1
|
Wang Q, Chen Y, Shen K, Zhou X, Shen M, Lu F, Zhu D. Spatial mapping of corneal biomechanical properties using wave-based optical coherence elastography. JOURNAL OF BIOPHOTONICS 2024; 17:e202300534. [PMID: 38453148 DOI: 10.1002/jbio.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/11/2024] [Indexed: 03/09/2024]
Abstract
Quantifying the mechanical properties of the cornea can provide valuable insights into the occurrence and progression of keratoconus, as well as the effectiveness of corneal crosslinking surgery. This study presents a non-contact and non-invasive wave-based optical coherence elastography system that utilizes air-pulse stimulation to create a two-dimensional map of corneal elasticity. Homogeneous and dual concentration phantoms were measured with the sampling of 25 × 25 points over a 6.6 × 6.6 mm2 area, to verify the measurement capability for elastic mapping and the spatial resolution (0.91 mm). The velocity of elastic waves distribution of porcine corneas before and after corneal crosslinking surgery were further mapped, showing a significant change in biomechanics in crosslinked region. This system features non-invasiveness and high resolution, holding great potential for application in ophthalmic clinics.
Collapse
Affiliation(s)
- Qingying Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yulei Chen
- Department of Ophthalmology, Dongguan Tungwah Hospital, Dongguan, China
| | - Kexin Shen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingyu Zhou
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meixiao Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dexi Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
魏 俊, 陈 鹏, 韩 鹏, 刘 晓, 侯 杰, 武 策, 宋 婕, 陈 维, 李 晓. [Anisotropy and viscoelasticity of different corneal regions in rabbit corneal ectasia model]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:129-135. [PMID: 38403613 PMCID: PMC10894728 DOI: 10.7507/1001-5515.202312022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/27/2023] [Indexed: 02/27/2024]
Abstract
The mechanical properties of the cornea in corneal ectasia disease undergo a significant reduction, yet the alterations in mechanical properties within distinct corneal regions remain unclear. In this study, we established a rabbit corneal ectasia model by employing collagenase II to degrade the corneal matrix within a central diameter of 6 mm. Optical coherence tomography was employed for the in vivo assessment of corneal morphology (corneal thickness and corneal curvature) one month after operation. Anisotropy and viscoelastic characteristics of corneal tissue were evaluated through biaxial and uniaxial testing, respectively. The results demonstrated a marked decrease in central corneal thickness, with no significant changes observed in corneal curvature. Under different strains, the elastic modulus of the cornea exhibited no significant differences in the up-down and naso-temporal directions between the control and model groups. However, the cornea in the model group displayed a significantly lower elastic modulus compared to the control group. Specifically, the elastic modulus of the central region cornea in the model group was significantly lower than that of the entire cornea within the same group. Moreover, in comparison to the control group, the cornea in the model group exhibited a significant increase in both creep rate and overall deformation rate. The instantaneous modulus and equilibrium modulus were significantly reduced in the model cornea. No significant differences were observed between the entire cornea and the central cornea concerning these parameters. The results indicate that corneal anisotropy remains unchanged in collagenase-induced ectatic cornea. However, a significant reduction in viscoelastic properties is noticed. This study provides valuable insights for investigating changes in corneal mechanical properties within different regions of ectatic corneal disease.
Collapse
Affiliation(s)
- 俊超 魏
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 鹏 陈
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 鹏飞 韩
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 晓娜 刘
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 杰 侯
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 策 武
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 婕 宋
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 维毅 陈
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 晓娜 李
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
3
|
Zhao Y, Zhu Y, Yan Y, Yang H, Liu J, Lu Y, Li Y, Huang G. In Vivo Evaluation of Corneal Biomechanics Following Cross-Linking Surgeries Using Optical Coherence Elastography in a Rabbit Model of Keratoconus. Transl Vis Sci Technol 2024; 13:15. [PMID: 38376862 PMCID: PMC10883337 DOI: 10.1167/tvst.13.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/30/2023] [Indexed: 02/21/2024] Open
Abstract
Purpose Validation of the feasibility of novel acoustic radiation force optical coherence elastography (ARF-OCE) for the evaluation of biomechanical enhancement of the in vivo model of keratoconus by clinical cross-linking (CXL) surgery. Methods Twelve in vivo rabbit corneas were randomly divided into two groups. Both groups were treated with collagenase type II, and a keratoconus model was obtained. Then, the two groups were treated with CXL procedures with different irradiation energy of 15 J and 30 J (CXL-15 J and CXL-30 J, respectively). An ARF-OCE probe with an ultrasmall ultrasound transducer was used to detect the biomechanical properties of cornea. An antisymmetric Lamb wave model was combined with the frequency dispersion relationship to achieve depth-resolved elastography. Results Compared with the phase velocity of the Lamb wave in healthy corneas (approximately 3.96 ± 0.27 m/s), the phase velocity of the Lamb wave was lower in the keratoconus region (P < 0.05), with an average value of 3.12 ± 0.12 m/s. Moreover, the corneal stiffness increased after CXL treatment (P < 0.05), and the average phase velocity of the Lamb wave was 4.3 ± 0.19 m/s and 4.54 ± 0.13 m/s after CXL-15 J and CXL-30 J treatment. Conclusions The Young's moduli of the keratoconus regions were significantly lower than the healthy corneas. Moreover, the Young's modulus of the keratoconus regions was significantly higher after CXL-30 J treatment than after CXL-15 J treatment. We demonstrated that the ARF-OCE technique has great potential in screening keratoconus and guiding clinical CXL treatment. Translational Relevance This work accelerates the clinical translation of OCE systems using ultrasmall ultrasound transducers and is used to guide CXL procedures.
Collapse
Affiliation(s)
- Yanzhi Zhao
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yirui Zhu
- School of Physics, University of Nanjing, Nanjing, Jiangsu, China
- School of Testing and Opto-electronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yange Yan
- Yujiang District People's Hospital, Jiangxi, China
| | - Hongwei Yang
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingchao Liu
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yongan Lu
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yingjie Li
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Guofu Huang
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Callejas A, Faris I, Torres J, Rus G. Nonlinear fourth-order elastic characterization of the cornea using torsional wave elastography. Phys Eng Sci Med 2023; 46:1489-1501. [PMID: 37642939 DOI: 10.1007/s13246-023-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
Measuring the mechanical nonlinear properties of the cornea remains challenging due to the lack of consensus in the methodology and in the models that effectively predict its behaviour. This study proposed developing a procedure to reconstruct nonlinear fourth-order elastic properties of the cornea based on a mathematical model derived from the theory of Hamilton et al. and using the torsional wave elastography (TWE) technique. In order to validate its diagnostic capability of simulated pathological conditions, two different groups were studied, non-treated cornea samples (n=7), and ammonium hydroxide ([Formula: see text]) treated samples (n=7). All the samples were measured in-plane by a torsional wave device by increasing IOP from 5 to 25 mmHg with 5 mmHg steps. The results show a nonlinear variation of the shear wave speed with the IOP, with higher values for higher IOPs. Moreover, the shear wave speed values of the control group were higher than those of the treated group. The study also revealed significant differences between the control and treated groups for the Lamé parameter [Formula: see text] (25.9-6.52 kPa), third-order elastic constant A (215.09-44.85 kPa), and fourth-order elastic constant D (523.5-129.63 kPa), with p-values of 0.010, 0.024, and 0.032, respectively. These findings demonstrate that the proposed procedure can distinguish between healthy and damaged corneas, making it a promising technique for detecting diseases associated with IOP alteration, such as corneal burns, glaucoma, or ocular hypertension.
Collapse
Affiliation(s)
- Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain.
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain.
| | - Inas Faris
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, 18071, Spain
- TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada, 18001, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, 18001, Spain
| |
Collapse
|
5
|
Borhani MR, Rajabi M, Shoja Razavi R, Jamaati R. Investigating the relationship between mechanical properties and residual stress in the laser cladding process of Inconel 625 superalloy. Heliyon 2023; 9:e19791. [PMID: 37809515 PMCID: PMC10559123 DOI: 10.1016/j.heliyon.2023.e19791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In the present study, the tensile strength, fracture surface, hardness, and amount of residual stress in Inconel 625 super alloy cladded with direct metal deposition (DLD) process in the states before and after stress relief was studied. Residual stresses on the cladding layer surface were determined via XRD method. According to results, the yield strength of Am sample increased by 10% compared to thecast sample (reference sample). Although the yield strength experiebced an increase, the ductility followed an opposite trend falling from 42.5% to 26%. According to residual stress test outcomes, tensile residual stress of 361 MPa in the additive-manufactured sample. After stress relaxation heat treatment and almost complete removal of residual stress, the ductility reached 52.5%, the ultimate strength was also improved by 17% from cast sample. Also, after stress relaxation, the hardness of the sample and its fluctuations are reduced.
Collapse
Affiliation(s)
- Mohammad Reza Borhani
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Mohammad Rajabi
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Reza Shoja Razavi
- Faculty of Materials & Manufacturing Technologies, Malek Ashtar University of Technology, Iran
| | - Roohollah Jamaati
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| |
Collapse
|
6
|
Wagner FM, Sekundo W. Iatrogenic Keratectasia after Refractive Surgery - Causes, Prophylaxis, Therapy. Klin Monbl Augenheilkd 2023; 240:783-794. [PMID: 37348513 DOI: 10.1055/a-2073-8478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Iatrogenic keratectasia is induced thinning and protrusion of the cornea after laser refractive surgery. Known risk factors include an excessively thin postoperative residual stromal bed, a thicker flap, or preoperatively undetected evidence of preexisting subclinical keratoconus. The rate of post-refractive ectasia in eyes without identifiable preoperative risk factors is 20 per 100 000 eyes for photorefractive keratectomy, 90 per 100 000 eyes for laser in situ keratomileusis, and 11 per 100 000 eyes for small incision lenticule extraction. Traditional screening tools for preoperative risk include the ectasia risk score system and percentage of tissue alteration. More recent methods include corneal elastography and epithelial mapping, in addition to Artificial Intelligence methods for data analysis. Therapy includes contact lenses, cross-linking, implantation of intracorneal ring segments, penetrating or lamellar keratoplasty, and, in early studies, implantation of corneal lenticules.
Collapse
Affiliation(s)
- Felix Mathias Wagner
- Universitätsaugenklinik Mainz, Mainz, Deutschland
- Universitätsaugenklinik Marburg, Marburg, Deutschland
| | | |
Collapse
|
7
|
Li R, Qian X, Gong C, Zhang J, Liu Y, Xu B, Humayun MS, Zhou Q. Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography. IEEE Trans Biomed Eng 2023; 70:1310-1317. [PMID: 36260593 PMCID: PMC10365545 DOI: 10.1109/tbme.2022.3215498] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Current elastography techniques in the field of ophthalmology usually target one specific tissue, such as the cornea or the sclera. However, the eye is an inter-related organ, and some ocular diseases can alter the biomechanical properties of multiple anatomical structures. Hence, there is a need to develop an imaging tool that can non-invasively, quantitatively, and accurately characterize dynamic changes among these biomechanical properties. METHODS A high resolution ultrasound elastography system was developed to achieve this goal. The efficacy and accuracy of the system was first validated on tissue-mimicking phantoms while mechanical testing measurements served as the gold standard. Next, an in vivo elevated intraocular pressure (IOP) model was established in rabbits to further test our system. In particular, elastography measurements were obtained at 5 IOP levels, ranging from 10 mmHg to 30 mmHg in 5 mmHg increments. Spatial-temporal maps of the multiple ocular tissues (cornea, lens, iris, optic nerve head, and peripapillary sclera) were obtained. RESULTS The spatial-temporal maps were acquired simultaneously for the ocular tissues at the 5 different IOP levels. The statistical analysis of the elastic wave speed was presented for ocular tissues. Finally, the mapping for the elastic wave speed of each ocular component was acquired at each IOP level. CONCLUSION Our elastography system can concurrently assess the biomechanical properties of multiple ocular structures and detect changes in biomechanical properties associated with changes in IOP. SIGNIFICANCE This system provides a novel tool to measure and quantify the biomechanical properties of the whole eye.
Collapse
|
8
|
Rayes A, Zhang J, Lu G, Qian X, Schroff ST, Ryu R, Jiang X, Zhou Q. Estimating Thrombus Elasticity by Shear Wave Elastography to Evaluate Ultrasound Thrombolysis for Thrombus With Different Stiffness. IEEE Trans Biomed Eng 2023; 70:135-143. [PMID: 35759590 PMCID: PMC10370280 DOI: 10.1109/tbme.2022.3186586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE There is uncertainty about deep vein thrombosis standard treatment as thrombus stiffness alters each case. Here, we investigated thrombus' stiffness of different compositions and ages using shear wave elastography (SWE). We then studied the effectiveness of ultrasound-thrombolysis on different thrombus compositions. METHODS Shear waves generated through mechanical shaker and traveled along thrombus of different hematocrit (HCT) levels, whereas 18-MHz ultrasound array used to detect wave propagation. Thrombus' stiffness was identified by the shear wave speed (SWS). In thrombolysis, a 3.2 MHz focused transducer was applied to different thrombus compositions using different powers. The thrombolysis rate was defined as the percentage of weight loss. RESULTS The estimated average SWS of 20%, 40%, and 60% HCT thrombus were 0.75 m/s, 0.44 m/s, and 0.32 m/s, respectively. For Thrombolysis, the percentage weight loss at 8 MPa Negative pressure for the same HCT groups were 23.1%, 35.29%, and 39.66% respectively. CONCLUSION SWS is inversely related to HCT level and positively related to thrombus age. High HCT thrombus had higher weight loss compared to low HCT. However, the difference between 20% and 40% HCT was more significant than between 40% and 60% HCT in both studies. Our results suggest that thrombus with higher SWS require more power to achieve the same thrombolysis rate as thrombus with lower SWS. SIGNIFICANCE Characterizing thrombus elastic property undergoing thrombolysis enables evaluation of ultrasound efficacy for fractionating thrombus and reveals the appropriate ultrasound parameters selection to achieve a certain thrombolysis rate in the case of a specific thrombus stiffness.
Collapse
Affiliation(s)
- Adnan Rayes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stuart T. Schroff
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Robert Ryu
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Xiaoning Jiang
- department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
In Vivo Evaluation of the Effects of SMILE with Different Amounts of Stromal Ablation on Corneal Biomechanics by Optical Coherence Elastography. Diagnostics (Basel) 2022; 13:diagnostics13010030. [PMID: 36611322 PMCID: PMC9818797 DOI: 10.3390/diagnostics13010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
This work aims to depth-resolved quantitatively analyze the effect of different stromal ablation amounts on the corneal biomechanical properties during small incision lenticule extraction (SMILE) using optical coherence elastography (OCE). A 4.5-MHz ultrasonic transducer was used to excite elastic waves in the corneal tissue. The OCE system combined with the antisymmetric Lamb wave model was employed to achieve a high-resolution, high-sensitivity, and depth-resolved quantitative detection of the corneal Young's modulus. Eighteen rabbits were randomly divided into three groups; each group had six rabbits. The first and second groups underwent -3D and -6D SMILE surgeries, and the third group was the control group, respectively. Young's modulus of the corneal cap and residual stromal bed (RSB) were both increased after SMILE, which shared the stress under intraocular pressure (IOP). Furthermore, the Young's modulus of both the corneal cap and RSB after 3D SMILE group were significantly lower than that in the -6D group, which indicated that the increases in the post-operative corneal Young's modulus were positively correlated with the amount of stromal ablation. The OCE system for quantitative spatial characterization of corneal biomechanical properties can provide useful information on the extent of safe ablation for SMILE procedures.
Collapse
|
10
|
Nair A, Ambekar YS, Zevallos-Delgado C, Mekonnen T, Sun M, Zvietcovich F, Singh M, Aglyamov S, Koch M, Scarcelli G, Espana EM, Larin KV. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 36383352 PMCID: PMC9680591 DOI: 10.1167/iovs.63.12.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. Methods A three-prong optical elastography approach was used to investigate the mechanical properties of the cornea. Brillouin microscopy, air-coupled ultrasonic optical coherence elastography (OCE) and heartbeat OCE were used to assess the mechanical properties of wild type (WT) and collagen XII-deficient (Col12a1-/-) murine corneas. The Brillouin frequency shift, elastic wave speed, and compressive strain were all measured as a function of intraocular pressure (IOP). Results All three optical elastography modalities measured a significantly decreased stiffness in the Col12a1-/- compared to the WT (P < 0.01 for all three modalities). The optical coherence elastography techniques showed that mean stiffness increased as a function of IOP; however, Brillouin microscopy showed no discernable trend in Brillouin frequency shift as a function of IOP. Conclusions Our approach suggests that the absence of collagen XII significantly softens the cornea. Although both optical coherence elastography techniques showed an expected increase in corneal stiffness as a function of IOP, Brillouin microscopy did not show such a relationship, suggesting that the Brillouin longitudinal modulus may not be affected by changes in IOP. Future work will focus on multimodal biomechanical models, evaluating the effects of other collagen types on corneal stiffness, and in vivo measurements.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yogeshwari S. Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Fernando Zvietcovich
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima, Peru
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Molecular Medicine Cologne, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
11
|
Zhang J, Murgoitio-Esandi J, Qian X, Li R, Gong C, Nankali A, Hao L, Xu BY, Kirk Shung K, Oberai A, Zhou Q. High-Frequency Ultrasound Elastography to Assess the Nonlinear Elastic Properties of the Cornea and Ciliary Body. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2621-2629. [PMID: 35820015 PMCID: PMC9547080 DOI: 10.1109/tuffc.2022.3190400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mechanical properties of the anterior anatomical structures of the eye, such as the cornea and ciliary body, play a key role in the ocular function and homeostasis. However, measuring the biomechanical properties of the anterior ocular structures, especially deeper structures, such as the ciliary body, remains a challenge due to the lack of high-resolution imaging tools. Herein, we implement a mechanical shaker-based high-frequency ultrasound elastography technique that can track the induced elastic wave propagation to assess the linear and nonlinear elastic properties of anterior ocular structures. The findings of this study advance our understanding of the role of anterior ocular structures in the pathogenesis of different ocular disorders, such as glaucoma.
Collapse
|
12
|
Torres J, H Faris I, Callejas A, Reyes-Ortega F, Melchor J, Gonzalez-Andrades M, Rus G. Torsional wave elastography to assess the mechanical properties of the cornea. Sci Rep 2022; 12:8354. [PMID: 35589817 PMCID: PMC9120141 DOI: 10.1038/s41598-022-12151-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal mechanical changes are believed to occur before any visible structural alterations observed during routine clinical evaluation. This study proposed developing an elastography technique based on torsional waves (TWE) adapted to the specificities of the cornea. By measuring the displacements in the propagation plane perpendicular to the axis of the emitter, the effect of guided waves in plate-like media was proven negligible. Ex vivo experiments were carried out on porcine corneal samples considering a group of control and one group of alkali burn treatment ([Formula: see text]OH) that modified the mechanical properties. Phase speed was recovered as a function of intraocular pressure (IOP), and a Kelvin-Voigt rheological model was fitted to the dispersion curves to estimate viscoelastic parameters. A comparison with uniaxial tensile testing with thin-walled assumptions was also performed. Both shear elasticity and viscosity correlated positively with IOP, being the elasticity lower and the viscosity higher for the treated group. The viscoelastic parameters ranged from 21.33 to 63.17 kPa, and from 2.82 to 5.30 Pa s, for shear elasticity and viscosity, respectively. As far as the authors know, no other investigations have studied this mechanical plane under low strain ratios, typical of dynamic elastography in corneal tissue. TWE reflected mechanical properties changes after treatment, showing a high potential for clinical diagnosis due to its rapid performance time and paving the way for future in vivo studies.
Collapse
Affiliation(s)
- Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Inas H Faris
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain.
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain.
| | - Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - Felisa Reyes-Ortega
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Juan Melchor
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, Spain
- Department of Statistics and Operations Research, University of Granada, Granada, Spain
| | - Miguel Gonzalez-Andrades
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada, Spain
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
- Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada, Spain
| |
Collapse
|
13
|
Zhang D, Wang Z, Cheng Z, Zhang W, Yang F, Yang S. An Ellipsoidal Focused Ultrasound Transducer for Extend-focus Photoacoustic Microscopy. IEEE Trans Biomed Eng 2021; 68:3748-3752. [PMID: 33974538 DOI: 10.1109/tbme.2021.3078729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Limited by spherical focused ultrasound transducer (SUT) with a high acoustic numerical aperture, photoacoustic microscopy (PAM) suffers a rapidly degrading sensitivity and lateral resolution as increased depth. In this study, an ellipsoidal focused ultrasound transducer (EUT) was developed to address the above restriction via providing high sensitivity and lateral resolution over a large depth of field (DOF). METHODS To fabricate the EUT, the piezoelectric element was laminated onto a curved steel surface for self-focusing (the ellipsoidal continuous-focus geometry was employed instead of the spherical single-focus one). Additionally, phantoms and in vivo animal experiments were performed by an extend-focus PAM equipped with EUT to characterize its performance. RESULTS The EUT involved over 30 MHz center frequency and -6 dB bandwidth of 124% with a resolution-invariant focal depth of 1.39 mm, more than 3 times the DOF of the SUT. CONCLUSION The in vivo imaging results demonstrated that the EUT was capable of extending the focal depth to get rid of the restriction of the visual field, while the DOF of the SUT was limited by the nature of spherical geometry. SIGNIFICANCE The EUT markedly enhances the image quality at different imaging depths, which has great potential for promoting the biomedical development of in vivo rapid-noninvasive PAM.
Collapse
|
14
|
Li Z, Guo R, Chen D, Fei C, Yang X, Li D, Zheng C, Chen J, Wu R, Feng W, Xu Z, Yang Y. An Efficient Optimization Design of Liquid Lens for Acoustic Pattern Control. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1546-1554. [PMID: 33232228 DOI: 10.1109/tuffc.2020.3040174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to effectively and flexibly control acoustic pattern, an efficient optimization design method of acoustic liquid lens (ALL) is developed by the frame of particle swarm optimization (PSO) algorithm. The ALL is composed of ethanol and dimethicone, and its parameters include ethanol concentration (EC), volume fraction of dimethicone (VFD), and total volume (TV). Based on the established finite element model and orthogonal design method, the data of acoustic pattern and ALL can be obtained by using COMSOL Multiphysics. Based on the simulation data, the neural network models are constructed to characterize the relationship between the parameters of ALL and the performance of acoustic pattern. The optimization design criteria of ALL are constructed based on the performance parameters of acoustic pattern, including focal distance (FD), transverse resolution (TR), and longitudinal resolution (LR). Based on the optimization criteria, the modified PSO algorithm is utilized to optimize the design parameters of ALL in the developed method. According to the desired FD, TR, and LR of acoustic pattern (20, 1, and 17 mm), the optimized EC, VFD, and TV of ALL are about 0.838, 0.165, and 164.4 [Formula: see text]. The performance parameters of acoustic pattern verified by simulation and experiments agree with the desired ones. In addition, using 6 MHz ultrasonic transducer with the optimized ALL, the ultrasonic imaging of tungsten wires and porcine eyeball further demonstrates the effectiveness and feasibility of the developed method.
Collapse
|
15
|
Kang H, Qian X, Chen R, Wodnicki R, Sun Y, Li R, Li Y, Shung KK, Chen Z, Zhou Q. 2-D Ultrasonic Array-Based Optical Coherence Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1096-1104. [PMID: 33095699 PMCID: PMC8106462 DOI: 10.1109/tuffc.2020.3033304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Acoustic radiation force optical coherence elastography (ARF-OCE) has been successfully implemented to characterize the biomechanical properties of soft tissues, such as the cornea and the retina, with high resolution using single-element ultrasonic transducers for ARF excitation. Most currently proposed OCE techniques, such as air puff and ARF, have less capability to control the spatiotemporal information of the induced region of deformation, resulting in limited accuracy and low temporal resolution of the shear wave elasticity imaging. In this study, we propose a new method called 2-D ultrasonic array-based OCE imaging, which combines the advantages of 3-D dynamic electronic steering of the 2-D ultrasonic array and high-resolution optical coherence tomography (OCT). The 3-D steering capability of the 2-D array was first validated using a hydrophone. Then, the combined 2-D ultrasonic array OCE system was calibrated using a homogenous phantom, followed by an experiment on ex vivo rabbit corneal tissue. The results demonstrate that our newly developed 2-D ultrasonic array-based OCE system has the capability to map tissue biomechanical properties accurately, and therefore, has the potential to be a vital diagnostic tool in ophthalmology.
Collapse
|
16
|
Zhu P, Peng H, Mao L, Tian J. Piezoelectric Single Crystal Ultrasonic Transducer for Endoscopic Drug Release in Gastric Mucosa. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:952-960. [PMID: 32970594 DOI: 10.1109/tuffc.2020.3026320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modern advanced minimally invasive surgery has been implemented for most of the significant gastrointestinal diseases. However, patients with coagulopathy or unresectable tumors cannot be cured by current treatment methods. Moreover, other existing medical devices for targeted drug release are too large to be applied in gastric endoscope because the diameter of the biopsy channel is smaller than 3 mm. To address it, in this work, we developed a piezoelectric single crystal ultrasonic transducer (the diameter was only 2.2 mm and the mass was 0.076 g) to produce acoustic waves, which could promote the drug release in the designed position of the digestive tract through an endoscope. It exhibited the electromechanical coupling coefficient of 0.36 and the center frequency of 6.9 MHz with the -6-dB bandwidth of 23%. In in vitro sonophoresis experiment, the gastric mucosa permeability to Bovine Serum Albumin increased about 5.6 times when the ultrasonic transducer was activated at 40 [Formula: see text] and 60% duty ratio, proving that employment of this transducer could facilitate drug penetration in the gastric mucosa. Meanwhile, the permeability could be adjusted by tuning the duty ratio of the ultrasonic transducer. The corresponding sonophoresis mechanism was related to the acoustic streaming and the thermal effect produced by the transducer. In addition, the measured maximum power density was 128 mW/cm2 and the mechanical index of the ultrasonic transducer was 0.02. The results held a great implication for applications of the transducer for targeted drug release in the gastrointestinal tract.
Collapse
|
17
|
Qian X, Li R, Lu G, Jiang L, Kang H, Kirk Shung K, Humayun MS, Zhou Q. Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye. ULTRASONICS 2021; 110:106263. [PMID: 33065466 PMCID: PMC7736296 DOI: 10.1016/j.ultras.2020.106263] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 05/30/2023]
Abstract
PURPOSE To quantitatively investigate both optic nerve head (ONH) and peripapillary sclera (PPS) biomechanical properties of porcine eyes through an ultrasonic elastography imaging system in response to both increasing and decreasing intraocular pressure (IOP). METHODS The Young's modulus of the ONH and PPS were assessed using our high resolution ultrasonic imaging system which utilized a mechanical shaker to induce shear waves and an off-axis aligned 40 MHz needle transducer to track micron-level displacement along the direction of wave propagation. In this study, imaging on a total of 8 ex vivo porcine eyes preloaded with IOPs from 6 mmHg to 30 mmHg was performed. To have a better understanding of the effect of varying IOP on biomechanics, both increasing and decreasing IOPs were investigated. RESULTS The increase of the Young's modulus of ONH (92.4 ± 13.9 kPa at 6 mmHg to 224.7 ± 71.1 kPa at 30 mmHg) and PPS (176.8 ± 14.3 kPa at 6 mmHg to 573.5 ± 64.4 kPa at 30 mmHg) following IOP elevation could be observed in the reconstructed Young's modulus of the shear wave elasticity (SWE) imaging while the B-mode structural images remained almost unchanged. In addition, for the same IOP level, both ONH and PPS have a tendency to be stiffer with decreasing IOP as compared to increasing IOP. CONCLUSIONS Our results demonstrate the feasibility of using our ultrasonic elastography system to investigate the stiffness mapping of posterior eye with high resolution in both increasing and decreasing IOPs, making this technique potentially useful for glaucoma.
Collapse
Affiliation(s)
- Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Haochen Kang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - K Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
18
|
Weng CC, Chen PY, Chou D, Shih CC, Huang CC. High Frequency Ultrasound Elastography for Estimating the Viscoelastic Properties of the Cornea Using Lamb Wave Model. IEEE Trans Biomed Eng 2020; 68:2637-2644. [PMID: 33306463 DOI: 10.1109/tbme.2020.3044066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Estimating the elasticity distribution in the cornea is important because corneal elasticity is usually influenced by corneal pathologies and surgical treatments, especially for early corneal sclerosis. Because the thickness of the cornea is typically less than 1 mm, high-resolution ultrasound elastography as well as the Lamb wave model is required for viscoelastic property estimation. In the present study, an array high-frequency ultrasound (HFUS) elastography method based on ultrafast ultrasound imaging was proposed for estimating the viscoelastic properties of porcine cornea. METHODS The elastic wave was generated by an external vibrator, after which the wave propagation image was obtained using a 40-MHz array transducer. Viscoelasticity estimation was performed by fitting the phase velocity curve using the Lamb wave model. The performance of the proposed HFUS elastography system was verified using 2-mm-thick thin-layer gelatin phantoms with gelatin concentrations of 7% and 12%. Ex vivo experiments were carried out using fresh porcine cornea with artificial sclerosing. RESULTS Experimental results showed that the estimated elasticity was close to the standard value obtained in the phantom study when the Lamb wave model was used for elasticity measurement. However, the error between the standard elasticity values and the elasticity values estimated using group shear wave velocity was large. In the ex vivo eyeball experiments, the estimated elasticities and viscosities were respectively 9.1 ± 1.3 kPa and 0.5 ± 0.10 Pa·s for a healthy cornea and respectively 15.9 ± 2.1 kPa and 1.1 ± 0.12 Pa·s for a cornea with artificial sclerosis. A 3D HFUS elastography was also obtained for distinguishing the region of sclerosis in the cornea. CONCLUSION The experimental results demonstrated that the proposed HFUS elastography method has high potential for the clinical diagnosis of corneal diseases compared with other HFUS single-element transducer elastography systems.
Collapse
|
19
|
Qian X, Wodnicki R, Kang H, Zhang J, Tchelepi H, Zhou Q. Current Ultrasound Technologies and Instrumentation in the Assessment and Monitoring of COVID-19 Positive Patients. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2230-2240. [PMID: 32857693 PMCID: PMC7654715 DOI: 10.1109/tuffc.2020.3020055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/23/2020] [Indexed: 05/04/2023]
Abstract
Since the emergence of the COVID-19 pandemic in December of 2019, clinicians and scientists all over the world have faced overwhelming new challenges that not only threaten their own communities and countries but also the world at large. These challenges have been enormous and debilitating, as the infrastructure of many countries, including developing ones, had little or no resources to deal with the crisis. Even in developed countries, such as Italy, health systems have been so inundated by cases that health care facilities became oversaturated and could not accommodate the unexpected influx of patients to be tested. Initially, resources were focused on testing to identify those who were infected. When it became clear that the virus mainly attacks the lungs by causing parenchymal changes in the form of multifocal pneumonia of different levels of severity, imaging became paramount in the assessment of disease severity, progression, and even response to treatment. As a result, there was a need to establish protocols for imaging of the lungs in these patients. In North America, the focus was on chest X-ray and computed tomography (CT) as these are widely available and accessible at most health facilities. However, in Europe and China, this was not the case, and a cost-effective and relatively fast imaging modality was needed to scan a large number of sick patients promptly. Hence, ultrasound (US) found its way into the hands of Chinese and European physicians and has since become an important imaging modality in those locations. US is a highly versatile, portable, and inexpensive imaging modality that has application across a broad spectrum of conditions and, in this way, is ideally suited to assess the lungs of COVID-19 patients in the intensive care unit (ICU). This bedside test can be done with little to no movement of the patients from the unit that keeps them in their isolated rooms, thereby limiting further exposure to other health personnel. This article presents a basic introduction to COVID-19 and the use of the US for lung imaging. It further provides a high-level overview of the existing US technologies that are driving development in current and potential future US imaging systems for lung, with a specific emphasis on portable and 3-D systems.
Collapse
Affiliation(s)
- Xuejun Qian
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
- Keck School of MedicineRoski Eye Institute, University of Southern CaliforniaLos AngelesCA90033USA
| | - Robert Wodnicki
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Haochen Kang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Junhang Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Hisham Tchelepi
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Qifa Zhou
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
- NIH Resource Center forMedical Ultrasonic Transducer TechnologyUniversity of Southern CaliforniaLos AngelesCA90089USA
- Keck School of MedicineRoski Eye Institute, University of Southern CaliforniaLos AngelesCA90033USA
| |
Collapse
|
20
|
Jin Z, Chen S, Dai Y, Bao C, Ye S, Zhou Y, Wang Y, Huang S, Wang Y, Shen M, Zhu D, Lu F. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000104. [PMID: 32368840 DOI: 10.1002/jbio.202000104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 05/23/2023]
Abstract
Current elastography techniques are limited in application to accurately assess spatially resolved corneal elasticity in vivo for human eyes. The air-puff optical coherence elastography (OCE) with an eye motion artifacts correction algorithm is developed to distinguish the in vivo cornea vibration from the eye motion and visualize the Lamb wave propagation clearly in healthy subjects. Based on the Lamb wave model, the phase velocity dispersion curve in the high-frequency is calculated to obtain spatially resolved corneal elasticity accurately with high repeatability. It is found that the corneal elasticity has regional variations and is correlated with intraocular pressure, which suggests that the method has the potential to provide noninvasive measurement of spatially resolved corneal elasticity in clinical practice.
Collapse
Affiliation(s)
- Zi Jin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Sisi Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yingying Dai
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Chenhong Bao
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Shuling Ye
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yuheng Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yiyi Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Shenghai Huang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Yuanyuan Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Dexi Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
21
|
Chen Y, Jiang J, Shi J, Chang W, Shi J, Chen M, Zhang Q. Dual-mode ultrasound radiomics and intrinsic imaging phenotypes for diagnosis of lymph node lesions. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:742. [PMID: 32647667 PMCID: PMC7333147 DOI: 10.21037/atm-19-4630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The ultrasonic diagnosis of lymph node lesions is usually based on a small number of subjective visual features from a single ultrasonic modality, which limits diagnostic accuracy. Therefore, our study aimed to propose a computerized method for using dual-mode ultrasound radiomics and the intrinsic imaging phenotypes for accurately differentiating benign, lymphomatous, and metastatic lymph nodes. Methods A total of 543 lymph nodes from 538 patients were examined with both B-mode ultrasonography and elastography. The data set was randomly divided into a training set of 407 nodes and a validation set of 136 nodes. First, we extracted 430 radiomic features from dual-mode images. Then, we combined the least absolute shrinkage and selection operator with the analysis of variance to select several typical features. We retrieved the intrinsic imaging phenotypes by using a hierarchical clustering of all radiomics features, and we integrated the phenotypes with the selected features for the classification of benign, lymphomatous, and metastatic nodes. Results The areas under the receiver operating characteristic curves (AUCs) on the validation set were 0.960 for benign vs. lymphomatous, 0.716 for benign vs. metastatic, 0.933 for lymphomatous vs. metastatic, and 0.856 for benign vs. malignant. Conclusions The radiomics features and intrinsic imaging phenotypes derived from the dual-mode ultrasound can capture the distinctions between benign, lymphomatous, and metastatic nodes and are valuable in node differentiation.
Collapse
Affiliation(s)
- Ying Chen
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Institute of Biomedical Engineering, Shanghai University, Shanghai, China.,School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Jianwei Jiang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shi
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Institute of Biomedical Engineering, Shanghai University, Shanghai, China.,School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Wanying Chang
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Shi
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Man Chen
- Department of Ultrasound Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhang
- Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.,The SMART (Smart Medicine and AI-based Radiology Technology) Lab, Institute of Biomedical Engineering, Shanghai University, Shanghai, China.,School of Communication and Information Engineering, Shanghai University, Shanghai, China.,Hangzhou YITU Healthcare Technology, Hangzhou, China
| |
Collapse
|
22
|
Preoperative, intraoperative, and postoperative assessment of corneal biomechanics in refractive surgery. Curr Opin Ophthalmol 2020; 31:234-240. [PMID: 32452876 DOI: 10.1097/icu.0000000000000663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW To review current and emerging methods and utilities of preoperative, intraoperative, and postoperative measurements of corneal biomechanics and their effects on refractive surgery decision-making. RECENT FINDINGS Several recent clinical and preclinical studies have demonstrated the utility of corneal biomechanical analysis in refractive surgery. These studies focus on both screening surgical candidates for keratoconic disease as well as intraoperative and postoperative monitoring. The measurement of spatially resolved biomechanics is beginning to be studied in humans. SUMMARY Clinically available screening methods combining corneal biomechanics with topographic and tomographic data provide increased utility when screening for keratoconic disorder. Spatially resolved measurement of corneal biomechanics holds great potential for preoperative, intraoperative, and postoperative evaluation of refractive surgery candidates as well as for more individualized procedures in the future.
Collapse
|
23
|
|
24
|
Li R, Du Z, Qian X, Li Y, Martinez-Camarillo JC, Jiang L, Humayun MS, Chen Z, Zhou Q. High resolution optical coherence elastography of retina under prosthetic electrode. Quant Imaging Med Surg 2020; 11:918-927. [PMID: 33654665 DOI: 10.21037/qims-20-1137] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Quantitatively investigating the biomechanics of retina with a retinal prosthetic electrode, we explored the effects of the prosthetic electrode on the retina, and further supplemented data for a potential clinical trial. Methods Biomechanical properties were assessed with a high resolution optical coherence tomography (OCT) based elastography (OCE) system. A shaker was used to initiate elastic waves and an OCT system was used to track axial displacement along with wave propagation. Rabbits received surgery to implant the retinal prosthetic electrode, and elastic wave speed was measured before and after implantation; anatomical B-mode images were also acquired. Results Spatial-temporal maps of each layer in retina with and without prosthetic electrodes were acquired. Elastic wave speed of nerve fiber to inner plexiform layer, inner nuclear to outer nuclear layer, retinal pigmented epithelium layer and choroid to sclera layer without prosthetic electrode were found to be 3.66±0.36, 5.33±0.07, 6.85±0.37, and 9.69±0.24 m/s, respectively. With prosthetic electrode, the elastic wave speed was found to be 4.09±0.26, 5.14±0.11, 6.88±0.70, and 9.99±0.73 m/s, respectively in each layer. Conclusions Our results show that the elastic wave speed in each layer of retina is slightly faster with the retinal electrode, and further demonstrate that the retinal prosthetic electrode does not affect biomechanical properties significantly. In the future, we expect OCE technology to be used by clinicians where it could become part of routine testing and evaluation of the biomechanical properties of the retina in response to long term use of prosthetic electrodes in patients.
Collapse
Affiliation(s)
- Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhaodong Du
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Yan Li
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | | | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Clayson K, Pavlatos E, Pan X, Sandwisch T, Ma Y, Liu J. Ocular Pulse Elastography: Imaging Corneal Biomechanical Responses to Simulated Ocular Pulse Using Ultrasound. Transl Vis Sci Technol 2020; 9:5. [PMID: 32509440 PMCID: PMC7255625 DOI: 10.1167/tvst.9.1.5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose In vivo evaluation of corneal biomechanics holds the potential for improving diagnosis and management of ocular diseases. We aimed to develop an ocular pulse elastography (OPE) technique to quantify corneal strains generated by naturally occurring pulsations of the intraocular pressure (IOP) using high-frequency ultrasound. Methods Simulated ocular pulses were induced in whole porcine and human donor globes to investigate the effects of physiologic variations in baseline IOP, ocular pulse amplitude, and frequency on corneal strains. Ocular pulse-induced strains were measured in additional globes before and after UVA-riboflavin-induced corneal crosslinking. The central cornea in each eye was imaged with a 50-MHz ultrasound imaging system and correlation-based speckle tracking of radiofrequency data was used to calculate tissue displacements and strains. Results Ocular pulse-induced corneal strains followed the cyclic changes of IOP. Both baseline IOP and ocular pulse amplitude had a significant influence on strain magnitude. Variations in pulse frequency within the normal human heart rate range did not introduce detectable changes in corneal strains. A significant decrease of corneal strain, as quantified by the OPE technique, was observed after corneal crosslinking. The extent of corneal stiffening (i.e., strain reduction) seemed to correlate with the initial strain magnitude. Conclusions This ex vivo study demonstrated the feasibility of the OPE method to quantify corneal strains generated by IOP pulsation and detect changes associated with corneal crosslinking treatment. Translational Relevance Integrating in vivo measurement of IOP and ocular pulse amplitude, the OPE method may lead to a new clinical tool for safe and quick biomechanical evaluations of the cornea.
Collapse
Affiliation(s)
- Keyton Clayson
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Biophysics Interdisciplinary Group, The Ohio State University, Columbus, OH, USA
| | - Elias Pavlatos
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Thomas Sandwisch
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yanhui Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jun Liu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Biophysics Interdisciplinary Group, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Clayson K, Pavlatos E, Pan X, Sandwisch T, Ma Y, Liu J. Ocular Pulse Elastography: Imaging Corneal Biomechanical Responses to Simulated Ocular Pulse Using Ultrasound. Transl Vis Sci Technol 2020. [DOI: 10.1167/tvst.210.1.1802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Keyton Clayson
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Biophysics Interdisciplinary Group, The Ohio State University, Columbus, OH, USA
| | - Elias Pavlatos
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Thomas Sandwisch
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Yanhui Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jun Liu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Biophysics Interdisciplinary Group, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Qian X, Li R, Li Y, Lu G, He Y, Humayun MS, Chen Z, Zhou Q. In vivo evaluation of posterior eye elasticity using shaker-based optical coherence elastography. Exp Biol Med (Maywood) 2020; 245:282-288. [PMID: 31910651 DOI: 10.1177/1535370219897617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disease and becomes the leading cause of blindness. It is well established that early detection is the key to preservation of functional vision. However, it is very difficult to diagnose AMD in very early stages, before structural changes are evident. Consequently, investigating the biomechanical properties of the retina maybe essential for understanding its physiological function. In this study, we present a shear wave-based quantitative method for estimating the elasticity of the posterior eye using shaker-based optical coherence elastography. This technique has been developed and validated on both a homogeneous phantom and a healthy rabbit in vivo. The shear wave speed from the ganglion side to the photoreceptor side of the rabbit eye is 4.1 m/s, 4.9 m/s, and 6.7 m/s, respectively. In addition, the most stiff sclera region has an average shear wave speed of 9.1 m/s. The results demonstrate the feasibility of using this technique to quantify biomechanical properties of the posterior eye and its potential translation to the clinical study. Impact statement Herein, we propose a potentially clinical applicable shaker-based optical coherence elastography (OCE) technique to characterize the biomechanical properties of the posterior eye, including different layers of the retina. Compared with either acoustic radiation force OCE or air-puff OCE, the newly developed method can induce sufficient shear wave propagation at the posterior eye with high resolution and large field of view.
Collapse
Affiliation(s)
- Xuejun Qian
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Runze Li
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612, USA
| | - Gengxi Lu
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Youmin He
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612, USA
| | - Mark S Humayun
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, CA 90089, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Jin Z, Zhou Y, Shen M, Wang Y, Lu F, Zhu D. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960074. [PMID: 31626371 DOI: 10.1002/jbio.201960074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/21/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The corneal viscoelasticity have great clinical significance, such as the early diagnosis of keratoconus. In this work, an analysis method which utilized the elastic wave velocity, frequency and energy attenuation to assess the corneal viscoelasticity is presented. Using phase-resolved optical coherence tomography, the spatial-temporal displacement map is derived. The phase velocity dispersion curve and center frequency are obtained by transforming the displacement map into the wavenumber-frequency domain through the 2D fast Fourier transform (FFT). The shear modulus is calculated through Rayleigh wave equation using the phase velocity in the high frequency. The normalized energy distribution is plotted by transforming the displacement map into the spatial-frequency domain through the 1D FFT. The energy attenuation coefficient is derived by exponential fitting to calculate the viscous modulus. Different concentrations of tissue-mimicking phantoms and porcine corneas are imaged to validate this method, which demonstrates that the method has the capability to assess the corneal viscoelasticity.
Collapse
Affiliation(s)
- Zi Jin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuheng Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Dexi Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Zhou Y, Wang Y, Shen M, Jin Z, Chen Y, Zhou Y, Qu J, Zhu D. In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 31605471 PMCID: PMC7000888 DOI: 10.1117/1.jbo.24.10.105001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/06/2019] [Indexed: 05/18/2023]
Abstract
Corneal collagen cross-linking (CXL) strengthens the biomechanical properties of damaged corneas. Quantifying the changes of stiffness due to different CXL protocols is difficult, especially in vivo. A noninvasive elastic wave-based optical coherence elastography system was developed to construct in vivo corneal elasticity maps by excitation of air puff. Biomechanical differences were compared for rabbit corneas given three different CXL protocols while keeping the total energy delivered constant. The Young’s modulus was weaker in corneas treated with higher irradiance levels over shorter durations, and a slight increase of Young’s modulus was present in all groups one week after the recovery process. Due to the noninvasive nature and minimal force to generate corneal elastic waves, this technique has the potential for early detection and treatment of corneal diseases in clinic.
Collapse
Affiliation(s)
- Yuheng Zhou
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
| | - Yuanyuan Wang
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
| | - Meixiao Shen
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
| | - Zi Jin
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
| | - Yihong Chen
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
| | - Yue Zhou
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
| | - Jia Qu
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
| | - Dexi Zhu
- Wenzhou Medical University, School of Ophthalmology and Optometry, Wenzhou, China
- Address all correspondence to Dexi Zhu, E-mail:
| |
Collapse
|
30
|
Du Z, Li R, Qian X, Lu G, Li Y, He Y, Qu Y, Jiang L, Chen Z, Humayun MS, Chen Z, Zhou Q. Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model. NEUROPHOTONICS 2019; 6:041112. [PMID: 31763352 PMCID: PMC6857697 DOI: 10.1117/1.nph.6.4.041112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/30/2019] [Indexed: 05/26/2023]
Abstract
The mechanosensitivity of the optic nerve head (ONH) plays a pivotal role in the pathogenesis of glaucoma. Characterizing elasticity of the ONH over changing physiological pressure may provide a better understanding of how changes in intraocular pressure (IOP) lead to changes in the mechanical environment of the ONH. Optical coherence elastography (OCE) is an emerging technique that can detect tissue biomechanics noninvasively with both high temporal and spatial resolution compared with conventional ultrasonic elastography. We describe a confocal OCE system in measuring ONH elasticity in vitro, utilizing a pressure inflation setup in which IOP is controlled precisely. We further utilize the Lamb wave model to fit the phase dispersion curve during data postprocessing. We present a reconstruction of Young's modulus of the ONH by combining our OCE system with a Lamb wave model for the first time. This approach enables the quantification of Young's modulus of the ONH, which can be fit using a piecewise polynomial to the corresponding IOP.
Collapse
Affiliation(s)
- Zhaodong Du
- The Affiliated Hospital of Qingdao University, Department of Ophthalmology, Qingdao, China
- University of Southern California, Roski Eye Institute, Los Angeles, California, United States
| | - Runze Li
- University of Southern California, Roski Eye Institute, Los Angeles, California, United States
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California, United States
| | - Xuejun Qian
- University of Southern California, Roski Eye Institute, Los Angeles, California, United States
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California, United States
| | - Gengxi Lu
- University of Southern California, Roski Eye Institute, Los Angeles, California, United States
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California, United States
| | - Yan Li
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Youmin He
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Yueqiao Qu
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Laiming Jiang
- University of Southern California, Roski Eye Institute, Los Angeles, California, United States
| | - Zeyu Chen
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California, United States
| | - Mark S. Humayun
- University of Southern California, Roski Eye Institute, Los Angeles, California, United States
| | - Zhongping Chen
- University of California Irvine, Beckman Laser Institute, Irvine, California, United States
- University of California Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Qifa Zhou
- University of Southern California, Roski Eye Institute, Los Angeles, California, United States
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California, United States
| |
Collapse
|
31
|
Osapoetra LO, Watson DM, McAleavey SA. Intraocular Pressure-dependent Corneal Elasticity Measurement Using High-frequency Ultrasound. ULTRASONIC IMAGING 2019; 41:251-270. [PMID: 31271117 DOI: 10.1177/0161734619858386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Measurement of corneal biomechanical properties can aid in predicting corneal responses to diseases and surgeries. For delineation of spatially resolved distribution of corneal elasticity, high-resolution elastography system is required. In this study, we demonstrate a high-resolution elastography system using high-frequency ultrasound for ex-vivo measurement of intraocular pressure (IOP)-dependent corneal wave speed. Tone bursts of 500 Hz vibrations were generated on the corneal surface using an electromagnetic shaker. A 35-MHz single-element transducer was used to track the resulting anti-symmetrical Lamb wave in the cornea. We acquired spatially resolved wave speed images of the cornea at IOPs of 7, 11, 15, 18, 22, and 29 mmHg. The IOP dependence of corneal wave speed is apparent from these images. Statistical analysis of measured wave speed as a function of IOP revealed a linear relation between wave speed and IOP cs = 0.37 + 0.22 × IOP, with the coefficient of determination R2 = 0.86. We also observed depth-dependent variations of wave speed in the cornea, decreasing from anterior toward posterior. This depth dependence is more pronounced at higher IOP values. This study demonstrates the potential of high-frequency ultrasound elastography in the characterization of spatially resolved corneal biomechanical properties.
Collapse
Affiliation(s)
| | - Dan M Watson
- 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Stephen A McAleavey
- 2 Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
32
|
High-Resolution Shear Wave Imaging of the Human Cornea Using a Dual-Element Transducer. SENSORS 2018; 18:s18124244. [PMID: 30513950 PMCID: PMC6308409 DOI: 10.3390/s18124244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022]
Abstract
Estimating the corneal elasticity can provide valuable information for corneal pathologies and treatments. Ophthalmologic pathologies will invariably cause changes to the elasticity of the cornea. For example, keratoconus and the phototoxic effects of ultraviolet radiation usually increase the corneal elasticity. This makes a quantitative estimation of the elasticity of the human cornea important for ophthalmic diagnoses. The present study investigated the use of a proposed high-resolution shear wave imaging (HR-SWI) method based on a dual-element transducer (comprising an 8-MHz element for pushing and a 32-MHz element for imaging) for measuring the group shear wave velocity (GSWV) of the human cornea. An empirical Young’s modulus formula was used to accurately convert the GSWV to Young’s modulus. Four quantitative parameters, bias, resolution, contrast, and contrast-to-noise ratio (CNR), were measured in gelatin phantoms with two different concentrations (3% and 7%) to evaluate the performance of HR-SWI. The biases of gelatin phantoms (3% and 7%) were 5.88% and 0.78%, respectively. The contrast and CNR were 0.76, 1.31 and 3.22, 2.43 for the two-side and two-layer phantoms, respectively. The measured image resolutions of HR-SWI in the lateral and axial directions were 72 and 140 μm, respectively. The calculated phase SWV (PSWV) and their corresponding Young’s modulus from six human donors were 2.45 ± 0.48 m/s (1600 Hz) and 11.52 ± 7.81 kPa, respectively. All the experimental results validated the concept of HR-SWI and its ability for measuring the human corneal elasticity.
Collapse
|