2
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Sarıyer RM, Edwards AD, Needs SH. Open Hardware for Microfluidics: Exploiting Raspberry Pi Singleboard Computer and Camera Systems for Customisable Laboratory Instrumentation. BIOSENSORS 2023; 13:948. [PMID: 37887141 PMCID: PMC10605846 DOI: 10.3390/bios13100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The integration of Raspberry Pi miniature computer systems with microfluidics has revolutionised the development of low-cost and customizable analytical systems in life science laboratories. This review explores the applications of Raspberry Pi in microfluidics, with a focus on imaging, including microscopy and automated image capture. By leveraging the low cost, flexibility and accessibility of Raspberry Pi components, high-resolution imaging and analysis have been achieved in direct mammalian and bacterial cellular imaging and a plethora of image-based biochemical and molecular assays, from immunoassays, through microbial growth, to nucleic acid methods such as real-time-qPCR. The control of image capture permitted by Raspberry Pi hardware can also be combined with onboard image analysis. Open-source hardware offers an opportunity to develop complex laboratory instrumentation systems at a fraction of the cost of commercial equipment and, importantly, offers an opportunity for complete customisation to meet the users' needs. However, these benefits come with a trade-off: challenges remain for those wishing to incorporate open-source hardware equipment in their own work, including requirements for construction and operator skill, the need for good documentation and the availability of rapid prototyping such as 3D printing plus other components. These advances in open-source hardware have the potential to improve the efficiency, accessibility, and cost-effectiveness of microfluidic-based experiments and applications.
Collapse
|
4
|
Ly VT, Baudin PV, Pansodtee P, Jung EA, Voitiuk K, Rosen YM, Willsey HR, Mantalas GL, Seiler ST, Selberg JA, Cordero SA, Ross JM, Rolandi M, Pollen AA, Nowakowski TJ, Haussler D, Mostajo-Radji MA, Salama SR, Teodorescu M. Picroscope: low-cost system for simultaneous longitudinal biological imaging. Commun Biol 2021; 4:1261. [PMID: 34737378 PMCID: PMC8569150 DOI: 10.1038/s42003-021-02779-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.
Collapse
Affiliation(s)
- Victoria T Ly
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| | - Pierre V Baudin
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Erik A Jung
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Kateryna Voitiuk
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Yohei M Rosen
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gary L Mantalas
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Spencer T Seiler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - John A Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sergio A Cordero
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jayden M Ross
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammed A Mostajo-Radji
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
5
|
Wang Y, Wang J, Wang T, Wang C. Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging. MICROMACHINES 2021; 12:896. [PMID: 34442519 PMCID: PMC8398499 DOI: 10.3390/mi12080896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Ship ballast water contains high concentration of plankton, bacteria, and other microorganisms. If the huge amount of ballast water is discharged without being inactivated, it will definitely spell disaster to the marine environment. Microalgae is the most common species exiting in ballast water, so the detection of the concentration and viability of microalgae is a very important issue. The traditional methods of detecting microalgae in ballast water were costly and need the help of bulky equipment. Herein, a novel method based on microalgae cell intracellular chlorophyll fluorescence (CF) imaging combines with cell bright field (BF) microscopy was proposed. The geometric features of microalgae cells were obtained by BF image, and the cell viability was obtained by CF image. The two images were fused through the classic image registration algorithm to achieve simultaneous detection of the viability and concentration of microalgae cells. Furthermore, a low-cost, miniaturized CF/BF microscopy imaging prototype system based on the above principles was designed. In order to verify the effectiveness of the proposed method, four typical microalgae in ballast water (Platymonas, Pyramimonas sp., Chrysophyta, and Prorocentrum lima) were selected as the samples. The experimental results show that the self-developed prototype can quickly and accurately determine the concentration and the viability of microalgae cells in ship ballast water based on the dual images of BF and CF, and the detection accuracy is equivalent to that of commercial microscope. It was the first time to simultaneously detect the viability and concentration of microalgae cells in ship ballast water using the method that combining the fluorescence and bright field images; moreover, a miniaturized microscopic imaging prototype was developed. Those findings expected to contribute to the microalgae detection and ship ballast water management.
Collapse
Affiliation(s)
- Yanjuan Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China; (Y.W.); (T.W.); (C.W.)
- Center of Microfluidic Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Junsheng Wang
- Center of Microfluidic Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Tianqi Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China; (Y.W.); (T.W.); (C.W.)
- Center of Microfluidic Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China
| | - Chengxiao Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China; (Y.W.); (T.W.); (C.W.)
| |
Collapse
|
6
|
Tristan-Landin SB, Gonzalez-Suarez AM, Jimenez-Valdes RJ, Garcia-Cordero JL. Facile assembly of an affordable miniature multicolor fluorescence microscope made of 3D-printed parts enables detection of single cells. PLoS One 2019; 14:e0215114. [PMID: 31600202 PMCID: PMC6786622 DOI: 10.1371/journal.pone.0215114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
Fluorescence microscopy is one of the workhorses of biomedical research and laboratory diagnosis; however, their cost, size, maintenance, and fragility has prevented their adoption in developing countries or low-resource settings. Although significant advances have decreased their size, cost and accessibility, their designs and assembly remain rather complex. Here, inspired on the simple mechanism from a nut and a bolt, we report the construction of a portable fluorescence microscope that operates in bright-field mode and in three fluorescence channels: UV, green, and red. It is assembled in under 10 min from only six 3D printed parts, basic electronic components, a microcomputer (Raspberry Pi) and a camera, all of which can be readily purchased in most locations or online for US $122. The microcomputer was programmed in Python language to capture time-lapse images and videos. Resolution and illumination conditions of the microscope were characterized, and its performance was compared with a high-end fluorescence microscope in bright-field and fluorescence mode. We demonstrate that our miniature microscope can resolve and track single cells in both modes. The instructions on how to assemble the microscope are shown in a video, and the software to control it and the design files of the 3D-printed parts are freely available online. Our portable microscope is ideal in applications where space is at a premium, such as lab-on-a-chips or space missions, and can find applications in basic and clinical research, diagnostics, telemedicine and in educational settings.
Collapse
Affiliation(s)
- Samuel B. Tristan-Landin
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| | - Alan M. Gonzalez-Suarez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| | - Rocio J. Jimenez-Valdes
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| | - Jose L. Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| |
Collapse
|