1
|
Liu X, Li Y, Liu F, Shi Q, Dong L, Huang Q, Arai T, Fukuda T. μSonic-hand: Biomedical micromanipulation driven by acoustic gas-liquid-solid interactions. SCIENCE ADVANCES 2025; 11:eads8167. [PMID: 40153493 PMCID: PMC11952102 DOI: 10.1126/sciadv.ads8167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Micromanipulation is crucial for operating and analyzing microobjects in advanced biomedical applications. However, safe, low-cost, multifunctional micromanipulation for operating bio-objects across scales and modalities remains inaccessible. Here, we propose a versatile micromanipulation method driven by acoustic gas-liquid-solid interactions, named μSonic-hand. The bubble contained at the end of a micropipette and the surrounding liquid form a gas-liquid multiphase system susceptible to acoustic waves. Driven by a piezoelectric transducer, the oscillating gas-liquid interface induces acoustic microstreaming, markedly increasing the mass transfer efficiency. It enables multiple liquid micromanipulations, including mixing, dispersion, enhancing cell membrane permeability, and harvesting selected cells. Furthermore, a controllable three-dimensional axisymmetric vortex in an open environment overcomes the constraints of microfluidic chip, enabling stable trapping, rapid transportation, and multidirectional rotation of HeLa cells, embryos, and other bio-objects ranging from micrometers to millimeters. A variety of applications demonstrate that the μSonic-hand, with its wide-range capabilities, inherent biocompatibility, and extremely low cost could remarkably advance biomedical science.
Collapse
Affiliation(s)
- Xiaoming Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Intelligent Flexible Actuation and Control in Universities of Jiangsu Province and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengyu Liu
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, 1828585, Japan
| | - Toshio Fukuda
- Institute of Innovation for Future Society, Nagoya University, Nagoya, 4648601, Japan
| |
Collapse
|
2
|
Gao W, Bai Y, Yang Y, Jia L, Mi Y, Cui W, Liu D, Shakoor A, Zhao L, Li J, Luo T, Sun D, Jiang Z. Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0211141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.
Collapse
Affiliation(s)
- Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yunfei Bai
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yujie Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Yingbiao Mi
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Wenji Cui
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Dehua Liu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum and Minerals 3 , Dhahran 31261,
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University 4 , Xiamen 361102,
| | - Dong Sun
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
- Department of Biomedical Engineering, City University of Hong Kong 5 , Hong Kong 999099,
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| |
Collapse
|
3
|
Wang F, Zhang Y, Jin D, Jiang Z, Liu Y, Knoll A, Jiang H, Ying Y, Zhou M. Magnetic Soft Microrobot Design for Cell Grasping and Transportation. CYBORG AND BIONIC SYSTEMS 2024; 5:0109. [PMID: 38680536 PMCID: PMC11052606 DOI: 10.34133/cbsystems.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
Manipulating cells at a small scale is widely acknowledged as a complex and challenging task, especially when it comes to cell grasping and transportation. Various precise methods have been developed to remotely control the movement of microrobots. However, the manipulation of micro-objects necessitates the use of end-effectors. This paper presents a study on the control of movement and grasping operations of a magnetic microrobot, utilizing only 3 pairs of electromagnetic coils. A specially designed microgripper is employed on the microrobot for efficient cell grasping and transportation. To ensure precise grasping, a bending deformation model of the microgripper is formulated and subsequently validated. To achieve precise and reliable transportation of cells to specific positions, an approach that combines an extended Kalman filter with a model predictive control method is adopted to accomplish the trajectory tracking task. Through experiments, we observe that by applying the proposed control strategy, the mean absolute error of path tracking is found to be less than 0.155 mm. Remarkably, this value accounts for only 1.55% of the microrobot's size, demonstrating the efficacy and accuracy of our control strategy. Furthermore, an experiment involving the grasping and transportation of a zebrafish embryonic cell (diameter: 800 μm) is successfully conducted. The results of this experiment not only validate the precision and effectiveness of the proposed microrobot and its associated models but also highlight its tremendous potential for cell manipulation in vitro and in vivo.
Collapse
Affiliation(s)
- Fanghao Wang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Youchao Zhang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Daoyuan Jin
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Zhongliang Jiang
- TUM School of Computation, Information, and Technology, Garching 85748, Germany
| | - Yaqian Liu
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Alois Knoll
- TUM School of Computation, Information, and Technology, Garching 85748, Germany
| | - Huanyu Jiang
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Mingchuan Zhou
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Sakamoto K, Aoyama T, Takeuchi M, Hasegawa Y. Intuitive Cell Manipulation Microscope System with Haptic Device for Intracytoplasmic Sperm Injection Simplification. SENSORS (BASEL, SWITZERLAND) 2024; 24:711. [PMID: 38276402 PMCID: PMC10819291 DOI: 10.3390/s24020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
In recent years, the demand for effective intracytoplasmic sperm injection (ICSI) for the treatment of male infertility has increased. The ICSI operation is complicated as it involves delicate organs and requires a high level of skill. Several cell manipulation systems that do not require such skills have been proposed; notably, several automated methods are available for cell rotation. However, these methods are unfeasible for the delicate ICSI medical procedure because of safety issues. Thus, this study proposes a microscopic system that enables intuitive micropipette manipulation using a haptic device that safely and efficiently performs the entire ICSI procedure. The proposed system switches between field-of-view expansion and three-dimensional image presentation to present images according to the operational stage. In addition, the system enables intuitive pipette manipulation using a haptic device. Experiments were conducted on microbeads instead of oocytes. The results confirmed that the time required for the experimental task was improved by 52.6%, and the injection error was improved by 75.3% compared to those observed in the conventional system.
Collapse
Affiliation(s)
| | - Tadayoshi Aoyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
5
|
Saghaei T, Weber A, Reimhult E, van Oostrum PDJ. Distinguishing cells using electro-acoustic spinning. Sci Rep 2023; 13:20466. [PMID: 37993513 PMCID: PMC10665424 DOI: 10.1038/s41598-023-46550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
Many diseases, including cancer and covid, result in altered mechanical and electric properties of the affected cells. These changes were proposed as disease markers. Current methods to characterize such changes either provide very limited information on many cells or have extremely low throughput. We introduce electro-acoustic spinning (EAS). Cells were found to spin in combined non-rotating AC electric and acoustic fields. The rotation velocity in EAS depends critically on a cell's electrical and mechanical properties. In contrast to existing methods, the rotation is uniform in the field of view and hundreds of cells can be characterized simultaneously. We demonstrate that EAS can distinguish cells with only minor differences in electric and mechanical properties, including differences in age or the number of passages.
Collapse
Affiliation(s)
- Tayebeh Saghaei
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria.
| | - Andreas Weber
- Department of Bionanosciences, Institute of Biophysics, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria
- London Centre for Nanotechnology, Faculty of Maths & Physical Sciences, University College London, Gower Street, London, UK
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria
| | - Peter D J van Oostrum
- Department of Bionanosciences, Institute of Biologically Inspired Materials, University of Natural Resources and Life Sciences, Muthgasse 11-II, 1190, Vienna, Austria
| |
Collapse
|
6
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects. Chem Commun (Camb) 2023; 59:2208-2221. [PMID: 36723196 PMCID: PMC10189788 DOI: 10.1039/d2cc06955e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Due to its contactless and fuel-free operation, optical rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. However, complex optics, extremely high operational power, and the applicability to limited objects restrict the broader use of optical rotation techniques. This Feature Article focuses on a rapidly emerging class of optical rotation techniques, termed optothermal rotation. Based on light-mediated thermal phenomena, optothermal rotation techniques overcome the bottlenecks of conventional optical rotation by enabling versatile rotary control of arbitrary objects with simpler optics using lower powers. We start with the fundamental thermal phenomena and concepts: thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, thermo-capillarity, and photophoresis. Then, we highlight various optothermal rotation techniques, categorizing them based on their rotation modes (i.e., in-plane and out-of-plane rotation) and the thermal phenomena involved. Next, we explore the potential applications of these optothermal manipulation techniques in areas such as single-cell mechanics, 3D bio-imaging, and micro/nanomotors. We conclude the Feature Article with our insights on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Wang Z, Chen X, Tian J, Wei J, Hu Y. Noncontact Manipulation of Intracellular Structure Based on Focused Surface Acoustic Waves. Anal Chem 2023; 95:827-835. [PMID: 36594897 DOI: 10.1021/acs.analchem.2c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell orientation is essential in many applications in biology, medicine, and chemistry, such as cellular injection, intracellular biopsy, and genetic screening. However, the manual cell orientation technique is a trial-and-error approach, which suffers from low efficiency and low accuracy. Although several techniques have improved these issues to a certain extent, they still face problems deforming or disrupting cell membranes, physical damage to the intracellular structure, and limited particle size. This study proposes a noncontact and noninvasive cell orientation method that rotates a cell using surface acoustic waves (SAWs). To realize the acoustic cell orientation process, we have fabricated a microdevice consisting of two pairs of focused interdigital transducers (FIDTs). Instead of rotating the entire cell, the proposed method rotates the intracellular structure, the cytoplasm, directly through the cell membrane by acoustic force. We have tested the rotational manipulation process on 30 zebrafish embryos. The system was able to orientate a cell to a target orientation with a one-time success rate of 93%. Furthermore, the postoperation survival rate was 100%. Our acoustic rotational manipulation technique is noninvasive and easy to use, which provides a starting point for cell-manipulation-essential tasks, such as single-cell analysis, organism studies, and drug discovery.
Collapse
Affiliation(s)
- Zenan Wang
- Center for Cognitive Technology, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Guangdong518055, China
| | - Xiaotong Chen
- Center for Cognitive Technology, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Guangdong518055, China.,School of Electrical Engineering, University of Jinan, Jinan250022, Shandong, China
| | - Jun Tian
- Center for Cognitive Technology, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Guangdong518055, China.,School of Electrical Engineering, University of Jinan, Jinan250022, Shandong, China
| | - Jun Wei
- School of Electrical Engineering, University of Jinan, Jinan250022, Shandong, China
| | - Ying Hu
- Center for Cognitive Technology, Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Guangdong518055, China
| |
Collapse
|
8
|
Tanaka Y, Fujimoto K. Dual-Arm Visuo-Haptic Optical Tweezers for Bimanual Cooperative Micromanipulation of Nonspherical Objects. MICROMACHINES 2022; 13:1830. [PMID: 36363851 PMCID: PMC9695214 DOI: 10.3390/mi13111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Cooperative manipulation through dual-arm robots is widely implemented to perform precise and dexterous tasks to ensure automation; however, the implementation of cooperative micromanipulation through dual-arm optical tweezers is relatively rare in biomedical laboratories. To enable the bimanual and dexterous cooperative handling of a nonspherical object in microscopic workspaces, we present a dual-arm visuo-haptic optical tweezer system with two trapped microspheres, which are commercially available end-effectors, to realize indirect micromanipulation. By combining the precise correction technique of distortions in scanning optical tweezers and computer vision techniques, our dual-arm system allows a user to perceive the real contact forces during the cooperative manipulation of an object. The system enhances the dexterity of bimanual micromanipulation by employing the real-time representation of the forces and their directions. As a proof of concept, we demonstrate the cooperative indirect micromanipulation of single nonspherical objects, specifically, a glass fragment and a large diatom. Moreover, the precise correction method of the scanning optical tweezers is described. The unique capabilities offered by the proposed dual-arm visuo-haptic system can facilitate research on biomedical materials and single-cells under an optical microscope.
Collapse
|
9
|
Shao M, Zhong MC, Wang Z, Ke Z, Zhong Z, Zhou J. Non-Invasive Dynamic Reperfusion of Microvessels In Vivo Controlled by Optical Tweezers. Front Bioeng Biotechnol 2022; 10:952537. [PMID: 35910027 PMCID: PMC9331193 DOI: 10.3389/fbioe.2022.952537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Distributive shock is considered to be a condition of microvascular hypoperfusion, which can be fatal in severe cases. However, traditional therapeutic methods to restore the macro blood flow are difficult to accurately control the blood perfusion of microvessels, and the currently developed manipulation techniques are inevitably incompatible with biological systems. In our approach, infrared optical tweezers are used to dynamically control the microvascular reperfusion within subdermal capillaries in the pinna of mice. Furthermore, we estimate the effect of different optical trap positions on reperfusion at branch and investigate the effect of the laser power on reperfusion. The results demonstrate the ability of optical tweezers to control microvascular reperfusion. This strategy allows near-noninvasive reperfusion of the microvascular hypoperfusion in vivo. Hence, our work is expected to provide unprecedented insights into the treatment of distributive shock.
Collapse
Affiliation(s)
- Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, China
| | - Min-Cheng Zhong
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Min-Cheng Zhong, ; Jinhua Zhou,
| | - Zixin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Zeyu Ke
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Zhensheng Zhong
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- *Correspondence: Min-Cheng Zhong, ; Jinhua Zhou,
| |
Collapse
|
10
|
Shakoor A, Gao W, Zhao L, Jiang Z, Sun D. Advanced tools and methods for single-cell surgery. MICROSYSTEMS & NANOENGINEERING 2022; 8:47. [PMID: 35502330 PMCID: PMC9054775 DOI: 10.1038/s41378-022-00376-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Highly precise micromanipulation tools that can manipulate and interrogate cell organelles and components must be developed to support the rapid development of new cell-based medical therapies, thereby facilitating in-depth understanding of cell dynamics, cell component functions, and disease mechanisms. This paper presents a literature review on micro/nanomanipulation tools and their control methods for single-cell surgery. Micromanipulation methods specifically based on laser, microneedle, and untethered micro/nanotools are presented in detail. The limitations of these techniques are also discussed. The biological significance and clinical applications of single-cell surgery are also addressed in this paper.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Ma W, Huan Z, Xu M. Numerical Optimization and Map-Based Manipulation With a Quadrupole Electromagnetic Actuated System. Front Neurorobot 2022; 16:859996. [PMID: 35370594 PMCID: PMC8967965 DOI: 10.3389/fnbot.2022.859996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Electromagnetic actuation is a new technique for non-invasive manipulation, which provides wireless and controllable power source for magnetic micro-/nano-particles. This technique shows great potential in the field of precise mechanics, environment protection, and biomedical engineering. In this paper, a new quadrupole electromagnetic actuated system was constructed, which was composed of four electromagnetic coils, each coil being actuated by an independent DC power supplier. The magnetic field distribution in the workspace was obtained through finite element modeling and numerical simulation via COMSOL software, as well as the effect of the current flow through the coil in the field distribution. Moreover, parameters of the electromagnetic system were optimized through parametric modeling analysis. A magnetic field map was constructed for rapidly solving the desired driving current from the required magnetic flux density. Experiments were conducted to manipulate a micro-particle along the desired circular path. The proposed work provides theoretical references and numerical fundamentals for the control of magnetic particle in future.
Collapse
|
12
|
Gong H, Li L, Qiu J, Yao Y, Liu Y, Cui M, Zhao Q, Zhao X, Sun M. Automatic Cell Rotation Based on Real-Time Detection and Tracking. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3099238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Shakoor A, Wang B, Fan L, Kong L, Gao W, Sun J, Man K, Li G, Sun D. Automated Optical Tweezers Manipulation to Transfer Mitochondria from Fetal to Adult MSCs to Improve Antiaging Gene Expressions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103086. [PMID: 34411428 DOI: 10.1002/smll.202103086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Mitochondrial dysfunction is considered to be an important factor that leads to aging and premature aging diseases. Transferring mitochondria to cells is an emerging and promising technique for the therapy of mitochondrial deoxyribonucleic acid (mtDNA)-related diseases. This paper presents a unique method of controlling the quality and quantity of mitochondria transferred to single cells using an automated optical tweezer-based micromanipulation system. The proposed method can automatically, accurately, and efficiently collect and transport healthy mitochondria to cells, and the recipient cells then take up the mitochondria through endocytosis. The results of the study reveal the possibility of using mitochondria from fetal mesenchymal stem cells (fMSCs) as a potential source to reverse the aging-related phenotype and improve metabolic activities in adult mesenchymal stem cells (aMSCs). The results of the quantitative polymerase chain reaction analysis show that the transfer of isolated mitochondria from fMSCs to a single aMSC can significantly increase the antiaging and metabolic gene expression in the aMSC. The proposed mitochondrial transfer method can greatly promote precision medicine for cell therapy of mtDNA-related diseases.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Bin Wang
- The Chinese University of Hong Kong (CUHK), Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530, China
- Department of Orthopaedics and Traumatology, Stem Cells and Regeneration Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of, Hong Kong, 99907, Hong Kong S.A.R
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Lingchi Kong
- Department of Orthopaedics and Traumatology, Stem Cells and Regeneration Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of, Hong Kong, 99907, Hong Kong S.A.R
| | - Wendi Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Jiayu Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, 99907, Hong Kong S.A.R
| | - Gang Li
- The Chinese University of Hong Kong (CUHK), Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GDL) Advanced Institute for Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510530, China
- Department of Orthopaedics and Traumatology, Stem Cells and Regeneration Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of, Hong Kong, 99907, Hong Kong S.A.R
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 99907, China
| |
Collapse
|
14
|
Zhang G, Tong M, Zhuang S, Yu X, Sun W, Lin W, Gao H. Zebrafish Larva Orientation and Smooth Aspiration Control for Microinjection. IEEE Trans Biomed Eng 2021; 68:47-55. [DOI: 10.1109/tbme.2020.2999896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Huang L, Feng Y, Liang F, Zhao P, Wang W. Dual-fiber microfluidic chip for multimodal manipulation of single cells. BIOMICROFLUIDICS 2021; 15:014106. [PMID: 33537113 PMCID: PMC7846294 DOI: 10.1063/5.0039087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 05/22/2023]
Abstract
On-chip single-cell manipulation is imperative in cell biology and it is desirable for a microfluidic chip to have multimodal manipulation capability. Here, we embedded two counter-propagating optical fibers into the microfluidic chip and configured their relative position in space to produce different misalignments. By doing so, we demonstrated multimodal manipulation of single cells, including capture, stretching, translation, orbital revolution, and spin rotation. The rotational manipulation can be in-plane or out-of-plane, providing flexibility and capability to observe the cells from different angles. Based on out-of-plane rotation, we performed a 3D reconstruction of cell morphology and extracted its five geometric parameters as biophysical features. We envision that this type of microfluidic chip configured with dual optical fibers can be helpful in manipulating cells as the upstream process of single-cell analysis.
Collapse
Affiliation(s)
| | - Yongxiang Feng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| | - Fei Liang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| | - Peng Zhao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| | - Wenhui Wang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Xiong K, Yu J, Hu C, Wen S, Jiang H. Finite-time synchronization of fully complex-valued networks with or without time-varying delays via intermittent control. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Dong D, Lam WS, Sun D. Electromagnetic Actuation of Microrobots in a Simulated Vascular Structure With a Position Estimator Based Motion Controller. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.3013846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Yu S, Wu H, Xie M, Lin H, Ma J. Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal sliding mode control. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00083-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Liang Y, Yan S, Wang Z, Li R, Cai Y, He M, Yao B, Lei M. Simultaneous optical trapping and imaging in the axial plane: a review of current progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:032401. [PMID: 31995793 DOI: 10.1088/1361-6633/ab7175] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optical trapping has become a powerful tool in numerous fields such as biology, physics, chemistry, etc. In conventional optical trapping systems, trapping and imaging share the same objective lens, confining the region of observation to the focal plane. For the capture of optical trapping processes occurring in other planes, especially the axial plane (the one containing the z-axis), many methods have been proposed to achieve this goal. Here, we review the methods of acquiring the axial-plane information from which axial plane trapping is observed and discuss their advantages and limitations. To overcome the limitations existing in these methods, we developed an optical tweezers system that allows for simultaneous optical trapping and imaging in the axial plane. The versatility and usefulness of the system in axial-plane trapping and imaging are demonstrated by investigating its trapping performance with various optical fields, including Bessel, Airy, and snake-like beams. The potential applications of the reported technique are suggested to several research fields, including optical pulling, longitudinal optical binding, tomographic phase microscopy (TPM), and super-resolution microscopy.
Collapse
Affiliation(s)
- Yansheng Liang
- Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun Y, Dong D, Qin H, Wang W. Distributed tracking control for multiple Euler-Lagrange systems with communication delays and input saturation. ISA TRANSACTIONS 2020; 96:245-254. [PMID: 31303339 DOI: 10.1016/j.isatra.2019.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
This study mainly investigates the problem of distributed tracking control for time-varying delay existing multiple Euler-Lagrange systems considering full-state constraints and input saturation under the directed graph. Specifically, the system under consideration consists of system uncertainties and external disturbances. In the control law design, a distributed observer is first designed that the followers can obtain the leader's time-varying information. Then the barrier Lyapunov function technique is used to make sure the system errors can converge to a certain range while the anti-windup method is utilized to overcome the influence of control input saturation. Further, in order to prevent chattering, an adaptive law is given. Numerical simulations are given to verify the proposed algorithms.
Collapse
Affiliation(s)
- Yanchao Sun
- Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China
| | - Dingran Dong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Hongde Qin
- Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin 150001, China.
| | - Wenjia Wang
- Department of Control Science and Engineering at Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
21
|
Gerena E, Legendre F, Molawade A, Vitry Y, Régnier S, Haliyo S. Tele-Robotic Platform for Dexterous Optical Single-Cell Manipulation. MICROMACHINES 2019; 10:mi10100677. [PMID: 31597299 PMCID: PMC6843280 DOI: 10.3390/mi10100677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
Abstract
Single-cell manipulation is considered a key technology in biomedical research. However, the lack of intuitive and effective systems makes this technology less accessible. We propose a new tele–robotic solution for dexterous cell manipulation through optical tweezers. A slave-device consists of a combination of robot-assisted stages and a high-speed multi-trap technique. It allows for the manipulation of more than 15 optical traps in a large workspace with nanometric resolution. A master-device (6+1 degree of freedom (DoF)) is employed to control the 3D position of optical traps in different arrangements for specific purposes. Precision and efficiency studies are carried out with trajectory control tasks. Three state-of-the-art experiments were performed to verify the efficiency of the proposed platform. First, the reliable 3D rotation of a cell is demonstrated. Secondly, a six-DoF teleoperated optical-robot is used to transport a cluster of cells. Finally, a single-cell is dexterously manipulated through an optical-robot with a fork end-effector. Results illustrate the capability to perform complex tasks in efficient and intuitive ways, opening possibilities for new biomedical applications.
Collapse
Affiliation(s)
- Edison Gerena
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Florent Legendre
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Akshay Molawade
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Youen Vitry
- TIPS Laboratory, CP 165/67, Université libre de Bruxelles, 50 Avenue F. Roosevelt, B-1050 Brussels, Belgium
| | - Stéphane Régnier
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Sinan Haliyo
- Institut des Systèmes Intelligents et de Robotique, ISIR, Sorbonne Université, CNRS, F-75005 Paris, France
| |
Collapse
|
22
|
Abu Ajamieh I, Benhabib B, Mills JK. Automatic System for the Blastocyst Embryo Manipulation and Rotation. Ann Biomed Eng 2019; 48:426-436. [PMID: 31552512 DOI: 10.1007/s10439-019-02360-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Cell manipulation plays a vital role in the success rate and efficiency of the cell microsurgical operations, including biopsy of cell internal organelles such as the embryo biopsy, in which the embryo is manipulated and reoriented safely to a predefined desired position and orientation. In this paper, a simplified approach for the blastocyst embryo reorientation is proposed. It utilizes conventional tools and techniques currently in use in manual approaches in research labs and In Vitro Fertilization clinics, and controls the process using a vision feedback system. An experimental setup is developed to verify the dynamic behavior of the proposed approach, in which a stationary holding micropipette is used to hold the embryo, which is then rotated in two coordinate directions through friction contact with a moving substrate, in our case a glass microscope slide. The embryo rotates on the holding micropipette tip, due to the relatively low friction of this contact. A computer vision algorithm is used to estimate the embryo orientation coordinates, and use this information as a feedback signal to a simple proportional controller to control the embryo rotation angle. Experimental results demonstrate that the system is capable of cell rotation in two independent coordinates, suitable for embryo microsurgical task execution.
Collapse
Affiliation(s)
- Ihab Abu Ajamieh
- Laboratory of Nonlinear Systems Control, Mechanical and Industrial Engineering Department, University of Toronto, Toronto, ON, Canada.
| | - Bensiyon Benhabib
- Laboratory of Nonlinear Systems Control, Mechanical and Industrial Engineering Department, University of Toronto, Toronto, ON, Canada
| | - James K Mills
- Laboratory of Nonlinear Systems Control, Mechanical and Industrial Engineering Department, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Blázquez-Castro A. Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. MICROMACHINES 2019; 10:E507. [PMID: 31370251 PMCID: PMC6722566 DOI: 10.3390/mi10080507] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
For several decades optical tweezers have proven to be an invaluable tool in the study and analysis of myriad biological responses and applications. However, as with every tool, they can have undesirable or damaging effects upon the very sample they are helping to study. In this review the main negative effects of optical tweezers upon biostructures and living systems will be presented. There are three main areas on which the review will focus: linear optical excitation within the tweezers, non-linear photonic effects, and thermal load upon the sampled volume. Additional information is provided on negative mechanical effects of optical traps on biological structures. Strategies to avoid or, at least, minimize these negative effects will be introduced. Finally, all these effects, undesirable for the most, can have positive applications under the right conditions. Some hints in this direction will also be discussed.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Gao W, Shakoor A, Zhao L, Jiang Z, Sun D. 3-D Image Reconstruction of Biological Organelles With a Robot-Aided Microscopy System for Intracellular Surgery. IEEE Robot Autom Lett 2019. [DOI: 10.1109/lra.2018.2886374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Shakoor A, Xie M, Luo T, Hou J, Shen Y, Mills JK, Sun D. Achieving Automated Organelle Biopsy on Small Single Cells Using a Cell Surgery Robotic System. IEEE Trans Biomed Eng 2018; 66:2210-2222. [PMID: 30530303 DOI: 10.1109/tbme.2018.2885772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single cell surgery such as manipulation or removal of subcellular components or/and organelles from single cells is increasingly used for the study of diseases and their causes in precision medicine. This paper presents a robotic surgery system to achieve automated organelle biopsy of single cells with dimensions of less than 20 μm in diameter. The complexity of spatial detection of the organelle position is reduced by patterning the cells using a microfluidic chip device. A sliding mode nonlinear controller is developed to enable extraction of organelles, such as the mitochondria and the nucleus, from single cells with high precision. An image processing algorithm is also developed to automatically detect the position of the desired organelle. The effectiveness of the proposed robotic surgery system is demonstrated experimentally with automated extraction of mitochondria and nucleus from human acute promyelocytic leukemia cells and human fibroblast cells. Extraction is followed by biological tests to indicate the functionality of biopsied mitochondria as well as the cell viability after removal of mitochondria. The results presented here have revealed that the proposed approach of automated organelle biopsy on single small cells is feasible.
Collapse
|
26
|
Xie M, Shakoor A, Wu C. Manipulation of Biological Cells Using a Robot-Aided Optical Tweezers System. MICROMACHINES 2018; 9:E245. [PMID: 30424178 PMCID: PMC6187456 DOI: 10.3390/mi9050245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
Abstract
This article reviews the autonomous manipulation strategies of biological cells utilizing optical tweezers, mainly including optical direct and indirect manipulation strategies. The typical and latest achievements in the optical manipulation of cells are presented, and the existing challenges for autonomous optical manipulation of biological cells are also introduced. Moreover, the integrations of optical tweezers with other manipulation tools are presented, which broadens the applications of optical tweezers in the biomedical manipulation areas and will also foster new developments in cell-based physiology and pathology studies, such as cell migration, single cell surgery, and preimplantation genetic diagnosis (PGD).
Collapse
Affiliation(s)
- Mingyang Xie
- College of Automation Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China.
| | - Adnan Shakoor
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Changcheng Wu
- College of Automation Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China.
| |
Collapse
|