10.1016/j.jneumeth.2019.108480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Recent studies have indicated that functional connectivity is dynamic even during rest. A common approach to modeling the dynamic functional connectivity in whole-brain resting-state fMRI is to compute the correlation between anatomical regions via sliding time windows. However, the direct use of the sample correlation matrices is not reliable due to the image acquisition and processing noises in resting-sate fMRI. NEW METHOD To overcome these limitations, we propose a new statistical model that smooths out the noise by exploiting the geometric structure of correlation matrices. The dynamic correlation matrix is modeled as a linear combination of symmetric positive-definite matrices combined with cosine series representation. The resulting smoothed dynamic correlation matrices are clustered into disjoint brain connectivity states using the k-means clustering algorithm. RESULTS The proposed model preserves the geometric structure of underlying physiological dynamic correlation, eliminates unwanted noise in connectivity and obtains more accurate state spaces. The difference in the estimated dynamic connectivity states between males and females is identified. COMPARISON WITH EXISTING METHODS We demonstrate that the proposed statistical model has less rapid state changes caused by noise and improves the accuracy in identifying and discriminating different states. CONCLUSIONS We propose a new regression model on dynamically changing correlation matrices that provides better performance over existing windowed correlation and is more reliable for the modeling of dynamic connectivity.
Collapse
Affiliation(s)
- Shih-Gu Huang
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706, USA
| | - S Balqis Samdin
- Statistics Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Chee-Ming Ting
- Statistics Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; School of Biomedical Engineering & Health Sciences, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Hernando Ombao
- Statistics Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Moo K Chung
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Zhu Y, Liu J, Mathiak K, Ristaniemi T, Cong F. Deriving Electrophysiological Brain Network Connectivity via Tensor Component Analysis During Freely Listening to Music. IEEE Trans Neural Syst Rehabil Eng 2020; 28:409-418. [DOI: 10.1109/tnsre.2019.2953971] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Noman F, Salleh SH, Ting CM, Samdin SB, Ombao H, Hussain H. A Markov-Switching Model Approach to Heart Sound Segmentation and Classification. IEEE J Biomed Health Inform 2019; 24:705-716. [PMID: 31251203 DOI: 10.1109/jbhi.2019.2925036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE We consider challenges in accurate segmentation of heart sound signals recorded under noisy clinical environments for subsequent classification of pathological events. Existing state-of-the-art solutions to heart sound segmentation use probabilistic models such as hidden Markov models (HMMs), which, however, are limited by its observation independence assumption and rely on pre-extraction of noise-robust features. METHODS We propose a Markov-switching autoregressive (MSAR) process to model the raw heart sound signals directly, which allows efficient segmentation of the cyclical heart sound states according to the distinct dependence structure in each state. To enhance robustness, we extend the MSAR model to a switching linear dynamic system (SLDS) that jointly model both the switching AR dynamics of underlying heart sound signals and the noise effects. We introduce a novel algorithm via fusion of switching Kalman filter and the duration-dependent Viterbi algorithm, which incorporates the duration of heart sound states to improve state decoding. RESULTS Evaluated on Physionet/CinC Challenge 2016 dataset, the proposed MSAR-SLDS approach significantly outperforms the hidden semi-Markov model (HSMM) in heart sound segmentation based on raw signals and comparable to a feature-based HSMM. The segmented labels were then used to train Gaussian-mixture HMM classifier for identification of abnormal beats, achieving high average precision of 86.1% on the same dataset including very noisy recordings. CONCLUSION The proposed approach shows noticeable performance in heart sound segmentation and classification on a large noisy dataset. SIGNIFICANCE It is potentially useful in developing automated heart monitoring systems for pre-screening of heart pathologies.
Collapse
|
15
|
Statistical model-based approaches for functional connectivity analysis of neuroimaging data. Curr Opin Neurobiol 2019; 55:48-54. [PMID: 30739880 DOI: 10.1016/j.conb.2019.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/06/2019] [Accepted: 01/13/2019] [Indexed: 11/21/2022]
Abstract
We present recent literature on model-based approaches to estimating functional connectivity from neuroimaging data. In contrast to the typical focus on a particular scientific question, we reframe a wider literature in terms of the underlying statistical model used. We distinguish between directed versus undirected and static versus time-varying connectivity. There are numerous advantages to a model-based approach, including easily specified inductive bias, handling limited data scenarios, and building complex models from simpler building blocks.
Collapse
|
16
|
Shappell H, Caffo BS, Pekar JJ, Lindquist MA. Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models. Neuroimage 2019; 191:243-257. [PMID: 30753927 DOI: 10.1016/j.neuroimage.2019.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/13/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
The study of functional brain networks has grown rapidly over the past decade. While most functional connectivity (FC) analyses estimate one static network structure for the entire length of the functional magnetic resonance imaging (fMRI) time series, recently there has been increased interest in studying time-varying changes in FC. Hidden Markov models (HMMs) have proven to be a useful modeling approach for discovering repeating graphs of interacting brain regions (brain states). However, a limitation lies in HMMs assuming that the sojourn time, the number of consecutive time points in a state, is geometrically distributed. This may encourage inaccurate estimation of the time spent in a state before switching to another state. We propose a hidden semi-Markov model (HSMM) approach for inferring time-varying brain networks from fMRI data, which explicitly models the sojourn distribution. Specifically, we propose using HSMMs to find each subject's most probable series of network states and the graphs associated with each state, while properly estimating and modeling the sojourn distribution for each state. We perform a simulation study, as well as an analysis on both task-based fMRI data from an anxiety-inducing experiment and resting-state fMRI data from the Human Connectome Project. Our results demonstrate the importance of model choice when estimating sojourn times and reveal their potential for understanding healthy and diseased brain mechanisms.
Collapse
Affiliation(s)
- Heather Shappell
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Brian S Caffo
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James J Pekar
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin A Lindquist
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Ombao H, Fiecas M, Ting CM, Low YF. Statistical models for brain signals with properties that evolve across trials. Neuroimage 2018; 180:609-618. [DOI: 10.1016/j.neuroimage.2017.11.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/25/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
|
18
|
Li H, Fan Y. Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2018; 11072:232-239. [PMID: 30320310 PMCID: PMC6180329 DOI: 10.1007/978-3-030-00931-1_27] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dynamic functional connectivity analysis provides valuable information for understanding brain functional activity underlying different cognitive processes. Besides sliding window based approaches, a variety of methods have been developed to automatically split the entire functional MRI scan into segments by detecting change points of functional signals to facilitate better characterization of temporally dynamic functional connectivity patterns. However, these methods are based on certain assumptions for the functional signals, such as Gaussian distribution, which are not necessarily suitable for the fMRI data. In this study, we develop a deep learning based framework for adaptively detecting temporally dynamic functional state transitions in a data-driven way without any explicit modeling assumptions, by leveraging recent advances in recurrent neural networks (RNNs) for sequence modeling. Particularly, we solve this problem in an anomaly detection framework with an assumption that the functional profile of one single time point could be reliably predicted based on its preceding profiles within a stable functional state, while large prediction errors would occur around change points of functional states. We evaluate the proposed method using both task and resting-state fMRI data obtained from the human connectome project and experimental results have demonstrated that the proposed change point detection method could effectively identify change points between different task events and split the resting-state fMRI into segments with distinct functional connectivity patterns.
Collapse
Affiliation(s)
- Hongming Li
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
19
|
Becker CO, Bassett DS, Preciado VM. Large-scale dynamic modeling of task-fMRI signals via subspace system identification. J Neural Eng 2018; 15:066016. [PMID: 30088476 DOI: 10.1088/1741-2552/aad8c7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE We analyze task-based fMRI time series to produce large-scale dynamical models that are capable of approximating the observed signal with good accuracy. APPROACH We extend subspace system identification methods for deterministic and stochastic state-space models with external inputs. The dynamic behavior of the generated models is characterized using control-theoretic analysis tools. To validate their effectiveness, we perform a probabilistic inversion of the identified input-output relationships via joint state-input maximum likelihood estimation. Our experimental setup explores a large dataset generated using state-of-the-art acquisition and pre-processing methods from the Human Connectome Project. MAIN RESULTS We analyze both anatomically parcellated and spatially dense time series, and propose an efficient algorithm to address the high-dimensional optimization problem resulting from the latter. Our results enable the quantification of input-output transfer functions between each task condition and each region of the cortex, as exemplified by a motor task. Further, the identified models produce impulse response functions between task conditions and cortical regions that are compatible with typical hemodynamic response functions. We then extend subspace methods to account for multi-subject experimental configurations, identifying models that capture common dynamical characteristics across subjects. Finally, we show that system inversion via maximum-likelihood allows the time-of-occurrence of the task stimuli to be estimated from the observed outputs. SIGNIFICANCE The ability to produce dynamical input-output models might have an impact in the expanding field of neurofeedback. In particular, the models we produce allow the partial quantification of the effect of external task-related inputs on the metabolic response of the brain, conditioned on its current state. Such a notion provides a basis for leveraging control-theoretic approaches to neuromodulation and self-regulation in therapeutic applications.
Collapse
|
20
|
Zhang T, Pham M, Sun J, Yan G, Li H, Sun Y, Gonzalez MZ, Coan JA. A low-rank multivariate general linear model for multi-subject fMRI data and a non-convex optimization algorithm for brain response comparison. Neuroimage 2018; 173:580-591. [DOI: 10.1016/j.neuroimage.2017.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/09/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
|
21
|
Warnick R, Guindani M, Erhardt E, Allen E, Calhoun V, Vannucci M. A Bayesian Approach for Estimating Dynamic Functional Network Connectivity in fMRI Data. J Am Stat Assoc 2018; 113:134-151. [PMID: 30853734 PMCID: PMC6405235 DOI: 10.1080/01621459.2017.1379404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/01/2017] [Indexed: 01/22/2023]
Abstract
Dynamic functional connectivity, i.e., the study of how interactions among brain regions change dynamically over the course of an fMRI experiment, has recently received wide interest in the neuroimaging literature. Current approaches for studying dynamic connectivity often rely on ad-hoc approaches for inference, with the fMRI time courses segmented by a sequence of sliding windows. We propose a principled Bayesian approach to dynamic functional connectivity, which is based on the estimation of time varying networks. Our method utilizes a hidden Markov model for classification of latent cognitive states, achieving estimation of the networks in an integrated framework that borrows strength over the entire time course of the experiment. Furthermore, we assume that the graph structures, which define the connectivity states at each time point, are related within a super-graph, to encourage the selection of the same edges among related graphs. We apply our method to simulated task-based fMRI data, where we show how our approach allows the decoupling of the task-related activations and the functional connectivity states. We also analyze data from an fMRI sensorimotor task experiment on an individual healthy subject and obtain results that support the role of particular anatomical regions in modulating interaction between executive control and attention networks.
Collapse
Affiliation(s)
- Ryan Warnick
- Department of Statistics, Rice University, Houston, TX
| | - Michele Guindani
- Department of Statistics, University of California at Irvine, Irvine, CA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| | - Elena Allen
- Research Scientist, Medici Technologies, Albuquerque, NM
| | - Vince Calhoun
- Distinguished Professor, Departments of Electrical and Computer Engineering, University of New Mexico
| | - Marina Vannucci
- Noah Harding Professor and Chair, Department of Statistics, Rice University
| |
Collapse
|
22
|
Lennartz C, Schiefer J, Rotter S, Hennig J, LeVan P. Sparse Estimation of Resting-State Effective Connectivity From fMRI Cross-Spectra. Front Neurosci 2018; 12:287. [PMID: 29867310 PMCID: PMC5951985 DOI: 10.3389/fnins.2018.00287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI), functional connectivity is conventionally characterized by correlations between fMRI time series, which are intrinsically undirected measures of connectivity. Yet, some information about the directionality of network connections can nevertheless be extracted from the matrix of pairwise temporal correlations between all considered time series, when expressed in the frequency-domain as a cross-spectral density matrix. Using a sparsity prior, it then becomes possible to determine a unique directed network topology that best explains the observed undirected correlations, without having to rely on temporal precedence relationships that may not be valid in fMRI. Applying this method on simulated data with 100 nodes yielded excellent retrieval of the underlying directed networks under a wide variety of conditions. Importantly, the method did not depend on temporal precedence to establish directionality, thus reducing susceptibility to hemodynamic variability. The computational efficiency of the algorithm was sufficient to enable whole-brain estimations, thus circumventing the problem of missing nodes that otherwise occurs in partial-brain analyses. Applying the method to real resting-state fMRI data acquired with a high temporal resolution, the inferred networks showed good consistency with structural connectivity obtained from diffusion tractography in the same subjects. Interestingly, this agreement could also be seen when considering high-frequency rather than low-frequency connectivity (average correlation: r = 0.26 for f < 0.3 Hz, r = 0.43 for 0.3 < f < 5 Hz). Moreover, this concordance was significantly better (p < 0.05) than for networks obtained with conventional functional connectivity based on correlations (average correlation r = 0.18). The presented methodology thus appears to be well-suited for fMRI, particularly given its lack of explicit dependence on temporal lag structure, and is readily applicable to whole-brain effective connectivity estimation.
Collapse
Affiliation(s)
- Carolin Lennartz
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Jonathan Schiefer
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
|
24
|
Ting CM, Ombao H, Samdin SB, Salleh SH. Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1011-1023. [PMID: 29610078 DOI: 10.1109/tmi.2017.2780185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model, which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, and 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms -means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to the resting-state fMRI data, our method successfully identifies modular organization in the resting-statenetworksin consistencywith other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.
Collapse
|
25
|
Taghia J, Ryali S, Chen T, Supekar K, Cai W, Menon V. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI. Neuroimage 2017; 155:271-290. [PMID: 28267626 PMCID: PMC5536190 DOI: 10.1016/j.neuroimage.2017.02.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022] Open
Abstract
There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity.
Collapse
Affiliation(s)
- Jalil Taghia
- Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA.
| | - Srikanth Ryali
- Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Tianwen Chen
- Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Kaustubh Supekar
- Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Weidong Cai
- Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences Stanford University, School of Medicine, Stanford, CA 94305, USA; Department of Neurology & Neurological Sciences, School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Institute Stanford University, School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Chiang S, Guindani M, Yeh HJ, Haneef Z, Stern JM, Vannucci M. Bayesian vector autoregressive model for multi-subject effective connectivity inference using multi-modal neuroimaging data. Hum Brain Mapp 2016; 38:1311-1332. [PMID: 27862625 DOI: 10.1002/hbm.23456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 11/05/2022] Open
Abstract
In this article a multi-subject vector autoregressive (VAR) modeling approach was proposed for inference on effective connectivity based on resting-state functional MRI data. Their framework uses a Bayesian variable selection approach to allow for simultaneous inference on effective connectivity at both the subject- and group-level. Furthermore, it accounts for multi-modal data by integrating structural imaging information into the prior model, encouraging effective connectivity between structurally connected regions. They demonstrated through simulation studies that their approach resulted in improved inference on effective connectivity at both the subject- and group-level, compared with currently used methods. It was concluded by illustrating the method on temporal lobe epilepsy data, where resting-state functional MRI and structural MRI were used. Hum Brain Mapp 38:1311-1332, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharon Chiang
- Department of Statistics, Rice University, Houston, Texas
| | - Michele Guindani
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsiang J Yeh
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - John M Stern
- Department of Neurology, University of California Los Angeles, Los Angeles, California
| | | |
Collapse
|