• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4697469)   Today's Articles (6398)
For: Ledoux ED. Inertial Sensing for Gait Event Detection and Transfemoral Prosthesis Control Strategy. IEEE Trans Biomed Eng 2018;65:2704-2712. [PMID: 29993444 DOI: 10.1109/tbme.2018.2813999] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Number Cited by Other Article(s)
1
Anaya-Campos LE, Sánchez-Fernández LP, Quiñones-Urióstegui I. Motion Smoothness Analysis of the Gait Cycle, Segmented by Stride and Associated with the Inertial Sensors' Locations. SENSORS (BASEL, SWITZERLAND) 2025;25:368. [PMID: 39860738 PMCID: PMC11768905 DOI: 10.3390/s25020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
2
Cao W, Li C, Yang L, Yin M, Chen C, Worawarit K, Thanak U, Yang Y, Yu H, Wu X. A Fusion Network With Stacked Denoise Autoencoder and Meta Learning for Lateral Walking Gait Phase Recognition and Multi-Step-Ahead Prediction. IEEE J Biomed Health Inform 2025;29:68-80. [PMID: 38512746 DOI: 10.1109/jbhi.2024.3380099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
3
Muñoz-Larrosa ES, Riveras M, Oldfield M, Shaheen AF, Schlotthauer G, Catalfamo-Formento P. Gait event detection accuracy: Effects of amputee gait pattern, terrain and algorithm. J Biomech 2024;177:112384. [PMID: 39486383 DOI: 10.1016/j.jbiomech.2024.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
4
Ng G, Gouda A, Andrysek J. Quantifying Asymmetric Gait Pattern Changes Using a Hidden Markov Model Similarity Measure (HMM-SM) on Inertial Sensor Signals. SENSORS (BASEL, SWITZERLAND) 2024;24:6431. [PMID: 39409470 PMCID: PMC11479378 DOI: 10.3390/s24196431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
5
Strick JA, Wiebrecht JJ, Farris RJ, Sawicki JT. Experimental Evaluation of Machine Learning Models for Gait Segmentation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024;2024:1-5. [PMID: 40039665 DOI: 10.1109/embc53108.2024.10781730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
6
Sheng W, Gao T, Liang K, Wang Y. Bilateral Elimination Rule-Based Finite Class Bayesian Inference System for Circular and Linear Walking Prediction. Biomimetics (Basel) 2024;9:266. [PMID: 38786476 PMCID: PMC11118229 DOI: 10.3390/biomimetics9050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]  Open
7
Strick JA, Farris RJ, Sawicki JT. A Novel Gait Event Detection Algorithm Using a Thigh-Worn Inertial Measurement Unit and Joint Angle Information. J Biomech Eng 2024;146:044502. [PMID: 38183222 DOI: 10.1115/1.4064435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
8
Han SL, Cai ML, Pan MC. Inertial Measuring System to Evaluate Gait Parameters and Dynamic Alignments for Lower-Limb Amputation Subjects. SENSORS (BASEL, SWITZERLAND) 2024;24:1519. [PMID: 38475055 DOI: 10.3390/s24051519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
9
Yang S, Koo B, Lee S, Jang DJ, Shin H, Choi HJ, Kim Y. Determination of Gait Events and Temporal Gait Parameters for Persons with a Knee-Ankle-Foot Orthosis. SENSORS (BASEL, SWITZERLAND) 2024;24:964. [PMID: 38339681 PMCID: PMC10857118 DOI: 10.3390/s24030964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
10
Shaikh UQ, Shahzaib M, Shakil S, Bhatti FA, Aamir Saeed M. Robust and adaptive terrain classification and gait event detection system. Heliyon 2023;9:e21720. [PMID: 38027844 PMCID: PMC10663835 DOI: 10.1016/j.heliyon.2023.e21720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]  Open
11
Ng G, Andrysek J. Classifying Changes in Amputee Gait following Physiotherapy Using Machine Learning and Continuous Inertial Sensor Signals. SENSORS (BASEL, SWITZERLAND) 2023;23:1412. [PMID: 36772451 PMCID: PMC9921298 DOI: 10.3390/s23031412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
12
Finco MG, Patterson RM, Moudy SC. A pilot case series for concurrent validation of inertial measurement units to motion capture in individuals who use unilateral lower-limb prostheses. J Rehabil Assist Technol Eng 2023;10:20556683231182322. [PMID: 37441370 PMCID: PMC10334000 DOI: 10.1177/20556683231182322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023]  Open
13
Vu HTT, Cao HL, Dong D, Verstraten T, Geeroms J, Vanderborght B. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit. Front Neurorobot 2022;16:923164. [PMID: 36524219 PMCID: PMC9745042 DOI: 10.3389/fnbot.2022.923164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/06/2022] [Indexed: 09/09/2023]  Open
14
Gouda A, Andrysek J. Rules-Based Real-Time Gait Event Detection Algorithm for Lower-Limb Prosthesis Users during Level-Ground and Ramp Walking. SENSORS (BASEL, SWITZERLAND) 2022;22:8888. [PMID: 36433483 PMCID: PMC9693475 DOI: 10.3390/s22228888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
15
Marcos Mazon D, Groefsema M, Schomaker LRB, Carloni R. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks. SENSORS (BASEL, SWITZERLAND) 2022;22:8871. [PMID: 36433469 PMCID: PMC9698430 DOI: 10.3390/s22228871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
16
Estimation of Gait Parameters for Transfemoral Amputees Using Lower Limb Kinematics and Deterministic Algorithms. Appl Bionics Biomech 2022;2022:2883026. [PMID: 36312314 PMCID: PMC9605832 DOI: 10.1155/2022/2883026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]  Open
17
Real-Time Gait Phase Detection Using Wearable Sensors for Transtibial Prosthesis Based on a kNN Algorithm. SENSORS 2022;22:s22114242. [PMID: 35684863 PMCID: PMC9185379 DOI: 10.3390/s22114242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023]
18
Aftab Z, Shad R. Estimation of gait parameters using leg velocity for amputee population. PLoS One 2022;17:e0266726. [PMID: 35560138 PMCID: PMC9106160 DOI: 10.1371/journal.pone.0266726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/28/2022] [Indexed: 11/18/2022]  Open
19
Das R, Paul S, Mourya GK, Kumar N, Hussain M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Front Neurosci 2022;16:859298. [PMID: 35495059 PMCID: PMC9051393 DOI: 10.3389/fnins.2022.859298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/06/2022]  Open
20
Su B, Liu YX, Gutierrez-Farewik EM. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons. SENSORS 2021;21:s21227473. [PMID: 34833549 PMCID: PMC8620781 DOI: 10.3390/s21227473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022]
21
Xu D, Wang Q. Noninvasive Human-Prosthesis Interfaces for Locomotion Intent Recognition: A Review. CYBORG AND BIONIC SYSTEMS 2021;2021:9863761. [PMID: 36285130 PMCID: PMC9494705 DOI: 10.34133/2021/9863761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/22/2021] [Indexed: 12/02/2022]  Open
22
Morbidoni C, Cucchiarelli A, Agostini V, Knaflitz M, Fioretti S, Di Nardo F. Machine-Learning-Based Prediction of Gait Events From EMG in Cerebral Palsy Children. IEEE Trans Neural Syst Rehabil Eng 2021;29:819-830. [PMID: 33909568 DOI: 10.1109/tnsre.2021.3076366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
23
A novel fusion strategy for locomotion activity recognition based on multimodal signals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Livolsi C, Conti R, Giovacchini F, Vitiello N, Crea S. A Novel Wavelet-Based Gait Segmentation Method for a Portable hip Exoskeleton. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2021.3122975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
25
Escamilla-Nunez R, Aguilar L, Ng G, Gouda A, Andrysek J. Derivative Based Gait Event Detection Algorithm Using Unfiltered Accelerometer Signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020;2020:4487-4490. [PMID: 33018991 DOI: 10.1109/embc44109.2020.9176085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
26
Ye J, Wu H, Wu L, Long J, Zhang Y, Chen G, Wang C, Luo X, Hou Q, Xu Y. An Adaptive Method for Gait Event Detection of Gait Rehabilitation Robots. Front Neurorobot 2020;14:38. [PMID: 32903323 PMCID: PMC7396541 DOI: 10.3389/fnbot.2020.00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/20/2020] [Indexed: 11/13/2022]  Open
27
Vu HTT, Dong D, Cao HL, Verstraten T, Lefeber D, Vanderborght B, Geeroms J. A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses. SENSORS (BASEL, SWITZERLAND) 2020;20:E3972. [PMID: 32708924 PMCID: PMC7411778 DOI: 10.3390/s20143972] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
28
Gao F, Liu G, Liang F, Liao WH. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons. IEEE Trans Neural Syst Rehabil Eng 2020;28:1334-1343. [PMID: 32286999 DOI: 10.1109/tnsre.2020.2987155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
29
Simonetti E, Villa C, Bascou J, Vannozzi G, Bergamini E, Pillet H. Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study. Med Biol Eng Comput 2019;58:461-470. [PMID: 31873834 DOI: 10.1007/s11517-019-02098-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/10/2019] [Indexed: 11/27/2022]
30
Sun Y, Huang R, Zheng J, Dong D, Chen X, Bai L, Ge W. Design and Speed-Adaptive Control of a Powered Geared Five-Bar Prosthetic Knee Using BP Neural Network Gait Recognition. SENSORS 2019;19:s19214662. [PMID: 31717856 PMCID: PMC6864863 DOI: 10.3390/s19214662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022]
31
Tang Y, Li Z, Tian H, Ding J, Lin B. Detecting Toe-Off Events Utilizing a Vision-Based Method. ENTROPY 2019;21:e21040329. [PMID: 33267043 PMCID: PMC7514813 DOI: 10.3390/e21040329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 11/16/2022]
32
Vu HTT, Gomez F, Cherelle P, Lefeber D, Nowé A, Vanderborght B. ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses. SENSORS (BASEL, SWITZERLAND) 2018;18:E2389. [PMID: 30041421 PMCID: PMC6068484 DOI: 10.3390/s18072389] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA