1
|
Xiao H, Xia Y. ECG signal generation using feature disentanglement auto-encoder. Physiol Meas 2025; 13:015009. [PMID: 39820006 DOI: 10.1088/1361-6579/adab4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Objective.The demand for electrocardiogram (ECG) datasets, particularly those containing rare classes, poses a significant challenge as deep learning becomes increasingly prevalent in ECG signal research. While generative adversarial networks (GANs) and variational autoencoders (VAEs) are widely adopted, they encounter difficulties in effectively generating samples for classes with limited instances.Approach.To address this issue, we propose a novelFeatureDisentanglement Auto-Encoder (FDAE) designed to dissect various generative factors under a contrastive learning framework within ECG data to facilitate the generation of new ECG samples. The FDAE enhances and extends the AE structure with novel methodologies, which involve: (1) partitioning the latent space into three distinct representations to capture various generative factors; (2) utilizing a contrastive loss function to improve feature disentanglement capabilities; and (3) incorporating additional classifiers to enhance representation learning, alongside a discriminator aimed at boosting the realism of synthesized signals. Furthermore, our FDAE generates new signals by swapping latent codes of existing signals and combining freely or substituting patient-independent representations with those randomly generated by a VAE.Main results.To validate our approach, we conduct heartbeat classification experiments on the publicly available MIT-BIH arrhythmia database, using FAKE-train/FAKE-test partitions and data augmentation. The results highlight the FDAE's ability to improve ECG classifier performance and excel in synthesizing ECG signals. Furthermore, we apply the model to the Icentia11K dataset and conducted classification enhancement experiments. The results further highlight the model's strong generalization ability in ECG synthesis.Significance.This work has the potential to improve the robustness and generalization of deep learning models for ECG analysis, particularly in medical applications where rare cardiac events are often underrepresented in available datasets.
Collapse
Affiliation(s)
- Hanbin Xiao
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yong Xia
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
2
|
Li L, Camps J, Rodriguez B, Grau V. Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey. IEEE Rev Biomed Eng 2025; 18:316-336. [PMID: 39453795 DOI: 10.1109/rbme.2024.3486439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms. A critical component of CDT development is solving the ECG inverse problem, which enables the reconstruction of cardiac sources and the estimation of patient-specific electrophysiology (EP) parameters from surface ECG data. Despite challenges from complex cardiac anatomy, noisy ECG data, and the ill-posed nature of the inverse problem, recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference, strengthening the fidelity of CDTs. This paper aims to provide a comprehensive review of the methods for solving ECG inverse problems, their validation strategies, their clinical applications, and their future perspectives. For the methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including both conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in CDTs.
Collapse
|
3
|
Meisenzahl C, Gillette K, Prassl AJ, Plank G, Sapp JL, Wang L. BOATMAP: Bayesian Optimization Active Targeting for Monomorphic Arrhythmia Pace-mapping. Comput Biol Med 2024; 182:109201. [PMID: 39342676 PMCID: PMC11560634 DOI: 10.1016/j.compbiomed.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Recent advances in machine learning and deep learning have presented new opportunities for learning to localize the origin of ventricular activation from 12-lead electrocardiograms (ECGs), an important step in guiding ablation therapies for ventricular tachycardia. Passively learning from population data is faced with challenges due to significant variations among subjects, and building a patient-specific model raises the open question of where to select pace-mapping data for training. This work introduces BOATMAP, a novel active learning approach designed to provide clinicians with interpretable guidance that progressively assists in locating the origin of ventricular activation from 12-lead ECGs. BOATMAP inverts the input-output relationship in traditional machine learning solutions to this problem and learns the similarity between a target ECG and a paced ECG as a function of the pacing site coordinates. Using Gaussian processes (GP) as a surrogate model, BOATMAP iteratively refines the estimated similarity landscape while providing suggestions to clinicians regarding the next optimal pacing site. Furthermore, it can incorporate constraints to avoid suggesting pacing in non-viable regions such as the core of the myocardial scar. Tested in a realistic simulation environment in various heart geometries and tissue properties, BOATMAP demonstrated the ability to accurately localize the origin of activation, achieving an average localization accuracy of 3.9±3.6mm with only 8.0±4.0 pacing sites. BOATMAP offers real-time interpretable guidance for accurate localization and enhancing clinical decision-making.
Collapse
Affiliation(s)
| | - Karli Gillette
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Anton J Prassl
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria.
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - John L Sapp
- QEII Health Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Linwei Wang
- Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
4
|
Riaz Gondal MU, Atta Mehdi H, Khenhrani RR, Kumari N, Ali MF, Kumar S, Faraz M, Malik J. Role of Machine Learning and Artificial Intelligence in Arrhythmias and Electrophysiology. Cardiol Rev 2024:00045415-990000000-00270. [PMID: 38761137 DOI: 10.1097/crd.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Machine learning (ML), a subset of artificial intelligence (AI) centered on machines learning from extensive datasets, stands at the forefront of a technological revolution shaping various facets of society. Cardiovascular medicine has emerged as a key domain for ML applications, with considerable efforts to integrate these innovations into routine clinical practice. Within cardiac electrophysiology, ML applications, especially in the automated interpretation of electrocardiograms, have garnered substantial attention in existing literature. However, less recognized are the diverse applications of ML in cardiac electrophysiology and arrhythmias, spanning basic science research on arrhythmia mechanisms, both experimental and computational, as well as contributions to enhanced techniques for mapping cardiac electrical function and translational research related to arrhythmia management. This comprehensive review delves into various ML applications within the scope of this journal, organized into 3 parts. The first section provides a fundamental understanding of general ML principles and methodologies, serving as a foundational resource for readers interested in exploring ML applications in arrhythmia research. The second part offers an in-depth review of studies in arrhythmia and electrophysiology that leverage ML methodologies, showcasing the broad potential of ML approaches. Each subject is thoroughly outlined, accompanied by a review of notable ML research advancements. Finally, the review delves into the primary challenges and future perspectives surrounding ML-driven cardiac electrophysiology and arrhythmias research.
Collapse
Affiliation(s)
| | - Hassan Atta Mehdi
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Raja Ram Khenhrani
- Department of Medicine, Internal Medicine Fellow, Shaheed Mohtarma Benazir Bhutto Medical College and Lyari General Hospital, Karachi, Pakistan
| | - Neha Kumari
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Muhammad Faizan Ali
- Department of Medicine, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Sooraj Kumar
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan; and
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Rawalpindi, Pakistan
| |
Collapse
|
5
|
Naseri A, Tax D, van der Harst P, Reinders M, van der Bilt I. Data-efficient machine learning methods in the ME-TIME study: Rationale and design of a longitudinal study to detect atrial fibrillation and heart failure from wearables. CARDIOVASCULAR DIGITAL HEALTH JOURNAL 2023; 4:165-172. [PMID: 38222103 PMCID: PMC10787149 DOI: 10.1016/j.cvdhj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background Smartwatches enable continuous and noninvasive time series monitoring of cardiovascular biomarkers like heart rate (from photoplethysmograms), step counter, skin temperature, et cetera; as such, they have promise in assisting in early detection and prevention of cardiovascular disease. Although these biomarkers may not be directly useful to physicians, a machine learning (ML) model could find clinically relevant patterns. Unfortunately, ML models typically need supervised (ie, annotated) data, and labeling of large amounts of continuous data is very labor intensive. Therefore, ML methods that are data efficient, ie, needing a low number of labels, are required to detect potential clinical value in patterns found in wearable data. Objective The primary study objective of the ME-TIME (Machine Learning Enabled Time Series Analysis in Medicine) study is to design an ML model that can detect atrial fibrillation (AF) and heart failure (HF) from wearable data in a data-efficient manner. To achieve this, self-supervised and weakly supervised learning techniques are used. Methods Two hundred subjects (100 reference, 50 AF, and 50 HF) are being invited to participate in wearing a Fitbit fitness tracker for 3 months. Interested volunteers are sent a questionnaire to determine their health, in particular cardiovascular health. Volunteers without any (history of) serious illness are assigned to the reference group. Participants with AF and HF are recruited in the Haga teaching hospital in The Hague, The Netherlands. Results Enrollment commenced on May 1, 2022, and as of the time of this report, 62 subjects have been included in the study. Preliminary analysis of the data reveals significant inter-subject variability. Notably, we identified heart rate recovery curves and time-delayed correlations between heart rate and step count as potential strong indicators for heart disease. Conclusion Using self-supervised and multiple-instance learning techniques, we hypothesize that patterns specific to AF and HF can be found in continuous data obtained from smartwatches.
Collapse
Affiliation(s)
- Arman Naseri
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - David Tax
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Reinders
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Ivo van der Bilt
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Gyawali PK, Le Guen Y, Liu X, Belloy ME, Tang H, Zou J, He Z. Improving genetic risk prediction across diverse population by disentangling ancestry representations. Commun Biol 2023; 6:964. [PMID: 37736834 PMCID: PMC10517023 DOI: 10.1038/s42003-023-05352-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Risk prediction models using genetic data have seen increasing traction in genomics. However, most of the polygenic risk models were developed using data from participants with similar (mostly European) ancestry. This can lead to biases in the risk predictors resulting in poor generalization when applied to minority populations and admixed individuals such as African Americans. To address this issue, largely due to the prediction models being biased by the underlying population structure, we propose a deep-learning framework that leverages data from diverse population and disentangles ancestry from the phenotype-relevant information in its representation. The ancestry disentangled representation can be used to build risk predictors that perform better across minority populations. We applied the proposed method to the analysis of Alzheimer's disease genetics. Comparing with standard linear and nonlinear risk prediction methods, the proposed method substantially improves risk prediction in minority populations, including admixed individuals, without needing self-reported ancestry information.
Collapse
Affiliation(s)
- Prashnna K Gyawali
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Institut du Cerveau-Paris Brain Institute-ICM, Paris, France
| | - Xiaoxia Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Quantitative Sciences Unit, Department of Medicine (Biomedical Informatics Research), Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Pilia N, Schuler S, Rees M, Moik G, Potyagaylo D, Dössel O, Loewe A. Non-invasive localization of the ventricular excitation origin without patient-specific geometries using deep learning. Artif Intell Med 2023; 143:102619. [PMID: 37673581 DOI: 10.1016/j.artmed.2023.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 09/08/2023]
Abstract
Cardiovascular diseases account for 17 million deaths per year worldwide. Of these, 25% are categorized as sudden cardiac death, which can be related to ventricular tachycardia (VT). This type of arrhythmia can be caused by focal activation sources outside the sinus node. Catheter ablation of these foci is a curative treatment in order to inactivate the abnormal triggering activity. However, the localization procedure is usually time-consuming and requires an invasive procedure in the catheter lab. To facilitate and expedite the treatment, we present two novel localization support techniques based on convolutional neural networks (CNNs) that address these clinical needs. In contrast to existing methods, our approaches were designed to be independent of the patient-specific geometry and directly applicable to surface ECG signals, while also delivering a binary transmural position. Moreover, one of the method's outputs can be interpreted as several ranked solutions. The CNNs were trained on a dataset containing only simulated data and evaluated both on simulated test data and clinical data. On a novel large and open simulated dataset, the median test error was below 3 mm. The median localization error on the unseen clinical data ranged from 32 mm to 41 mm without optimizing the pre-processing and CNN to the clinical data. Interpreting the output of one of the approaches as ranked solutions, the best median error of the top-3 solutions decreased to 20 mm on the clinical data. The transmural position was correctly detected in up to 82% of all clinical cases. These results demonstrate a proof of principle to utilize CNNs to localize the activation source without the intrinsic need for patient-specific geometrical information. Furthermore, providing multiple solutions can assist physicians in identifying the true activation source amongst more than one possible location. With further optimization to clinical data, these methods have high potential to accelerate clinical interventions, replace certain steps within these procedures and consequently reduce procedural risk and improve VT patient outcomes.
Collapse
Affiliation(s)
- Nicolas Pilia
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Steffen Schuler
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maike Rees
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gerald Moik
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Olaf Dössel
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
8
|
Zhou S, Wang R, Seagren A, Emmert N, Warren JW, MacInnis PJ, AbdelWahab A, Sapp JL. Improving localization accuracy for non-invasive automated early left ventricular origin localization approach. Front Physiol 2023; 14:1183280. [PMID: 37435305 PMCID: PMC10330701 DOI: 10.3389/fphys.2023.1183280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/02/2023] [Indexed: 07/13/2023] Open
Abstract
Background: We previously developed a non-invasive approach to localize the site of early left ventricular activation origin in real time using 12-lead ECG, and to project the predicted site onto a generic LV endocardial surface using the smallest angle between two vectors algorithm (SA). Objectives: To improve the localization accuracy of the non-invasive approach by utilizing the K-nearest neighbors algorithm (KNN) to reduce projection errors. Methods: Two datasets were used. Dataset #1 had 1012 LV endocardial pacing sites with known coordinates on the generic LV surface and corresponding ECGs, while dataset #2 included 25 clinically-identified VT exit sites and corresponding ECGs. The non-invasive approach used "population" regression coefficients to predict the target coordinates of a pacing site or VT exit site from the initial 120-m QRS integrals of the pacing site/VT ECG. The predicted site coordinates were then projected onto the generic LV surface using either the KNN or SA projection algorithm. Results: The non-invasive approach using the KNN had a significantly lower mean localization error than the SA in both dataset #1 (9.4 vs. 12.5 mm, p < 0.05) and dataset #2 (7.2 vs. 9.5 mm, p < 0.05). The bootstrap method with 1,000 trials confirmed that using KNN had significantly higher predictive accuracy than using the SA in the bootstrap assessment with the left-out sample (p < 0.05). Conclusion: The KNN significantly reduces the projection error and improves the localization accuracy of the non-invasive approach, which shows promise as a tool to identify the site of origin of ventricular arrhythmia in non-invasive clinical modalities.
Collapse
Affiliation(s)
- Shijie Zhou
- The Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
- The Department of Computer Science and Software Engineering, Miami University, Oxford, OH, United States
| | | | - Avery Seagren
- The Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| | - Noah Emmert
- The Department of Computer Science and Software Engineering, Miami University, Oxford, OH, United States
| | - James W. Warren
- The Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Paul J. MacInnis
- The Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Amir AbdelWahab
- Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - John L. Sapp
- Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| |
Collapse
|
9
|
de Lepper AGW, Buck CMA, van 't Veer M, Huberts W, van de Vosse FN, Dekker LRC. From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220317. [PMID: 36128708 DOI: 10.1098/rsif.2022.0317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Survivors of myocardial infarction are at risk of life-threatening ventricular tachycardias (VTs) later in their lives. Current guidelines for implantable cardioverter defibrillators (ICDs) implantation to prevent VT-related sudden cardiac death is solely based on symptoms and left ventricular ejection fraction. Catheter ablation of scar-related VTs is performed following ICD therapy, reducing VTs, painful shocks, anxiety, depression and worsening heart failure. We postulate that better prediction of the occurrence and circuit of VT, will improve identification of patients at risk for VT and boost preventive ablation, reducing mortality and morbidity. For this purpose, multiple time-evolving aspects of the underlying pathophysiology, including the anatomical substrate, triggers and modulators, should be part of VT prediction models. We envision digital twins as a solution combining clinical expertise with three prediction approaches: evidence-based medicine (clinical practice), data-driven models (data science) and mechanistic models (biomedical engineering). This paper aims to create a mutual understanding between experts in the different fields by providing a comprehensive description of the clinical problem and the three approaches in an understandable manner, leveraging future collaborations and technological innovations for clinical decision support. Moreover, it defines open challenges and gains for digital twin solutions and discusses the potential of hybrid modelling.
Collapse
Affiliation(s)
| | - Carlijn M A Buck
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcel van 't Veer
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lukas R C Dekker
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Doste R, Lozano M, Jimenez-Perez G, Mont L, Berruezo A, Penela D, Camara O, Sebastian R. Training machine learning models with synthetic data improves the prediction of ventricular origin in outflow tract ventricular arrhythmias. Front Physiol 2022; 13:909372. [PMID: 36035489 PMCID: PMC9412034 DOI: 10.3389/fphys.2022.909372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
In order to determine the site of origin (SOO) in outflow tract ventricular arrhythmias (OTVAs) before an ablation procedure, several algorithms based on manual identification of electrocardiogram (ECG) features, have been developed. However, the reported accuracy decreases when tested with different datasets. Machine learning algorithms can automatize the process and improve generalization, but their performance is hampered by the lack of large enough OTVA databases. We propose the use of detailed electrophysiological simulations of OTVAs to train a machine learning classification model to predict the ventricular origin of the SOO of ectopic beats. We generated a synthetic database of 12-lead ECGs (2,496 signals) by running multiple simulations from the most typical OTVA SOO in 16 patient-specific geometries. Two types of input data were considered in the classification, raw and feature ECG signals. From the simulated raw 12-lead ECG, we analyzed the contribution of each lead in the predictions, keeping the best ones for the training process. For feature-based analysis, we used entropy-based methods to rank the obtained features. A cross-validation process was included to evaluate the machine learning model. Following, two clinical OTVA databases from different hospitals, including ECGs from 365 patients, were used as test-sets to assess the generalization of the proposed approach. The results show that V2 was the best lead for classification. Prediction of the SOO in OTVA, using both raw signals or features for classification, presented high accuracy values (>0.96). Generalization of the network trained on simulated data was good for both patient datasets (accuracy of 0.86 and 0.84, respectively) and presented better values than using exclusively real ECGs for classification (accuracy of 0.84 and 0.76 for each dataset). The use of simulated ECG data for training machine learning-based classification algorithms is critical to obtain good SOO predictions in OTVA compared to real data alone. The fast implementation and generalization of the proposed methodology may contribute towards its application to a clinical routine.
Collapse
Affiliation(s)
- Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Miguel Lozano
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science, Universitat de Valencia, Valencia, Spain
| | - Guillermo Jimenez-Perez
- Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluis Mont
- Arrhythmia Section, Cardiology Department, Cardiovascular Clinical Institute, Hospital Clínic, Universitat de Barcelona - IDIBAPS, Barcelona, Spain
| | - Antonio Berruezo
- Cardiology Department, Heart Institute, Teknon Medical Center, Barcelona, Spain
| | - Diego Penela
- Cardiology Department, Heart Institute, Teknon Medical Center, Barcelona, Spain
| | - Oscar Camara
- Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael Sebastian
- Computational Multiscale Simulation Lab (CoMMLab), Department of Computer Science, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
11
|
Deng L, Zhao X, Su X, Zhou M, Huang D, Zeng X. Machine learning to predict no reflow and in-hospital mortality in patients with ST-segment elevation myocardial infarction that underwent primary percutaneous coronary intervention. BMC Med Inform Decis Mak 2022; 22:109. [PMID: 35462531 PMCID: PMC9036765 DOI: 10.1186/s12911-022-01853-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The machine learning algorithm (MLA) was implemented to establish an optimal model to predict the no reflow (NR) process and in-hospital death that occurred in ST-elevation myocardial infarction (STEMI) patients who underwent primary percutaneous coronary intervention (pPCI). METHODS The data were obtained retrospectively from 854 STEMI patients who underwent pPCI. MLA was applied to predict the potential NR phenomenon and confirm the in-hospital mortality. A random sampling method was used to split the data into the training (66.7%) and testing (33.3%) sets. The final results were an average of 10 repeated procedures. The area under the curve (AUC) and the associated 95% confidence intervals (CIs) of the receiver operator characteristic were measured. RESULTS A random forest algorithm (RAN) had optimal discrimination for the NR phenomenon with an AUC of 0.7891 (95% CI: 0.7093-0.8688) compared with 0.6437 (95% CI: 0.5506-0.7368) for the decision tree (CTREE), 0.7488 (95% CI: 0.6613-0.8363) for the support vector machine (SVM), and 0.681 (95% CI: 0.5767-0.7854) for the neural network algorithm (NNET). The optimal RAN AUC for in-hospital mortality was 0.9273 (95% CI: 0.8819-0.9728), for SVM, 0.8935 (95% CI: 0.826-0.9611); NNET, 0.7756 (95% CI: 0.6559-0.8952); and CTREE, 0.7885 (95% CI: 0.6738-0.9033). CONCLUSIONS The MLA had a relatively higher performance when evaluating the NR risk and in-hospital mortality in patients with STEMI who underwent pPCI and could be utilized in clinical decision making.
Collapse
Affiliation(s)
- Lianxiang Deng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Cardiology, The Second People's Hospital of Nanning, Guangxi, China
| | - Xianming Zhao
- Department of Cardiology, The First People's Hospital of Nanning, Guangxi, China
| | - Xiaolin Su
- Department of Cardiology, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, Guangxi, China
| | - Mei Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Daizheng Huang
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China.
| | - Xiaocong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention and Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China.
- School of Basic Medical Sciences, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Ye X, Huang Y, Lu Q. Automatic Multichannel Electrocardiogram Record Classification Using XGBoost Fusion Model. Front Physiol 2022; 13:840011. [PMID: 35492618 PMCID: PMC9049587 DOI: 10.3389/fphys.2022.840011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
There is an increasing demand for automatic classification of standard 12-lead electrocardiogram signals in the medical field. Considering that different channels and temporal segments of a feature map extracted from the 12-lead electrocardiogram record contribute differently to cardiac arrhythmia detection, and to the classification performance, we propose a 12-lead electrocardiogram signal automatic classification model based on model fusion (CBi-DF-XGBoost) to focus on representative features along both the spatial and temporal axes. The algorithm extracts local features through a convolutional neural network and then extracts temporal features through bi-directional long short-term memory. Finally, eXtreme Gradient Boosting (XGBoost) is used to fuse the 12-lead models and domain-specific features to obtain the classification results. The 5-fold cross-validation results show that in classifying nine categories of electrocardiogram signals, the macro-average accuracy of the fusion model is 0.968, the macro-average recall rate is 0.814, the macro-average precision is 0.857, the macro-average F1 score is 0.825, and the micro-average area under the curve is 0.919. Similar experiments with some common network structures and other advanced electrocardiogram classification algorithms show that the proposed model performs favourably against other counterparts in F1 score. We also conducted ablation studies to verify the effect of the complementary information from the 12 leads and the auxiliary information of domain-specific features on the classification performance of the model. We demonstrated the feasibility and effectiveness of the XGBoost-based fusion model to classify 12-lead electrocardiogram records into nine common heart rhythms. These findings may have clinical importance for the early diagnosis of arrhythmia and incite further research. In addition, the proposed multichannel feature fusion algorithm can be applied to other similar physiological signal analyses and processing.
Collapse
Affiliation(s)
- Xiaohong Ye
- Chengyi University College, Jimei University, Xiamen, China
| | - Yuanqi Huang
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
| | - Qiang Lu
- School of Science, Jimei University, Xiamen, China
- *Correspondence: Qiang Lu,
| |
Collapse
|
13
|
Nedios S, Iliodromitis K, Kowalewski C, Bollmann A, Hindricks G, Dagres N, Bogossian H. Big Data in electrophysiology. Herzschrittmacherther Elektrophysiol 2022; 33:26-33. [PMID: 35137276 DOI: 10.1007/s00399-022-00837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The quantity of data produced and captured in medicine today is unprecedented. Technological improvements and automation have expanded the traditional statistical methods and enabled the analysis of Big Data. This has permitted the discovery of new associations with a granularity that was previously hidden to human eyes. In the first part of this review, the authors would like to provide an overview of basic Machine Learning (ML) principles and techniques in order to better understand their application in recent publications about cardiac arrhythmias. In the second part, ML-enabled advances in disease detection and diagnosis, outcome prediction, and novel disease characterization in topics like electrocardiography, atrial fibrillation, ventricular arrhythmias, and cardiac devices are presented. Finally, the limitations and challenges of applying ML in clinical practice, such as validation, replication, generalizability, and regulatory issues, are discussed. More carefully designed studies and collaborations are needed for ML to become feasible, trustworthy, accurate, and reproducible and to reach its full potential for patient-oriented precision medicine.
Collapse
Affiliation(s)
- Sotirios Nedios
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany.
- Rhythmologie, Herzzentrum Leipzig, Universität Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| | - Konstantinos Iliodromitis
- Department of Cardiology and Rhythmology, Ev. Krankenhaus Hagen, Hagen, Germany
- Department of Cardiology, University Witten/Herdecke, Witten, Germany
| | - Christopher Kowalewski
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Nikolaos Dagres
- Department of Electrophysiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Harilaos Bogossian
- Department of Cardiology and Rhythmology, Ev. Krankenhaus Hagen, Hagen, Germany
- Department of Cardiology, University Witten/Herdecke, Witten, Germany
| |
Collapse
|
14
|
Gyawali PK, Murkute JV, Toloubidokhti M, Jiang X, Horacek BM, Sapp JL, Wang L. Learning to Disentangle Inter-Subject Anatomical Variations in Electrocardiographic Data. IEEE Trans Biomed Eng 2022; 69:860-870. [PMID: 34460360 PMCID: PMC8858595 DOI: 10.1109/tbme.2021.3108164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data. METHODS Since ground truth anatomical factors are generally not known in clinical ECG for assessing the disentangling ability of the models, the presented work first proposes the SimECG data set, a 12-lead ECG data set procedurally generated with a controlled set of anatomical generative factors. Second, to perform such disentanglement, the presented method evaluates and compares deep generative models with latent density modeled by nonparametric Indian Buffet Process to account for the complex generative process of ECG data. RESULTS In the simulated data, the experiments demonstrate, for the first time, concrete evidence of the possibility to disentangle key generative anatomical factors within ECG data in separation from task-relevant generative factors. We achieve a disentanglement score of 92.1% while disentangling five anatomical generative factors and the task-relevant generative factor. In both simulated and real-data experiments, this work further provides quantitative evidence for the benefit of disentanglement learning on the downstream clinical task of localizing the origin of ventricular activation. Overall, the presented method achieves an improvement of around 18.5%, and 11.3% for the simulated dataset, and around 7.2%, and 3.6% for the real dataset, over baseline CNN, and standard generative model, respectively. CONCLUSION These results demonstrate the importance as well as the feasibility of the disentangled representation learning of inter-subject anatomical variations within ECG data. SIGNIFICANCE This work suggests the important research direction to deal with the well-known challenge posed by the presence of significant inter-subject variations during an automated analysis of ECG data.
Collapse
|
15
|
Nakamura T, Sasano T. Artificial intelligence and cardiology: Current status and perspective: Artificial Intelligence and Cardiology. J Cardiol 2021; 79:326-333. [PMID: 34895982 DOI: 10.1016/j.jjcc.2021.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
The development of artificial intelligence (AI) began in the mid-20th century but has been rapidly accelerating in the past decade. Reflecting the development of digital health over the past few years, this trend is also seen in medicine. The field of cardiovascular medicine uses a wide variety and a large amount of biosignals, so there are many situations where AI can contribute. The development of AI is in progress for all aspects of the healthcare system, including the prevention, screening, and treatment of diseases and the prediction of the prognosis. AI is expected to be used to provide specialist-level medical care, even in a situation where medical resources are scarce. However, like other medical devices, the concept and mechanism of AI must be fully understood when used; otherwise, it may be used inappropriately, resulting in detriment to the patient. Therefore, it is important to understand what we need to know as a cardiologist handling AI. This review introduces the basics and principles of AI, then shows how far the current development of AI has come, and finally gives a brief introduction of how to start the AI development for those who want to develop their own AI.
Collapse
Affiliation(s)
- Tomofumi Nakamura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
16
|
Zhou S, AbdelWahab A, Sapp JL, Sung E, Aronis KN, Warren JW, MacInnis PJ, Shah R, Horáček BM, Berger R, Tandri H, Trayanova NA, Chrispin J. Assessment of an ECG-Based System for Localizing Ventricular Arrhythmias in Patients With Structural Heart Disease. J Am Heart Assoc 2021; 10:e022217. [PMID: 34612085 PMCID: PMC8751877 DOI: 10.1161/jaha.121.022217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background We have previously developed an intraprocedural automatic arrhythmia‐origin localization (AAOL) system to identify idiopathic ventricular arrhythmia origins in real time using a 3‐lead ECG. The objective was to assess the localization accuracy of ventricular tachycardia (VT) exit and premature ventricular contraction (PVC) origin sites in patients with structural heart disease using the AAOL system. Methods and Results In retrospective and prospective case series studies, a total of 42 patients who underwent VT/PVC ablation in the setting of structural heart disease were recruited at 2 different centers. The AAOL system combines 120‐ms QRS integrals of 3 leads (III, V2, V6) with pace mapping to predict VT exit/PVC origin site and projects that site onto the patient‐specific electroanatomic mapping surface. VT exit/PVC origin sites were clinically identified by activation mapping and/or pace mapping. The localization error of the VT exit/PVC origin site was assessed by the distance between the clinically identified site and the estimated site. In the retrospective study of 19 patients with structural heart disease, the AAOL system achieved a mean localization accuracy of 6.5±2.6 mm for 25 induced VTs. In the prospective study with 23 patients, mean localization accuracy was 5.9±2.6 mm for 26 VT exit and PVC origin sites. There was no difference in mean localization error in epicardial sites compared with endocardial sites using the AAOL system (6.0 versus 5.8 mm, P=0.895). Conclusions The AAOL system achieved accurate localization of VT exit/PVC origin sites in patients with structural heart disease; its performance is superior to current systems, and thus, it promises to have potential clinical utility.
Collapse
Affiliation(s)
- Shijie Zhou
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD
| | - Amir AbdelWahab
- Department of Medicine Queen Elizabeth II Health Sciences Centre Halifax NS Canada
| | - John L Sapp
- Department of Medicine Queen Elizabeth II Health Sciences Centre Halifax NS Canada.,Department of Physiology and Biophysics Dalhousie University Halifax NS Canada
| | - Eric Sung
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Department of Biomedical Engineering Johns Hopkins University Baltimore MD
| | - Konstantinos N Aronis
- Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD.,Department of Biomedical Engineering Johns Hopkins University Baltimore MD
| | - James W Warren
- Department of Physiology and Biophysics Dalhousie University Halifax NS Canada
| | - Paul J MacInnis
- Department of Physiology and Biophysics Dalhousie University Halifax NS Canada
| | - Rushil Shah
- Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| | - B Milan Horáček
- School of Biomedical Engineering Dalhousie University Halifax NS Canada
| | - Ronald Berger
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| | - Harikrishna Tandri
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Department of Biomedical Engineering Johns Hopkins University Baltimore MD
| | - Jonathan Chrispin
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| |
Collapse
|
17
|
Abstract
Machine learning (ML), a branch of artificial intelligence, where machines learn from big data, is at the crest of a technological wave of change sweeping society. Cardiovascular medicine is at the forefront of many ML applications, and there is a significant effort to bring them into mainstream clinical practice. In the field of cardiac electrophysiology, ML applications have also seen a rapid growth and popularity, particularly the use of ML in the automatic interpretation of ECGs, which has been extensively covered in the literature. Much lesser known are the other aspects of ML application in cardiac electrophysiology and arrhythmias, such as those in basic science research on arrhythmia mechanisms, both experimental and computational; in the development of better techniques for mapping of cardiac electrical function; and in translational research related to arrhythmia management. In the current review, we examine comprehensively such ML applications as they match the scope of this journal. The current review is organized in 3 parts. The first provides an overview of general ML principles and methodologies that will afford readers of the necessary information on the subject, serving as the foundation for inviting further ML applications in arrhythmia research. The basic information we provide can serve as a guide on how one might design and conduct an ML study. The second part is a review of arrhythmia and electrophysiology studies in which ML has been utilized, highlighting the broad potential of ML approaches. For each subject, we outline comprehensively the general topics, while reviewing some of the research advances utilizing ML under the subject. Finally, we discuss the main challenges and the perspectives for ML-driven cardiac electrophysiology and arrhythmia research.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA 21205
| | - Dan M. Popescu
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| | - Julie K. Shade
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
- Alliance for Cardiovascular Diagnosis and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, USA 21218
| |
Collapse
|
18
|
A hybrid machine learning approach to localizing the origin of ventricular tachycardia using 12-lead electrocardiograms. Comput Biol Med 2020; 126:104013. [PMID: 33002841 DOI: 10.1016/j.compbiomed.2020.104013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Machine learning models may help localize the site of origin of ventricular tachycardia (VT) using 12-lead electrocardiograms. However, population-based models suffer from inter-subject anatomical variations within ECG data, while patient-specific models face the open challenge of what pacing data to collect for training. METHODS This study presents and validates the first hybrid model that combines population and patient-specific machine learning for rapid "computer-guided pace-mapping". A population-based deep learning model was first trained offline to disentangle inter-subject variations and regionalize the site of VT origin. Given a new patient with a target VT, an on-line patient-specific model -- after being initialized by the population-based prediction -- was then built in real time by actively suggesting where to pace next and improving the prediction with each added pacing data, progressively guiding pace-mapping towards the site of VT origin. RESULTS The population model was trained on pace-mapping data from 38 patients and the patient-specific model was subsequently tuned on one patient. The resulting hybrid model was tested on a separate cohort of eight patients in localizing 1) 193 LV endocardial pacing sites, and 2) nine VTs with clinically determined exit sites. The hybrid model achieved a localization error of 5.3 ± 2.6 mm using 5.4 ± 2.5 pacing sites in localizing LV pacing sites, achieving a significantly higher accuracy with a significantly smaller amount of training sites in comparison to models without active guidance. CONCLUSION The presented hybrid model has the potential to assist rapid pace-mapping of interventional targets in VT.
Collapse
|