1
|
Kim SH. [A New Paradigm in Diagnosing Functional Gastroduodenal Disorders: High-Resolution Electrogastrography]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:145-152. [PMID: 39449258 DOI: 10.4166/kjg.2024.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
High-resolution electrogastrography (HR-EGG) presents a new paradigm in diagnosing and treating functional gastroduodenal disorders. Unlike traditional electrogastrography, HR-EGG allows for a more precise analysis of the gastric electrical activity, offering improved diagnostic accuracy. Recent studies have revealed the clinical potential of HR-EGG, particularly in detecting abnormal electrical patterns in patients with functional dyspepsia and gastroparesis, supporting the development of novel therapeutic strategies. The non-invasive HR-EGG method has shown promise in identifying new biomarkers. Moreover, further integration of artificial intelligence, is expected to enhance diagnostic efficiency and develop more refined treatment models for functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Seung Han Kim
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Oczka D, Augustynek M, Penhaker M, Kubicek J. Electrogastrography measurement systems and analysis methods used in clinical practice and research: comprehensive review. Front Med (Lausanne) 2024; 11:1369753. [PMID: 39011457 PMCID: PMC11248517 DOI: 10.3389/fmed.2024.1369753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Electrogastrography (EGG) is a non-invasive method with high diagnostic potential for the prevention of gastroenterological pathologies in clinical practice. In this study, a review of the measurement systems, procedures, and methods of analysis used in electrogastrography is presented. A critical review of historical and current literature is conducted, focusing on electrode placement, measurement apparatus, measurement procedures, and time-frequency domain methods of filtration and analysis of the non-invasively measured electrical activity of the stomach. As a result, 129 relevant articles with primary aim on experimental diet were reviewed in this study. Scopus, PubMed, and Web of Science databases were used to search for articles in English language, according to the specific query and using the PRISMA method. The research topic of electrogastrography has been continuously growing in popularity since the first measurement by professor Alvarez 100 years ago, and there are many researchers and companies interested in EGG nowadays. Measurement apparatus and procedures are still being developed in both commercial and research settings. There are plenty variable electrode layouts, ranging from minimal numbers of electrodes for ambulatory measurements to very high numbers of electrodes for spatial measurements. Most authors used in their research anatomically approximated layout with two++ active electrodes in bipolar connection and commercial electrogastrograph with sampling rate of 2 or 4 Hz. Test subjects were usually healthy adults and diet was controlled. However, evaluation methods are being developed at a slower pace, and usually the signals are classified only based on dominant frequency. The main review contributions include the overview of spectrum of measurement systems and procedures for electrogastrography developed by many authors, but a firm medical standard has not yet been defined. Therefore, it is not possible to use this method in clinical practice for objective diagnosis. Systematic Review Registration https://www.prisma-statement.org/.
Collapse
Affiliation(s)
- David Oczka
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Martin Augustynek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Marek Penhaker
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia
| | - Jan Kubicek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava, Czechia
| |
Collapse
|
3
|
Gharibans AA, Hayes TCL, Carson DA, Calder S, Varghese C, Du P, Yarmut Y, Waite S, Keane C, Woodhead JST, Andrews CN, O'Grady G. A novel scalable electrode array and system for non-invasively assessing gastric function using flexible electronics. Neurogastroenterol Motil 2023; 35:e14418. [PMID: 35699340 PMCID: PMC10078595 DOI: 10.1111/nmo.14418] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Disorders of gastric function are highly prevalent, but diagnosis often remains symptom-based and inconclusive. Body surface gastric mapping is an emerging diagnostic solution, but current approaches lack scalability and are cumbersome and clinically impractical. We present a novel scalable system for non-invasively mapping gastric electrophysiology in high-resolution (HR) at the body surface. METHODS The system comprises a custom-designed stretchable high-resolution "peel-and-stick" sensor array (8 × 8 pre-gelled Ag/AgCl electrodes at 2 cm spacing; area 225 cm2 ), wearable data logger with custom electronics incorporating bioamplifier chips, accelerometer and Bluetooth synchronized in real-time to an App with cloud connectivity. Automated algorithms filter and extract HR biomarkers including propagation (phase) mapping. The system was tested in a cohort of 24 healthy subjects to define reliability and characterize features of normal gastric activity (30 m fasting, standardized meal, and 4 h postprandial). KEY RESULTS Gastric mapping was successfully achieved non-invasively in all cases (16 male; 8 female; aged 20-73 years; BMI 24.2 ± 3.5). In all subjects, gastric electrophysiology and meal responses were successfully captured and quantified non-invasively (mean frequency 2.9 ± 0.3 cycles per minute; peak amplitude at mean 60 m postprandially with return to baseline in <4 h). Spatiotemporal mapping showed regular and consistent wave activity of mean direction 182.7° ± 73 (74.7% antegrade, 7.8% retrograde, 17.5% indeterminate). CONCLUSIONS AND INFERENCES BSGM is a new diagnostic tool for assessing gastric function that is scalable and ready for clinical applications, offering several biomarkers that are improved or new to gastroenterology practice.
Collapse
Affiliation(s)
- Armen A Gharibans
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Alimetry Ltd, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tommy C L Hayes
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Daniel A Carson
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Chris Varghese
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Alimetry Ltd, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Celia Keane
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Alimetry Ltd, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Alimetry Ltd, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Christopher N Andrews
- Alimetry Ltd, Auckland, New Zealand.,Department of Medicine, University of Calgary, NB Calgary, Alberta, Canada
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Alimetry Ltd, Auckland, New Zealand
| |
Collapse
|
4
|
Gharibans AA, Calder S, Varghese C, Waite S, Schamberg G, Daker C, Du P, Alighaleh S, Carson D, Woodhead J, Farrugia G, Windsor JA, Andrews CN, O'Grady G. Gastric dysfunction in patients with chronic nausea and vomiting syndromes defined by a noninvasive gastric mapping device. Sci Transl Med 2022; 14:eabq3544. [PMID: 36130019 PMCID: PMC10042458 DOI: 10.1126/scitranslmed.abq3544] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic nausea and vomiting syndromes (NVSs) are prevalent and debilitating disorders. Putative mechanisms include gastric neuromuscular disease and dysregulation of brain-gut interaction, but clinical tests for objectively defining gastric motor function are lacking. A medical device enabling noninvasive body surface gastric mapping (BSGM) was developed and applied to evaluate NVS pathophysiology. BSGM was performed in 43 patients with NVS and 43 matched controls using Gastric Alimetry (Alimetry), a conformable high-resolution array (8 × 8 electrodes; 20-mm interelectrode spacing), wearable reader, and validated symptom-logging app. Continuous measurement encompassed a fasting baseline (30 minutes), 482-kilocalorie meal, and 4-hour postprandial recording, followed by spectral and spatial biomarker analyses. Meal responses were impaired in NVS, with reduced amplitudes compared to controls (median, 23.3 microvolts versus 38.0 microvolts, P < 0.001), impaired fed-fasting power ratios (1.1 versus 1.6, P = 0.02), and disorganized slow waves (spatial frequency stability, 13.6 versus 49.5; P < 0.001). Two distinct NVS subgroups were evident with indistinguishable symptoms (all P > 0.05). Most patients (62%) had normal BSGM studies with increased psychological comorbidities (43.5% versus 7.7%; P = 0.03) and anxiety scores (median, 16.5 versus 13.0; P = 0.035). A smaller subgroup (31%) had markedly abnormal BSGM, with biomarkers correlating with symptoms (nausea, pain, excessive fullness, early satiety, and bloating; all r > 0.35, P < 0.05). Patients with NVS share overlapping symptoms but comprise distinct underlying phenotypes as revealed by a BSGM device. These phenotypes correlate with symptoms, which should inform clinical management and therapeutic trial design.
Collapse
Affiliation(s)
- Armen A Gharibans
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand.,Alimetry Ltd., Auckland 1010, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Stefan Calder
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand.,Alimetry Ltd., Auckland 1010, New Zealand
| | - Chris Varghese
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | | | | | - Charlotte Daker
- Department of Gastroenterology, North Shore Hospital, Auckland 0620, New Zealand
| | - Peng Du
- Alimetry Ltd., Auckland 1010, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | | | - Daniel Carson
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | | | | | - John A Windsor
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Christopher N Andrews
- Division of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Greg O'Grady
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand.,Alimetry Ltd., Auckland 1010, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Ruenruaysab K, Calder S, Hayes T, Andrews C, OaGrady G, Gharibans A, Du P. Effects of anatomical variations of the stomach on body-surface gastric mapping investigated using a large population-based multiscale simulation approach. IEEE Trans Biomed Eng 2021; 69:1369-1377. [PMID: 34587001 DOI: 10.1109/tbme.2021.3116287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contractions of the stomach are governed by bioelectrical slow waves that can be detected non-invasively from the body-surface. Diagnosis of gastric motility disorders remains challenging due to the limited information provided by symptoms and tests, including standard electrogastrography (EGG). Body-surface gastric mapping (BSGM) is a novel technique that measures the resultant body-surface potentials using an array of multiple cutaneous electrodes. However, there is no established protocol to guide the placement of the mapping array and to account for the effects of biodiversity on the interpretation of gastric BSGM data. This study aims to quantify the effect of anatomical variation of the stomach on body surface potentials. To this end, 93 subject specific models of the stomach and torso were developed. Anatomical models were developed based on data obtained from the Cancer Imaging Archive. For each subject a set of points were created to model general anatomy the stomach and the torso, using a finite element mesh. A bidomain model was used to simulate the gastric slow waves in the antegrade wave (AW) direction and formation of colliding waves (CW). The resultant dipole was calculated, and a forward modeling approach was employed to simulate body-surface potentials. Simulated data were sampled from a 55 array of electrodes from the body-surface and compared between AW and CW cases. Anatomical parameters such as the Euclidean distance from the xiphoid process (8.6 2.2 cm), orientation relative to the axial plane (195 20.0) were quantified. Electrophysiological simulations of AW and CW were both correlated to specific metrics derived from BSGM signals. In general, the maximum amplitude () and orientation () of the signals provided consistent separation of AW and CW. The findings of this study will aid gastric BSGM electrode array design and placement protocol in clinical practices.
Collapse
|
6
|
Carson DA, O'Grady G, Du P, Gharibans AA, Andrews CN. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterol Motil 2021; 33:e14048. [PMID: 33274564 DOI: 10.1111/nmo.14048] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric motility disorders, which include both functional and organic etiologies, are highly prevalent. However, there remains a critical lack of objective biomarkers to guide efficient diagnostics and personalized therapies. Bioelectrical activity plays a fundamental role in coordinating gastric function and has been investigated as a contributing mechanism to gastric dysmotility and sensory dysfunction for a century. However, conventional electrogastrography (EGG) has not achieved common clinical adoption due to its perceived limited diagnostic capability and inability to impact clinical care. The last decade has seen the emergence of novel high-resolution methods for invasively mapping human gastric electrical activity in health and disease, providing important new insights into gastric physiology. The limitations of EGG have also now become clearer, including the finding that slow-wave frequency alone is not a reliable discriminator of gastric dysrhythmia, shifting focus instead toward altered spatial patterns. Recently, advances in bioinstrumentation, signal processing, and computational modeling have aligned to allow non-invasive body surface mapping of the stomach to detect spatiotemporal gastric dysrhythmias. The clinical relevance of this emerging strategy to improve diagnostics now awaits determination. PURPOSE This review evaluates these recent advances in clinical gastric electrophysiology, together with promising emerging data suggesting that novel gastric electrical signatures recorded at the body surface (termed "body surface mapping") may correlate with symptoms. Further technological progress and validation data are now awaited to determine whether these advances will deliver on the promise of clinical gastric electrophysiology diagnostics.
Collapse
Affiliation(s)
- Daniel A Carson
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
7
|
Eichler CE, Cheng LK, Paskaranandavadivel N, Du P, Bradshaw LA, Avci R. Effects of magnetogastrography sensor configurations in tracking slow wave propagation. Comput Biol Med 2020; 129:104169. [PMID: 33338892 DOI: 10.1016/j.compbiomed.2020.104169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Magnetogastrography (MGG) is a non-invasive method of assessing gastric slow waves (SWs) by recording the resultant magnetic fields. MGG can capture both SW frequency and propagation, and identify SW dysrhythmias that are associated with motility disorders. However, the impact of the restricted spatial coverage and sensor density on SW propagation tracking performance is unknown. This study simulated MGG using multiple anatomically specific torso geometries and two realistic SW propagation patterns to determine the effect of different sensor configurations on tracking SW propagation. The surface current density mapping and center-of-gravity tracking methods were used to compare four magnetometer array configurations: a reference system currently used in GI research and three hypothetical higher density and coverage arrays. SW propagation patterns identified with two hypothetical arrays (with coverage over at least the anterior of the torso) correlated significantly higher with simulated realistic 3 cycle-per-minute SW activity than the reference array (p = 0.016, p = 0.005). Furthermore, results indicated that most of the magnetic fields that contribute to the performance of SW propagation tracking were located on the anterior of the torso as further increasing the coverage did not significantly increase performance. A 30% decrease in sensor spacing within the same spatial coverage of the reference array also significantly increased correlation values by approximately 0.50 when the signal-to-noise ratio was 5 dB. This study provides evidence that higher density and coverage sensor layouts will improve the utility of MGG. Further work is required to investigate optimum sensor configurations across larger anatomical variations and other SW propagation patterns.
Collapse
Affiliation(s)
- Chad E Eichler
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Surgery, Vanderbilt University, Nashville, TN, USA
| | | | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Du P, Liu JYH, Sukasem A, Qian A, Calder S, Rudd JA. Recent progress in electrophysiology and motility mapping of the gastrointestinal tract using multi-channel devices. J R Soc N Z 2020. [DOI: 10.1080/03036758.2020.1735455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Julia Y. H. Liu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Atchariya Sukasem
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Anna Qian
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - John A. Rudd
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|