1
|
Tsutsumi M, Takahashi T, Kobayashi K, Nemoto T. Fluorescence radial fluctuation enables two-photon super-resolution microscopy. Front Cell Neurosci 2023; 17:1243633. [PMID: 37881492 PMCID: PMC10595032 DOI: 10.3389/fncel.2023.1243633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Despite recent improvements in microscopy, it is still difficult to apply super-resolution microscopy for deep imaging due to the deterioration of light convergence properties in thick specimens. As a strategy to avoid such optical limitations for deep super-resolution imaging, we focused on super-resolution radial fluctuation (SRRF), a super-resolution technique based on image analysis. In this study, we applied SRRF to two-photon microscopy (2P-SRRF) and characterized its spatial resolution, suitability for deep observation, and morphological reproducibility in real brain tissue. By the comparison with structured illumination microscopy (SIM), it was confirmed that 2P-SRRF exhibited two-point resolution and morphological reproducibility comparable to that of SIM. The improvement in spatial resolution was also demonstrated at depths of more than several hundred micrometers in a brain-mimetic environment. After optimizing SRRF processing parameters, we successfully demonstrated in vivo high-resolution imaging of the fifth layer of the cerebral cortex using 2P-SRRF. This is the first report on the application of SRRF to in vivo two-photon imaging. This method can be easily applied to existing two-photon microscopes and can expand the visualization range of super-resolution imaging studies.
Collapse
Affiliation(s)
- Motosuke Tsutsumi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Taiga Takahashi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kentaro Kobayashi
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Nikon Imaging Center, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Morris EK, Daignault-Mill S, Stehbens SJ, Genovesi LA, Lagendijk AK. Addressing blood-brain-tumor-barrier heterogeneity in pediatric brain tumors with innovative preclinical models. Front Oncol 2023; 13:1101522. [PMID: 36776301 PMCID: PMC9909546 DOI: 10.3389/fonc.2023.1101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.
Collapse
Affiliation(s)
- Elysse K. Morris
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Sheena Daignault-Mill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha J. Stehbens
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Laura A. Genovesi
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| | - Anne K. Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| |
Collapse
|
3
|
Hu C, Jiang Z, Liu P, Yu Y, Chu K, Smith ZJ. Super-resolved Raman imaging via galvo-painted structured line illumination. OPTICS LETTERS 2022; 47:5949-5952. [PMID: 37219144 DOI: 10.1364/ol.469982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 05/24/2023]
Abstract
Traditional line-scan Raman imaging features a rapid imaging speed while preserving complete spectral information, yet has diffraction-limited resolution. Sinusoidally structured line excitation can yield an improvement in the lateral resolution of the Raman image along the line's direction. However, given the need for the line and spectrometer slit to be aligned, the resolution in the perpendicular direction remains diffraction limited. To overcome this, we present here a galvo-modulated structured line imaging system, where a system of three galvos can arbitrarily orient the structured line on the sample plane, while keeping the beam aligned to the spectrometer slit in the detection plane. Thus, a two-fold isotropic improvement in the lateral resolution fold is possible. We demonstrate the feasibility using mixtures of microspheres as chemical and size standards. The results prove an improvement in the lateral resolution of 1.8-fold (limited by line contrast at higher frequencies), while preserving complete spectral information of the sample.
Collapse
|
4
|
Abstract
The super-resolution imaging technique of structured illumination microscopy (SIM) enables the mixing of high-frequency information into the optical transmission domain via light-source modulation, thus breaking the optical diffraction limit. Correlative SIM, which combines other techniques with SIM, offers more versatility or higher imaging resolution than traditional SIM. In this review, we first briefly introduce the imaging mechanism and development trends of conventional SIM. Then, the principles and recent developments of correlative SIM techniques are reviewed. Finally, the future development directions of SIM and its correlative microscopies are presented.
Collapse
|
5
|
Jing Y, Zhang C, Yu B, Lin D, Qu J. Super-Resolution Microscopy: Shedding New Light on In Vivo Imaging. Front Chem 2021; 9:746900. [PMID: 34595156 PMCID: PMC8476955 DOI: 10.3389/fchem.2021.746900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Over the past two decades, super-resolution microscopy (SRM), which offered a significant improvement in resolution over conventional light microscopy, has become a powerful tool to visualize biological activities in both fixed and living cells. However, completely understanding biological processes requires studying cells in a physiological context at high spatiotemporal resolution. Recently, SRM has showcased its ability to observe the detailed structures and dynamics in living species. Here we summarized recent technical advancements in SRM that have been successfully applied to in vivo imaging. Then, improvements in the labeling strategies are discussed together with the spectroscopic and chemical demands of the fluorophores. Finally, we broadly reviewed the current applications for super-resolution techniques in living species and highlighted some inherent challenges faced in this emerging field. We hope that this review could serve as an ideal reference for researchers as well as beginners in the relevant field of in vivo super resolution imaging.
Collapse
Affiliation(s)
| | | | | | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Tissue Transparency In Vivo. Molecules 2019; 24:molecules24132388. [PMID: 31261621 PMCID: PMC6651221 DOI: 10.3390/molecules24132388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
In vivo tissue transparency in the visible light spectrum is beneficial for many research applications that use optical methods, whether it involves in vivo optical imaging of cells or their activity, or optical intervention to affect cells or their activity deep inside tissues, such as brain tissue. The classical view is that a tissue is transparent if it neither absorbs nor scatters light, and thus absorption and scattering are the key elements to be controlled to reach the necessary transparency. This review focuses on the latest genetic and chemical approaches for the decoloration of tissue pigments to reduce visible light absorption and the methods to reduce scattering in live tissues. We also discuss the possible molecules involved in transparency.
Collapse
|
7
|
Sigl-Glöckner J, Seibt J. Peeking into the sleeping brain: Using in vivo imaging in rodents to understand the relationship between sleep and cognition. J Neurosci Methods 2019; 316:71-82. [PMID: 30208306 PMCID: PMC6390172 DOI: 10.1016/j.jneumeth.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
Sleep is well known to benefit cognitive function. In particular, sleep has been shown to enhance learning and memory in both humans and animals. While the underlying mechanisms are not fully understood, it has been suggested that brain activity during sleep modulates neuronal communication through synaptic plasticity. These insights were mostly gained using electrophysiology to monitor ongoing large scale and single cell activity. While these efforts were instrumental in the characterisation of important network and cellular activity during sleep, several aspects underlying cognition are beyond the reach of this technology. Neuronal circuit activity is dynamically regulated via the precise interaction of different neuronal and non-neuronal cell types and relies on subtle modifications of individual synapses. In contrast to established electrophysiological approaches, recent advances in imaging techniques, mainly applied in rodents, provide unprecedented access to these aspects of neuronal function in vivo. In this review, we describe various techniques currently available for in vivo brain imaging, from single synapse to large scale network activity. We discuss the advantages and limitations of these approaches in the context of sleep research and describe which particular aspects related to cognition lend themselves to this kind of investigation. Finally, we review the few studies that used in vivo imaging in rodents to investigate the sleeping brain and discuss how the results have already significantly contributed to a better understanding on the complex relation between sleep and plasticity across development and adulthood.
Collapse
Affiliation(s)
- Johanna Sigl-Glöckner
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, D-10115, Berlin, Germany
| | - Julie Seibt
- Surrey Sleep Research Centre, University of Surrey, GU2 7XP, Guildford, UK.
| |
Collapse
|
8
|
Urban BE, Dong B, Zhang X, Yang H, Zhang HF. Patterned-illumination second harmonic generation microscopy of collagen fibrils in rat scleras. OPTICS LETTERS 2018; 43:5190-5193. [PMID: 30382963 DOI: 10.1364/ol.43.005190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
We developed a patterned-illumination second harmonic generation (PI-SHG) microscopy, which combines the principle of structured illumination reconstruction with SHG microscopy for label-free super-resolution imaging. We confirmed that PI-SHG microscopy can achieve 1.59-time resolution improvement compared to conventional SHG microscopy by imaging nanowire samples. We further demonstrated three-dimensional PI-SHG microscopy in imaging ex vivo collagen fibrils in rat scleras.
Collapse
|