1
|
Bai J, Zhang Z, Yin Y, Jin W, Ali TAA, Xiong Y, Xiao Z. LGG-NeXt: A Next Generation CNN and Transformer Hybrid Model for the Diagnosis of Alzheimer's Disease Using 2D Structural MRI. IEEE J Biomed Health Inform 2025; 29:2808-2818. [PMID: 39527411 DOI: 10.1109/jbhi.2024.3495835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Incurable Alzheimer's disease (AD) plagues many elderly people and families. It is important to accurately diagnose and predict it at an early stage. However, the existing methods have shortcomings, such as inability to learn local and global information and the inability to extract effective features. In this paper, we propose a lightweight classification network Local and Global Graph ConvNeXt. This model has a hybrid architecture of convolutional neural network and Transformers. We build the Global NeXt Block and the Local NeXt Block to extract the local and global features of the structural magnetic resonance imaging (sMRI). These two blocks are optimized by adding global multilayer perceptron and locally grouped attention, respectively. Then, the features are fed into the pixel graph neural network to aggregate the valid pixel features using mask attention. In addition, we decoupled the loss by category to optimize the calculation of the loss. This method was tested on slices of the processed sMRI datasets from ADNI and achieved excellent performance. Our model achieves 95.81% accuracy with fewer parameters and floating point operations per second (FLOPS) than other classical efficient models in the diagnosis of AD.
Collapse
|
2
|
Li W, Wang M, Liu M, Liu Q. Riemannian manifold-based disentangled representation learning for multi-site functional connectivity analysis. Neural Netw 2025; 183:106945. [PMID: 39642641 DOI: 10.1016/j.neunet.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies. Also, most existing methods are designed to target one imaging site of fMRI data, which may result in limited training data for learning reliable and robust models. In this paper, we propose a novel Riemannian Manifold-based Disentangled Representation Learning (RM-DRL) framework which is capable of learning invariant representations from fMRI data across multiple sites for brain disorder diagnosis. In RM-DRL, we first employ an SPD-based encoder module to learn a latent unified representation of FC from different sites, which can preserve the Riemannian geometry of the SPD matrices. In latent space, a disentangled representation module is then designed to split the learned features into domain-specific and domain-invariant parts, respectively. Finally, a decoder module is introduced to ensure that sufficient information can be preserved during disentanglement learning. These designs allow us to introduce four types of training objectives to improve the disentanglement learning. Our RM-DRL method is evaluated on the public multi-site ABIDE dataset, showing superior performance compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Wenyang Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingliang Wang
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qingshan Liu
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Bhattacharya D, Kaur R, Aithal N, Sinha N, Gregor Issac T. Persistent homology for MCI classification: a comparative analysis between graph and Vietoris-Rips filtrations. Front Neurosci 2025; 19:1518984. [PMID: 40078712 PMCID: PMC11897488 DOI: 10.3389/fnins.2025.1518984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Mild cognitive impairment (MCI), often linked to early neurodegeneration, is associated with subtle disruptions in brain connectivity. In this paper, the applicability of persistent homology, a cutting-edge topological data analysis technique is explored for classifying MCI subtypes. Method The study examines brain network topology derived from fMRI time series data. In this regard, we investigate two methods for computing persistent homology: (1) Vietoris-Rips filtration, which leverages point clouds generated from fMRI time series to capture dynamic and global changes in brain connectivity, and (2) graph filtration, which examines connectivity matrices based on static pairwise correlations. The obtained persistent topological features are quantified using Wasserstein distance, which enables a detailed comparison of brain network structures. Result Our findings show that Vietoris-Rips filtration significantly outperforms graph filtration in brain network analysis. Specifically, it achieves a maximum accuracy of 85.7% in the Default Mode Network, for classifying MCI using in-house dataset. Discussion This study highlights the superior ability of Vietoris-Rips filtration to capture intricate brain network patterns, offering a robust tool for early diagnosis and precise classification of MCI subtypes.
Collapse
Affiliation(s)
- Debanjali Bhattacharya
- Department of Artificial Intelligence, Amrita School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Bengaluru, India
- Centre for Brain Research, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Rajneet Kaur
- Centre for Brain Research, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Ninad Aithal
- Centre for Brain Research, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
- Vision and Artificial Intelligence Lab, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Neelam Sinha
- Centre for Brain Research, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Liu J, Yu X, Fukuyama H, Murai T, Wu J, Li Q, Zhang Z. CSEPC: a deep learning framework for classifying small-sample multimodal medical image data in Alzheimer's disease. BMC Geriatr 2025; 25:130. [PMID: 40011826 DOI: 10.1186/s12877-025-05771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impacts health care worldwide, particularly among the elderly population. The accurate classification of AD stages is essential for slowing disease progression and guiding effective interventions. However, limited sample sizes continue to present a significant challenge in classifying the stages of AD progression. Addressing this obstacle is crucial for improving diagnostic accuracy and optimizing treatment strategies for those affected by AD. METHODS In this study, we proposed cross-scale equilibrium pyramid coupling (CSEPC), which is a novel diagnostic algorithm designed for small-sample multimodal medical imaging data. CSEPC leverages scale equilibrium theory and modal coupling properties to integrate semantic features from different imaging modalities and across multiple scales within each modality. The architecture first extracts balanced multiscale features from structural MRI (sMRI) data and functional MRI (fMRI) data using a cross-scale pyramid module. These features are then combined through a contrastive learning-based cosine similarity coupling mechanism to capture intermodality associations effectively. This approach enhances the representation of both inter- and intramodal features while significantly reducing the number of learning parameters, making it highly suitable for small sample environments. We validated the effectiveness of the CSEPC model through experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and demonstrated its superior performance in diagnosing and staging AD. RESULTS Our experimental results demonstrate that the proposed model matches or exceeds the performance of models used in previous studies in AD classification. Specifically, the model achieved an accuracy of 85.67% and an area under the curve (AUC) of 0.98 in classifying the progression from mild cognitive impairment (MCI) to AD. To further validate its effectiveness, we used our method to diagnose different stages of AD. In both classification tasks, our approach delivered superior performance. CONCLUSIONS In conclusion, the performance of our model in various tasks has demonstrated its significant potential in the field of small-sample multimodal medical imaging classification, particularly AD classification. This advancement could significantly assist clinicians in effectively managing and intervening in the disease progression of patients with early-stage AD.
Collapse
Affiliation(s)
- Jingyuan Liu
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojie Yu
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hidenao Fukuyama
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial International Joint Research Center of Brain Informatics and Intelligence Science, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China.
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Chi J, Chen JH, Wu B, Zhao J, Wang K, Yu X, Zhang W, Huang Y. A Dual-Branch Cross-Modality-Attention Network for Thyroid Nodule Diagnosis Based on Ultrasound Images and Contrast-Enhanced Ultrasound Videos. IEEE J Biomed Health Inform 2025; 29:1269-1282. [PMID: 39356606 DOI: 10.1109/jbhi.2024.3472609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Contrast-enhanced ultrasound (CEUS) has been extensively employed as an imaging modality in thyroid nodule diagnosis due to its capacity to visualise the distribution and circulation of micro-vessels in organs and lesions in a non-invasive manner. However, current CEUS-based thyroid nodule diagnosis methods suffered from: 1) the blurred spatial boundaries between nodules and other anatomies in CEUS videos, and 2) the insufficient representations of the local structural information of nodule tissues by the features extracted only from CEUS videos. In this paper, we propose a novel dual-branch network with a cross-modality-attention mechanism for thyroid nodule diagnosis by integrating the information from tow related modalities, i.e., CEUS videos and ultrasound image. The mechanism has two parts: US-attention-from-CEUS transformer (UAC-T) and CEUS-attention-from-US transformer (CAU-T). As such, this network imitates the manner of human radiologists by decomposing the diagnosis into two correlated tasks: 1) the spatio-temporal features extracted from CEUS are hierarchically embedded into the spatial features extracted from US with UAC-T for the nodule segmentation; 2) the US spatial features are used to guide the extraction of the CEUS spatio-temporal features with CAU-T for the nodule classification. The two tasks are intertwined in the dual-branch end-to-end network and optimized with the multi-task learning (MTL) strategy. The proposed method is evaluated on our collected thyroid US-CEUS dataset. Experimental results show that our method achieves the classification accuracy of 86.92%, specificity of 66.41%, and sensitivity of 97.01%, outperforming the state-of-the-art methods. As a general contribution in the field of multi-modality diagnosis of diseases, the proposed method has provided an effective way to combine static information with its related dynamic information, improving the quality of deep learning based diagnosis with an additional benefit of explainability.
Collapse
|
6
|
Tang J, Chen J, Hu M, Hu Y, Zhang Z, Xiao L. Diagnosis of Autism Spectrum Disorder (ASD) by Dynamic Functional Connectivity Using GNN-LSTM. SENSORS (BASEL, SWITZERLAND) 2024; 25:156. [PMID: 39796946 PMCID: PMC11722565 DOI: 10.3390/s25010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025]
Abstract
Early detection of autism spectrum disorder (ASD) is particularly important given its insidious qualities and the high cost of the diagnostic process. Currently, static functional connectivity studies have achieved significant results in the field of ASD detection. However, with the deepening of clinical research, more and more evidence suggests that dynamic functional connectivity analysis can more comprehensively reveal the complex and variable characteristics of brain networks and their underlying mechanisms, thus providing more solid scientific support for computer-aided diagnosis of ASD. To overcome the lack of time-scale information in static functional connectivity analysis, in this paper, we proposes an innovative GNN-LSTM model, which combines the advantages of long short-term memory (LSTM) and graph neural networks (GNNs). The model captures the spatial features in fMRI data by GNN and aggregates the temporal information of dynamic functional connectivity using LSTM to generate a more comprehensive spatio-temporal feature representation of fMRI data. Further, a dynamic graph pooling method is proposed to extract the final node representations from the dynamic graph representations for classification tasks. To address the variable dependence of dynamic feature connectivity on time scales, the model introduces a jump connection mechanism to enhance information extraction between internal units and capture features at different time scales. The model achieves remarkable results on the ABIDE dataset, with accuracies of 80.4% on the ABIDE I and 79.63% on the ABIDE II, which strongly demonstrates the effectiveness and potential of the model for ASD detection. This study not only provides new perspectives and methods for computer-aided diagnosis of ASD but also provides useful references for research in related fields.
Collapse
Affiliation(s)
- Jun Tang
- School of Educational Sciences, Hunan Normal University, Changsha 410081, China; (J.T.); (J.C.)
| | - Jie Chen
- School of Educational Sciences, Hunan Normal University, Changsha 410081, China; (J.T.); (J.C.)
| | - Miaojun Hu
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; (M.H.)
| | - Yao Hu
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; (M.H.)
| | - Zixi Zhang
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; (M.H.)
| | - Liuming Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China; (M.H.)
| |
Collapse
|
7
|
Zhou J, Jie B, Wang Z, Zhang Z, Du T, Bian W, Yang Y, Jia J. LCGNet: Local Sequential Feature Coupling Global Representation Learning for Functional Connectivity Network Analysis With fMRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4319-4330. [PMID: 38949932 DOI: 10.1109/tmi.2024.3421360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Analysis of functional connectivity networks (FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has greatly advanced our understanding of brain diseases, including Alzheimer's disease (AD) and attention deficit hyperactivity disorder (ADHD). Advanced machine learning techniques, such as convolutional neural networks (CNNs), have been used to learn high-level feature representations of FCNs for automated brain disease classification. Even though convolution operations in CNNs are good at extracting local properties of FCNs, they generally cannot well capture global temporal representations of FCNs. Recently, the transformer technique has demonstrated remarkable performance in various tasks, which is attributed to its effective self-attention mechanism in capturing the global temporal feature representations. However, it cannot effectively model the local network characteristics of FCNs. To this end, in this paper, we propose a novel network structure for Local sequential feature Coupling Global representation learning (LCGNet) to take advantage of convolutional operations and self-attention mechanisms for enhanced FCN representation learning. Specifically, we first build a dynamic FCN for each subject using an overlapped sliding window approach. We then construct three sequential components (i.e., edge-to-vertex layer, vertex-to-network layer, and network-to-temporality layer) with a dual backbone branch of CNN and transformer to extract and couple from local to global topological information of brain networks. Experimental results on two real datasets (i.e., ADNI and ADHD-200) with rs-fMRI data show the superiority of our LCGNet.
Collapse
|
8
|
Yu X, Liu J, Lu Y, Funahashi S, Murai T, Wu J, Li Q, Zhang Z. Early diagnosis of Alzheimer's disease using a group self-calibrated coordinate attention network based on multimodal MRI. Sci Rep 2024; 14:24210. [PMID: 39406789 PMCID: PMC11480216 DOI: 10.1038/s41598-024-74508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Convolutional neural networks (CNNs) for extracting structural information from structural magnetic resonance imaging (sMRI), combined with functional magnetic resonance imaging (fMRI) and neuropsychological features, has emerged as a pivotal tool for early diagnosis of Alzheimer's disease (AD). However, the fixed-size convolutional kernels in CNNs have limitations in capturing global features, reducing the effectiveness of AD diagnosis. We introduced a group self-calibrated coordinate attention network (GSCANet) designed for the precise diagnosis of AD using multimodal data, including encompassing Haralick texture features, functional connectivity, and neuropsychological scores. GSCANet utilizes a parallel group self-calibrated module to enhance original spatial features, expanding the field of view and embedding spatial data into channel information through a coordinate attention module, which ensures long-term contextual interaction. In a four-classification comparison (AD vs. early MCI (EMCI) vs. late MCI (LMCI) vs. normal control (NC)), GSCANet demonstrated an accuracy of 78.70%. For the three-classification comparison (AD vs. MCI vs. NC), it achieved an accuracy of 83.33%. Moreover, our method exhibited impressive accuracies in the AD vs. NC (92.81%) and EMCI vs. LMCI (84.67%) classifications. GSCANet improves classification performance at different stages of AD by employing group self-calibrated to expand features receptive field and integrating coordinated attention to facilitate significant interactions among channels and spaces. Providing insights into AD mechanisms and showcasing scalability for various disease predictions.
Collapse
Affiliation(s)
- Xiaojie Yu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingyuan Liu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yinping Lu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shintaro Funahashi
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Li
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China.
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
9
|
An X, Zhou Y, Di Y, Han Y, Ming D. A Novel Method to Identify Mild Cognitive Impairment Using Dynamic Spatio-Temporal Graph Neural Network. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3328-3337. [PMID: 39190512 DOI: 10.1109/tnsre.2024.3450443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used in the identification of mild cognitive impairment (MCI) research, MCI patients are relatively at a higher risk of progression to Alzheimer's disease (AD). However, almost machine learning and deep learning methods are rarely analyzed from the perspective of spatial structure and temporal dimension. In order to make full use of rs-fMRI data, this study constructed a dynamic spatiotemporal graph neural network model, which mainly includes three modules: temporal block, spatial block, and graph pooling block. Our proposed model can extract the BOLD signal of the subject's fMRI data and the spatial structure of functional connections between different brain regions, and improve the decision-making results of the model. In the study of AD, MCI and NC, the classification accuracy reached 83.78% outperforming previously reported, which manifested that our model could effectively learn spatiotemporal, and dynamic spatio-temporal method plays an important role in identifying different groups of subjects. In summary, this paper proposed an end-to-end dynamic spatio-temporal graph neural network model, which uses the information of the temporal dimension and spatial structure in rs-fMRI data, and achieves the improvement of the three classification performance among AD, MCI and NC.
Collapse
|
10
|
Bacon EJ, He D, Achi NAD, Wang L, Li H, Yao-Digba PDZ, Monkam P, Qi S. Neuroimage analysis using artificial intelligence approaches: a systematic review. Med Biol Eng Comput 2024; 62:2599-2627. [PMID: 38664348 DOI: 10.1007/s11517-024-03097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/14/2024] [Indexed: 08/18/2024]
Abstract
In the contemporary era, artificial intelligence (AI) has undergone a transformative evolution, exerting a profound influence on neuroimaging data analysis. This development has significantly elevated our comprehension of intricate brain functions. This study investigates the ramifications of employing AI techniques on neuroimaging data, with a specific objective to improve diagnostic capabilities and contribute to the overall progress of the field. A systematic search was conducted in prominent scientific databases, including PubMed, IEEE Xplore, and Scopus, meticulously curating 456 relevant articles on AI-driven neuroimaging analysis spanning from 2013 to 2023. To maintain rigor and credibility, stringent inclusion criteria, quality assessments, and precise data extraction protocols were consistently enforced throughout this review. Following a rigorous selection process, 104 studies were selected for review, focusing on diverse neuroimaging modalities with an emphasis on mental and neurological disorders. Among these, 19.2% addressed mental illness, and 80.7% focused on neurological disorders. It is found that the prevailing clinical tasks are disease classification (58.7%) and lesion segmentation (28.9%), whereas image reconstruction constituted 7.3%, and image regression and prediction tasks represented 9.6%. AI-driven neuroimaging analysis holds tremendous potential, transforming both research and clinical applications. Machine learning and deep learning algorithms outperform traditional methods, reshaping the field significantly.
Collapse
Affiliation(s)
- Eric Jacob Bacon
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Dianning He
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | | | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Patrice Monkam
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
11
|
He P, Shi Z, Cui Y, Wang R, Wu D. A spatiotemporal graph transformer approach for Alzheimer's disease diagnosis with rs-fMRI. Comput Biol Med 2024; 178:108762. [PMID: 38908359 DOI: 10.1016/j.compbiomed.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease accompanied by cognitive impairment. Early diagnosis is crucial for the timely treatment and intervention of AD. Resting-state functional magnetic resonance imaging (rs-fMRI) records the temporal dynamics and spatial dependency in the brain, which have been utilized for automatically diagnosis of AD in the community. Existing approaches of AD diagnosis using rs-fMRI only assess functional connectivity, ignoring the spatiotemporal dependency mining of rs-fMRI. In addition, it is difficult to increase diagnosis accuracy due to the shortage of rs-fMRI sample and the poor anti-noise ability of model. To deal with these problems, this paper proposes a novel approach for the automatic diagnosis of AD, namely spatiotemporal graph transformer network (STGTN). The proposed STGTN can effectively extract spatiotemporal features of rs-fMRI. Furthermore, to solve the sample-limited problem and to improve the anti-noise ability of the proposed model, an adversarial training strategy is adopted for the proposed STGTN to generate adversarial examples (AEs) and augment training samples with AEs. Experimental results indicate that the proposed model achieves the classification accuracy of 92.58%, and 85.27% with the adversarial training strategy for AD vs. normal control (NC), early mild cognitive impairment (eMCI) vs. late mild cognitive impairment (lMCI) respectively, outperforming the state-of-the-art methods. Besides, the spatial attention coefficients reflected from the designed model reveal the importance of brain connections under different classification tasks.
Collapse
Affiliation(s)
- Peng He
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China.
| | - Zhan Shi
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Yaping Cui
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Ruyan Wang
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Dapeng Wu
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| |
Collapse
|
12
|
Kaur A, Mittal M, Bhatti JS, Thareja S, Singh S. A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease. Artif Intell Med 2024; 154:102928. [PMID: 39029377 DOI: 10.1016/j.artmed.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent cause of dementia, characterized by a steady decline in mental, behavioral, and social abilities and impairs a person's capacity for independent functioning. It is a fatal neurodegenerative disease primarily affecting older adults. OBJECTIVES The purpose of this literature review is to investigate various AD detection techniques, datasets, input modalities, algorithms, libraries, and performance evaluation metrics used to determine which model or strategy may provide superior performance. METHOD The initial search yielded 807 papers, but only 100 research articles were chosen after applying the inclusion-exclusion criteria. This SLR analyzed research items published between January 2019 and December 2022. The ACM, Elsevier, IEEE Xplore Digital Library, PubMed, Springer and Taylor & Francis were systematically searched. The current study considers articles that used Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), APOe4 genotype, Diffusion Tensor Imaging (DTI) and Cerebrospinal Fluid (CSF) biomarkers. The study was performed following Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. CONCLUSION According to the literature survey, most studies (n = 76) used the DL strategy. The datasets used by studies were primarily derived from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The majority of studies (n = 73) used single-modality neuroimaging data, while the remaining used multi-modal input data. In a multi-modality approach, the combination of MRI and PET scans is commonly preferred. Also, Regarding the algorithm used, Convolution Neural Network (CNN) showed the highest accuracy, 100 %, in classifying AD vs. CN subjects whereas the SVM was the most common ML algorithm, with a maximum accuracy of 99.82 %.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India
| | - Meenakshi Mittal
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India
| | - Jasvinder Singh Bhatti
- Dept. of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Dept. of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Satwinder Singh
- Dept. of Computer Science & Technology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
13
|
Zhao T, Zhang G. Enhancing Major Depressive Disorder Diagnosis With Dynamic-Static Fusion Graph Neural Networks. IEEE J Biomed Health Inform 2024; 28:4701-4710. [PMID: 38691439 DOI: 10.1109/jbhi.2024.3395611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Major Depressive Disorder (MDD) is a debilitating, complex mental condition with unclear mechanisms hindering diagnostic progress. Research links MDD to abnormal brain connectivity using functional magnetic resonance imaging (fMRI). Yet, existing fMRI-based MDD models suffer from limitations, including neglecting dynamic network traits, lacking interpretability, and struggling with small datasets. We present DSFGNN, a novel graph neural network framework addressing these issues for improved MDD diagnosis. DSFGNN employs a graph isomorphism encoder to model static and dynamic brain networks, achieving effective fusion of temporal and spatial information through a spatiotemporal attention mechanism, thereby enhancing interpretability. Furthermore, we incorporate a causal disentangling module and orthogonal regularization module to augment the model's expressiveness. We evaluate DSFGNN on the Rest-meta-MDD dataset, yielding superior results compared to the best baseline. Besides, extensive ablation studies and interpretability analysis confirm DSFGNN's effectiveness and potential for biomarker discovery.
Collapse
|
14
|
Qiu B, Wang Q, Li X, Li W, Shao W, Wang M. Adaptive spatial-temporal neural network for ADHD identification using functional fMRI. Front Neurosci 2024; 18:1394234. [PMID: 38872940 PMCID: PMC11169645 DOI: 10.3389/fnins.2024.1394234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Computer aided diagnosis methods play an important role in Attention Deficit Hyperactivity Disorder (ADHD) identification. Dynamic functional connectivity (dFC) analysis has been widely used for ADHD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), which can help capture abnormalities of brain activity. However, most existing dFC-based methods only focus on dependencies between two adjacent timestamps, ignoring global dynamic evolution patterns. Furthermore, the majority of these methods fail to adaptively learn dFCs. In this paper, we propose an adaptive spatial-temporal neural network (ASTNet) comprising three modules for ADHD identification based on rs-fMRI time series. Specifically, we first partition rs-fMRI time series into multiple segments using non-overlapping sliding windows. Then, adaptive functional connectivity generation (AFCG) is used to model spatial relationships among regions-of-interest (ROIs) with adaptive dFCs as input. Finally, we employ a temporal dependency mining (TDM) module which combines local and global branches to capture global temporal dependencies from the spatially-dependent pattern sequences. Experimental results on the ADHD-200 dataset demonstrate the superiority of the proposed ASTNet over competing approaches in automated ADHD classification.
Collapse
Affiliation(s)
- Bo Qiu
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xizhi Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Wenyang Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingliang Wang
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
- Nanjing Xinda Institute of Safety and Emergency Management, Nanjing, China
| |
Collapse
|
15
|
Liu Y, Wang H, Ding Y. The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding. Interdiscip Sci 2024; 16:141-159. [PMID: 38060171 DOI: 10.1007/s12539-023-00592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding dynamic communication across brain regions and, ultimately, identifying the ASD diagnostic biomarker. We proposed the dgEmbed-KNN and the Aggregation-SVM diagnostic models, which use the spatio-temporal information from DBN and interactive information among brain regions represented by dynamic graph embedding. The classification accuracies show that dgEmbed-KNN model performs slightly better than traditional machine learning and deep learning methods, while the Aggregation-SVM model has a very good capacity to diagnose ASD using aggregation brain network connections as features. We discovered over- and under-connections in ASD at the level of dynamic connections, involving brain regions of the postcentral gyrus, the insula, the cerebellum, the caudate nucleus, and the temporal pole. We also found abnormal dynamic interactions associated with ASD within/between the functional subnetworks, including default mode network, visual network, auditory network and saliency network. These can provide potential DBN biomarkers for ASD identification.
Collapse
Affiliation(s)
- Yanting Liu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Hao Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
16
|
Fan L, Li Y, Zhao X, Huang ZG, Liu T, Wang J. Dynamic nonreversibility view of intrinsic brain organization and brain dynamic analysis of repetitive transcranial magnitude stimulation. Cereb Cortex 2024; 34:bhae098. [PMID: 38494890 DOI: 10.1093/cercor/bhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Intrinsic neural activities are characterized as endless spontaneous fluctuation over multiple time scales. However, how the intrinsic brain organization changes over time under local perturbation remains an open question. By means of statistical physics, we proposed an approach to capture whole-brain dynamics based on estimating time-varying nonreversibility and k-means clustering of dynamic varying nonreversibility patterns. We first used synthetic fMRI to investigate the effects of window parameters on the temporal variability of varying nonreversibility. Second, using real test-retest fMRI data, we examined the reproducibility, reliability, biological, and physiological correlation of the varying nonreversibility substates. Finally, using repetitive transcranial magnetic stimulation-fMRI data, we investigated the modulation effects of repetitive transcranial magnetic stimulation on varying nonreversibility substate dynamics. The results show that: (i) as window length increased, the varying nonreversibility variance decreased, while the sliding step almost did not alter it; (ii) the global high varying nonreversibility states and low varying nonreversibility states were reproducible across multiple datasets and different window lengths; and (iii) there were increased low varying nonreversibility states and decreased high varying nonreversibility states when the left frontal lobe was stimulated, but not the occipital lobe. Taken together, these results provide a thermodynamic equilibrium perspective of intrinsic brain organization and reorganization under local perturbation.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xingjian Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
17
|
Wang M, Zhu L, Li X, Pan Y, Li L. Dynamic functional connectivity analysis with temporal convolutional network for attention deficit/hyperactivity disorder identification. Front Neurosci 2023; 17:1322967. [PMID: 38148943 PMCID: PMC10750397 DOI: 10.3389/fnins.2023.1322967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Dynamic functional connectivity (dFC), which can capture the abnormality of brain activity over time in resting-state functional magnetic resonance imaging (rs-fMRI) data, has a natural advantage in revealing the abnormal mechanism of brain activity in patients with Attention Deficit/Hyperactivity Disorder (ADHD). Several deep learning methods have been proposed to learn dynamic changes from rs-fMRI for FC analysis, and achieved superior performance than those using static FC. However, most existing methods only consider dependencies of two adjacent timestamps, which is limited when the change is related to the course of many timestamps. Methods In this paper, we propose a novel Temporal Dependence neural Network (TDNet) for FC representation learning and temporal-dependence relationship tracking from rs-fMRI time series for automated ADHD identification. Specifically, we first partition rs-fMRI time series into a sequence of consecutive and non-overlapping segments. For each segment, we design an FC generation module to learn more discriminative representations to construct dynamic FCs. Then, we employ the Temporal Convolutional Network (TCN) to efficiently capture long-range temporal patterns with dilated convolutions, followed by three fully connected layers for disease prediction. Results As the results, we found that considering the dynamic characteristics of rs-fMRI time series data is beneficial to obtain better diagnostic performance. In addition, dynamic FC networks generated in a data-driven manner are more informative than those constructed by Pearson correlation coefficients. Discussion We validate the effectiveness of the proposed approach through extensive experiments on the public ADHD-200 database, and the results demonstrate the superiority of the proposed model over state-of-the-art methods in ADHD identification.
Collapse
Affiliation(s)
- Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
- Nanjing Xinda Institute of Safety and Emergency Management, Nanjing, China
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lingyao Zhu
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xizhi Li
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yong Pan
- School of Accounting, Nanjing University of Finance and Economics, Nanjing, China
| | - Long Li
- Taian Tumor Prevention and Treatment Hospital, Taian, China
| |
Collapse
|
18
|
Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, Burkhart MC, Dewachter I, Gellersen HM, Low A, Lourida I, Machado L, Madan CR, Malpetti M, Mejia J, Michopoulou S, Muñoz-Neira C, Pepys J, Peres M, Phillips V, Ramanan S, Tamburin S, Tantiangco HM, Thakur L, Tomassini A, Vipin A, Tang E, Newby D, Ranson JM, Llewellyn DJ, Veldsman M, Rittman T. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimers Dement 2023; 19:5885-5904. [PMID: 37563912 DOI: 10.1002/alz.13412] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.
Collapse
Affiliation(s)
- Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Jose Bernal
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Ilse Dewachter
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Luiza Machado
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jhony Mejia
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Sofia Michopoulou
- Imaging Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Carlos Muñoz-Neira
- Research into Memory, Brain sciences and dementia Group (ReMemBr Group), Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Artificial Intelligence & Computational Neuroscience Group (AICN Group), Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jack Pepys
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Marion Peres
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Lokendra Thakur
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, UK
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Tomassini
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Eugene Tang
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Ma Y, Wang Q, Cao L, Li L, Zhang C, Qiao L, Liu M. Multi-Scale Dynamic Graph Learning for Brain Disorder Detection With Functional MRI. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3501-3512. [PMID: 37643109 DOI: 10.1109/tnsre.2023.3309847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used in the detection of brain disorders such as autism spectrum disorder based on various machine/deep learning techniques. Learning-based methods typically rely on functional connectivity networks (FCNs) derived from blood-oxygen-level-dependent time series of rs-fMRI data to capture interactions between brain regions-of-interest (ROIs). Graph neural networks have been recently used to extract fMRI features from graph-structured FCNs, but cannot effectively characterize spatiotemporal dynamics of FCNs, e.g., the functional connectivity of brain ROIs is dynamically changing in a short period of time. Also, many studies usually focus on single-scale topology of FCN, thereby ignoring the potential complementary topological information of FCN at different spatial resolutions. To this end, in this paper, we propose a multi-scale dynamic graph learning (MDGL) framework to capture multi-scale spatiotemporal dynamic representations of rs-fMRI data for automated brain disorder diagnosis. The MDGL framework consists of three major components: 1) multi-scale dynamic FCN construction using multiple brain atlases to model multi-scale topological information, 2) multi-scale dynamic graph representation learning to capture spatiotemporal information conveyed in fMRI data, and 3) multi-scale feature fusion and classification. Experimental results on two datasets show that MDGL outperforms several state-of-the-art methods.
Collapse
|
20
|
Teng J, Mi C, Shi J, Li N. Brain disease research based on functional magnetic resonance imaging data and machine learning: a review. Front Neurosci 2023; 17:1227491. [PMID: 37662098 PMCID: PMC10469689 DOI: 10.3389/fnins.2023.1227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
Collapse
Affiliation(s)
- Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Chunlin Mi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Jian Shi
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Wen G, Cao P, Liu L, Yang J, Zhang X, Wang F, Zaiane OR. Graph Self-Supervised Learning With Application to Brain Networks Analysis. IEEE J Biomed Health Inform 2023; 27:4154-4165. [PMID: 37159311 DOI: 10.1109/jbhi.2023.3274531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The less training data and insufficient supervision limit the performance of the deep supervised models for brain disease diagnosis. It is significant to construct a learning framework that can capture more information in limited data and insufficient supervision. To address these issues, we focus on self-supervised learning and aim to generalize the self-supervised learning to the brain networks, which are non-Euclidean graph data. More specifically, we propose an ensemble masked graph self-supervised framework named BrainGSLs, which incorporates 1) a local topological-aware encoder that takes the partially visible nodes as input and learns these latent representations, 2) a node-edge bi-decoder that reconstructs the masked edges by the representations of both the masked and visible nodes, 3) a signal representation learning module for capturing temporal representations from BOLD signals and 4) a classifier used for the classification. We evaluate our model on three real medical clinical applications: diagnosis of Autism Spectrum Disorder (ASD), diagnosis of Bipolar Disorder (BD) and diagnosis of Major Depressive Disorder (MDD). The results suggest that the proposed self-supervised training has led to remarkable improvement and outperforms state-of-the-art methods. Moreover, our method is able to identify the biomarkers associated with the diseases, which is consistent with the previous studies. We also explore the correlation of these three diseases and find the strong association between ASD and BD. To the best of our knowledge, our work is the first attempt of applying the idea of self-supervised learning with masked autoencoder on the brain network analysis.
Collapse
|
22
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
23
|
Du Y, Wang G, Wang C, Zhang Y, Xi X, Zhang L, Liu M. Accurate module induced brain network construction for mild cognitive impairment identification with functional MRI. Front Aging Neurosci 2023; 15:1101879. [PMID: 36875703 PMCID: PMC9978189 DOI: 10.3389/fnagi.2023.1101879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Functional brain networks (FBNs) estimated from functional magnetic resonance imaging (fMRI) data has become a potentially useful way for computer-aided diagnosis of neurological disorders, such as mild cognitive impairment (MCI), a prodromal stage of Alzheimer's Disease (AD). Currently, Pearson's correlation (PC) is the most widely-used method for constructing FBNs. Despite its popularity and simplicity, the conventional PC-based method usually results in dense networks where regions-of-interest (ROIs) are densely connected. This is not accordance with the biological prior that ROIs may be sparsely connected in the brain. To address this issue, previous studies proposed to employ a threshold or l_1-regularizer to construct sparse FBNs. However, these methods usually ignore rich topology structures, such as modularity that has been proven to be an important property for improving the information processing ability of the brain. Methods To this end, in this paper, we propose an accurate module induced PC (AM-PC) model to estimate FBNs with a clear modular structure, by including sparse and low-rank constraints on the Laplacian matrix of the network. Based on the property that zero eigenvalues of graph Laplacian matrix indicate the connected components, the proposed method can reduce the rank of the Laplacian matrix to a pre-defined number and obtain FBNs with an accurate number of modules. Results To validate the effectiveness of the proposed method, we use the estimated FBNs to classify subjects with MCI from healthy controls. Experimental results on 143 subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) with resting-state functional MRIs show that the proposed method achieves better classification performance than previous methods.
Collapse
Affiliation(s)
- Yue Du
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, China
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, China
| | - Guangyu Wang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, China
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, China
| | - Chengcheng Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, China
| | - Yangyang Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, China
- School of Computer Science and Cyberspace Security, Hainan University, Haikou, Hainan, China
| | - Xiaoming Xi
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
24
|
Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, Wang T, Lei B. Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:354-367. [PMID: 35767511 DOI: 10.1109/tmi.2022.3187141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For significant memory concern (SMC) and mild cognitive impairment (MCI), their classification performance is limited by confounding features, diverse imaging protocols, and limited sample size. To address the above limitations, we introduce a dual-modality fused brain connectivity network combining resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and propose three mechanisms in the current graph convolutional network (GCN) to improve classifier performance. First, we introduce a DTI-strength penalty term for constructing functional connectivity networks. Stronger structural connectivity and bigger structural strength diversity between groups provide a higher opportunity for retaining connectivity information. Second, a multi-center attention graph with each node representing a subject is proposed to consider the influence of data source, gender, acquisition equipment, and disease status of those training samples in GCN. The attention mechanism captures their different impacts on edge weights. Third, we propose a multi-channel mechanism to improve filter performance, assigning different filters to features based on feature statistics. Applying those nodes with low-quality features to perform convolution would also deteriorate filter performance. Therefore, we further propose a pooling mechanism, which introduces the disease status information of those training samples to evaluate the quality of nodes. Finally, we obtain the final classification results by inputting the multi-center attention graph into the multi-channel pooling GCN. The proposed method is tested on three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset, and an in-house dataset). Experimental results indicate that the proposed method is effective and superior to other related algorithms, with a mean classification accuracy of 93.05% in our binary classification tasks. Our code is available at: https://github.com/Xuegang-S.
Collapse
|
25
|
Fang Y, Wang M, Potter GG, Liu M. Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification. Med Image Anal 2023; 84:102707. [PMID: 36512941 PMCID: PMC9850278 DOI: 10.1016/j.media.2022.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) data have been widely used for automated diagnosis of brain disorders such as major depressive disorder (MDD) to assist in timely intervention. Multi-site fMRI data have been increasingly employed to augment sample size and improve statistical power for investigating MDD. However, previous studies usually suffer from significant inter-site heterogeneity caused for instance by differences in scanners and/or scanning protocols. To address this issue, we develop a novel discrepancy-based unsupervised cross-domain fMRI adaptation framework (called UFA-Net) for automated MDD identification. The proposed UFA-Net is designed to model spatio-temporal fMRI patterns of labeled source and unlabeled target samples via an attention-guided graph convolution module, and also leverage a maximum mean discrepancy constrained module for unsupervised cross-site feature alignment between two domains. To the best of our knowledge, this is one of the first attempts to explore unsupervised rs-fMRI adaptation for cross-site MDD identification. Extensive evaluation on 681 subjects from two imaging sites shows that the proposed method outperforms several state-of-the-art methods. Our method helps localize disease-associated functional connectivity abnormalities and is therefore well interpretable and can facilitate fMRI-based analysis of MDD in clinical practice.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guy G Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
26
|
Peng L, Wang N, Xu J, Zhu X, Li X. GATE: Graph CCA for Temporal Self-Supervised Learning for Label-Efficient fMRI Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:391-402. [PMID: 36018878 DOI: 10.1109/tmi.2022.3201974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we focus on the challenging task, neuro-disease classification, using functional magnetic resonance imaging (fMRI). In population graph-based disease analysis, graph convolutional neural networks (GCNs) have achieved remarkable success. However, these achievements are inseparable from abundant labeled data and sensitive to spurious signals. To improve fMRI representation learning and classification under a label-efficient setting, we propose a novel and theory-driven self-supervised learning (SSL) framework on GCNs, namely Graph CCA for Temporal sElf-supervised learning on fMRI analysis (GATE). Concretely, it is demanding to design a suitable and effective SSL strategy to extract formation and robust features for fMRI. To this end, we investigate several new graph augmentation strategies from fMRI dynamic functional connectives (FC) for SSL training. Further, we leverage canonical-correlation analysis (CCA) on different temporal embeddings and present the theoretical implications. Consequently, this yields a novel two-step GCN learning procedure comprised of (i) SSL on an unlabeled fMRI population graph and (ii) fine-tuning on a small labeled fMRI dataset for a classification task. Our method is tested on two independent fMRI datasets, demonstrating superior performance on autism and dementia diagnosis. Our code is available at https://github.com/LarryUESTC/GATE.
Collapse
|
27
|
Liu L, Wen G, Cao P, Hong T, Yang J, Zhang X, Zaiane OR. BrainTGL: A dynamic graph representation learning model for brain network analysis. Comput Biol Med 2023; 153:106521. [PMID: 36630830 DOI: 10.1016/j.compbiomed.2022.106521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Modeling the dynamics characteristics in functional brain networks (FBNs) is important for understanding the functional mechanism of the human brain. However, the current works do not fully consider the potential complex spatial and temporal correlations in human brain. To solve this problem, we propose a temporal graph representation learning framework for brain networks (BrainTGL). The framework involves a temporal graph pooling for eliminating the noisy edges as well as data inconsistency, and a dual temporal graph learning for capturing the spatio-temporal features of the temporal graphs. The proposed method has been evaluated in both tasks of brain disease (ASD, MDD and BD) diagnosis/gender classification (classification task) and subtype identification (clustering task) on the four datasets: Human Connectome Project (HCP), Autism Brain Imaging Data Exchange (ABIDE), NMU-MDD and NMU-BD. A large improvement is achieved for the ASD diagnosis. Specifically, our model outperforms the GroupINN and ST-GCN by an average increase of 4.2% and 8.6% on accuracy, respectively, demonstrating its advantages in comparison to the state-of-the-art methods based on functional connectivity features or learned spatio-temporal features. The results demonstrate that learning the spatial-temporal brain network representation for modeling dynamics characteristics in FBNs can improve the model's performance on both disease diagnosis and subtype identification tasks for multiple disorders. Apart from performance, the improvements of computational efficiency and convergence speed reduce training costs.
Collapse
Affiliation(s)
- Lingwen Liu
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Guangqi Wen
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China; Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.
| | - Tianshun Hong
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Xizhe Zhang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
28
|
Subramanyam Rallabandi V, Seetharaman K. Deep learning-based classification of healthy aging controls, mild cognitive impairment and Alzheimer’s disease using fusion of MRI-PET imaging. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Subramanyam Rallabandi V, Seetharaman K. Classification of cognitively normal controls, mild cognitive impairment and Alzheimer’s disease using transfer learning approach. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
30
|
Warren SL, Moustafa AA. Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review. J Neuroimaging 2023; 33:5-18. [PMID: 36257926 PMCID: PMC10092597 DOI: 10.1111/jon.13063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is currently diagnosed using a mixture of psychological tests and clinical observations. However, these diagnoses are not perfect, and additional diagnostic tools (e.g., MRI) can help improve our understanding of AD as well as our ability to detect the disease. Accordingly, a large amount of research has been invested into innovative diagnostic methods for AD. Functional MRI (fMRI) is a form of neuroimaging technology that has been used to diagnose AD; however, fMRI is incredibly noisy, complex, and thus lacks clinical use. Nonetheless, recent innovations in deep learning technology could enable the simplified and streamlined analysis of fMRI. Deep learning is a form of artificial intelligence that uses computer algorithms based on human neural networks to solve complex problems. For example, in fMRI research, deep learning models can automatically denoise images and classify AD by detecting patterns in participants' brain scans. In this systematic review, we investigate how fMRI (specifically resting-state fMRI) and deep learning methods are used to diagnose AD. In turn, we outline the common deep neural network, preprocessing, and classification methods used in the literature. We also discuss the accuracy, strengths, limitations, and future direction of fMRI deep learning methods. In turn, we aim to summarize the current field for new researchers, suggest specific areas for future research, and highlight the potential of fMRI to aid AD diagnoses.
Collapse
Affiliation(s)
- Samuel L. Warren
- School of Psychology, Faculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
| | - Ahmed A. Moustafa
- School of Psychology, Faculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
- Department of Human Anatomy and Physiology, Faculty of Health SciencesUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
31
|
Fu Y, Niu M, Gao Y, Dong S, Huang Y, Zhang Z, Zhuo C. Altered nonlinear Granger causality interactions in the large-scale brain networks of patients with schizophrenia. J Neural Eng 2022; 19. [PMID: 36579785 DOI: 10.1088/1741-2552/acabe7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.It has been demonstrated that schizophrenia (SZ) is characterized by functional dysconnectivity involving extensive brain networks. However, the majority of previous studies utilizing resting-state functional magnetic resonance imaging (fMRI) to infer abnormal functional connectivity (FC) in patients with SZ have focused on the linear correlation that one brain region may influence another, ignoring the inherently nonlinear properties of fMRI signals.Approach. In this paper, we present a neural Granger causality (NGC) technique for examining the changes in SZ's nonlinear causal couplings. We develop static and dynamic NGC-based analyses of large-scale brain networks at several network levels, estimating complicated temporal and causal relationships in SZ patients.Main results. We find that the NGC-based FC matrices can detect large and significant differences between the SZ and healthy control groups at both the regional and subnetwork scales. These differences are persistent and significantly overlapped at various network sparsities regardless of whether the brain networks were built using static or dynamic techniques. In addition, compared to controls, patients with SZ exhibited extensive NGC confusion patterns throughout the entire brain.Significance. These findings imply that the NGC-based FCs may be a useful method for quantifying the abnormalities in the causal influences of patients with SZ, hence shedding fresh light on the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuanhang Gao
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Shunjie Dong
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanyan Huang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, People's Republic of China.,Institute of Brain Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
32
|
Zhang X, Shams SP, Yu H, Wang Z, Zhang Q. A pairwise functional connectivity similarity measure method based on few-shot learning for early MCI detection. Front Neurosci 2022; 16:1081788. [PMID: 36601596 PMCID: PMC9806349 DOI: 10.3389/fnins.2022.1081788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease is an irreversible neurological disease, therefore prompt diagnosis during its early stage, i.e., early mild cognitive impairment (MCI), is crucial for effective treatment. In this paper, we propose an automatic diagnosis method, a few-shot learning-based pairwise functional connectivity (FC) similarity measure method, to detect early MCI. We first employ a sliding window strategy to generate a dynamic functional connectivity network (FCN) using each subject's rs-fMRI data. Then, normal controls (NCs) and early MCI patients are distinguished by measuring the similarity between the dynamic FC series of corresponding brain regions of interest (ROIs) pairs in different subjects. However, previous studies have shown that FC patterns in different ROI-pairs contribute differently to disease classification. To enable the FCs of different ROI-pairs to make corresponding contributions to disease classification, we adopt a self-attention mechanism to weight the FC features. We evaluated the suggested strategy using rs-fMRI data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and the results point to the viability of our approach for detecting MCI at an early stage.
Collapse
Affiliation(s)
- Xiangfei Zhang
- School of Cyberspace Security, Hainan University, Haikou, China
| | - Shayel Parvez Shams
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Hang Yu
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Zhengxia Wang
- School of Computer Science and Technology, Hainan University, Haikou, China
| | - Qingchen Zhang
- School of Computer Science and Technology, Hainan University, Haikou, China,*Correspondence: Qingchen Zhang ✉
| |
Collapse
|
33
|
Huang H, Liu Q, Jiang Y, Yang Q, Zhu X, Li Y. Deep Spatio-Temporal Attention-based Recurrent Network from Dynamic Adaptive Functional Connectivity for MCI Identification. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2600-2612. [PMID: 36040940 DOI: 10.1109/tnsre.2022.3202713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most existing methods of constructing dynamic functional connectivity (dFC) network obtain the connectivity strength via the sliding window correlation (SWC) method, which estimates the connectivity strength at each time segment, rather than at each time point, and thus is difficult to produce accurate dFC network due to the influence of the window type and window width. Furthermore, the deep learning methods may not capture the discriminative spatio-temporal information that is closely related to disease, thus impacting the performance of (mild cognitive impairment) MCI identification. In this paper, a novel spatio-temporal attention-based bidirectional gated recurrent unit (STA-BiGRU) network is proposed to extract inherent spatio-temporal information from a dynamic adaptive functional connectivity (dAFC) network for MCI diagnosis. Specifically, we adopt a group lasso-based Kalman filter algorithm to obtain the dAFC network with more accurate connectivity strength at each time step. Then a spatial attention module with self-attention and a temporal attention module with multiple temporal attention vectors are incorporated into the BiGRU network to extract more discriminative disease-related spatio-temporal information. Finally, the spatio-temporal regularizations are employed to better guide the attention learning of STA-BiGRU network to enhance the robustness of the deep network. Experimental results show that the proposed framework achieves mean accuracies of 90.2%, 90.0%, and 81.5%, respectively, for three MCI classification tasks. This study provides a more effective deep spatio-temporal attention-based recurrent network and obtains good performance and interpretability of deep learning for psychiatry diagnosis research.
Collapse
|
34
|
Lin K, Jie B, Dong P, Ding X, Bian W, Liu M. Convolutional Recurrent Neural Network for Dynamic Functional MRI Analysis and Brain Disease Identification. Front Neurosci 2022; 16:933660. [PMID: 35873806 PMCID: PMC9298744 DOI: 10.3389/fnins.2022.933660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic functional connectivity (dFC) networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) help us understand fundamental dynamic characteristics of human brains, thereby providing an efficient solution for automated identification of brain diseases, such as Alzheimer's disease (AD) and its prodromal stage. Existing studies have applied deep learning methods to dFC network analysis and achieved good performance compared with traditional machine learning methods. However, they seldom take advantage of sequential information conveyed in dFC networks that could be informative to improve the diagnosis performance. In this paper, we propose a convolutional recurrent neural network (CRNN) for automated brain disease classification with rs-fMRI data. Specifically, we first construct dFC networks from rs-fMRI data using a sliding window strategy. Then, we employ three convolutional layers and long short-term memory (LSTM) layer to extract high-level features of dFC networks and also preserve the sequential information of extracted features, followed by three fully connected layers for brain disease classification. Experimental results on 174 subjects with 563 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) demonstrate the effectiveness of our proposed method in binary and multi-category classification tasks.
Collapse
Affiliation(s)
- Kai Lin
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Biao Jie
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Peng Dong
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Xintao Ding
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Weixin Bian
- School of Computer and Information, Anhui Normal University, Wuhu, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
35
|
Guo X, Tinaz S, Dvornek NC. Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network. FRONTIERS IN NEUROIMAGING 2022; 1:952084. [PMID: 37555151 PMCID: PMC10406199 DOI: 10.3389/fnimg.2022.952084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 08/10/2023]
Abstract
Parkinson's disease (PD) is a common and complex neurodegenerative disorder with five stages on the Hoehn and Yahr scaling. Characterizing brain function alterations with progression of early stage disease would support accurate disease staging, development of new therapies, and objective monitoring of disease progression or treatment response. Functional magnetic resonance imaging (fMRI) is a promising tool in revealing functional connectivity (FC) differences and developing biomarkers in PD. While fMRI and FC data have been utilized for diagnosis of PD through application of machine learning approaches such as support vector machine and logistic regression, the characterization of FC changes in early-stage PD has not been investigated. Given the complexity and non-linearity of fMRI data, we propose the use of a long short-term memory (LSTM) network to distinguish the early stages of PD and understand related functional brain changes. The study included 84 subjects (56 in stage 2 and 28 in stage 1) from the Parkinson's Progression Markers Initiative (PPMI), the largest-available public PD dataset. Under a repeated 10-fold stratified cross-validation, the LSTM model reached an accuracy of 71.63%, 13.52% higher than the best traditional machine learning method and 11.56% higher than a CNN model, indicating significantly better robustness and accuracy compared with other machine learning classifiers. Finally, we used the learned LSTM model weights to select the top brain regions that contributed to model prediction and performed FC analyses to characterize functional changes with disease stage and motor impairment to gain better insight into the brain mechanisms of PD.
Collapse
Affiliation(s)
- Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Nicha C. Dvornek
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Lei B, Zhang Y, Liu D, Xu Y, Yue G, Cao J, Hu H, Yu S, Yang P, Wang T, Qiu Y, Xiao X, Wang S. Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Cao P, Wen G, Liu X, Yang J, Zaiane OR. Modeling the dynamic brain network representation for autism spectrum disorder diagnosis. Med Biol Eng Comput 2022; 60:1897-1913. [DOI: 10.1007/s11517-022-02558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
38
|
Turhan G, Küçük H, Isik EO. Spatio-temporal convolution for classification of alzheimer disease and mild cognitive impairment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106825. [PMID: 35636355 DOI: 10.1016/j.cmpb.2022.106825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Dementia refers to the loss of memory and other cognitive abilities. Alzheimer's disease (AD), which patients eventually die from, is the most common cause of dementia. In USA, %60 to %80 of dementia cases, are caused by AD. An estimate of 5.2 million people from all age groups have been diagnosed with AD in 2014. Mild cognitive impairment (MCI) is a preliminary stage of dementia with noticeable changes in patient's cognitive abilities. Individuals, who bear MCI symptoms, are prone to developing AD. Therefore, identification of MCI patients is very critical for a plausible treatment before it reaches to AD, the irreversible stage of this neurodegenerative disease. METHODS Development of machine learning algorithms have recently gained a significant pace in early diagnosis of Alzheimer's disease (AD). In this study, a (2+1)D convolutional neural network (CNN) architecture has been proposed to distinguish mild cognitive impairment (MCI) from AD, based on structural magnetic resonance imaging (MRI). MRI scans of AD and MCI subjects were procured from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 507 scans of 223 AD patients and 507 scans of 204 MCI patients were obtained for the computational experiments. RESULTS The outcome and robustness of 2D convolutions, 3D convolutions and (2+1)D convolutions were compared. The CNN algorithms incorporated 2 to 6 convolutional layers, depending on the architecture, followed by 4 pooling layers and 3 fully connected layers. (2+1)D convolutional neural network model resulted in the best classification performance with 85% auc score, in addition to an almost two times faster convergence compared to classical 3D CNN methods. CONCLUSIONS Application of (2+1)D CNN algorithm to large datasets and deeper neural network models can provide a significant advantage in speed, due to its architecture handling images in spatial and temporal dimensions separately.
Collapse
Affiliation(s)
- Gülce Turhan
- Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Haluk Küçük
- IQS, Department of Industrial Engineering, Universitat Ramon Llull, Barcelona, Spain.
| | - Esin Ozturk Isik
- Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
39
|
Cai C, Cao J, Yang C, Chen E. Diagnosis of Amnesic Mild Cognitive Impairment Using MGS-WBC and VGBN-LM Algorithms. Front Aging Neurosci 2022; 14:893250. [PMID: 35707699 PMCID: PMC9189381 DOI: 10.3389/fnagi.2022.893250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Computer-aided diagnosis (CAD) has undergone rapid development with the advent of advanced neuroimaging and machine learning methods. Nevertheless, how to extract discriminative features from the limited and high-dimensional data is not ideal, especially for amnesic mild cognitive impairment (aMCI) data based on resting-state functional magnetic resonance imaging (rs-fMRI). Furthermore, a robust and reliable system for aMCI detection is conducive to timely detecting and screening subjects at a high risk of Alzheimer's disease (AD). In this scenario, we first develop the mask generation strategy based on within-class and between-class criterion (MGS-WBC), which primarily aims at reducing data redundancy and excavating multiscale features of the brain. Concurrently, vector generation for brain networks based on Laplacian matrix (VGBN-LM) is presented to obtain the global features of the functional network. Finally, all multiscale features are fused to further improve the diagnostic performance of aMCI. Typical classifiers for small data learning, such as naive Bayesian (NB), linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVMs), are adopted to evaluate the diagnostic performance of aMCI. This study helps to reveal discriminative neuroimaging features, and outperforms the state-of-the-art methods, providing new insights for the intelligent construction of CAD system of aMCI.
Collapse
Affiliation(s)
- Chunting Cai
- School of Informatics, Xiamen University, Xiamen, China
| | | | - Chenhui Yang
- School of Informatics, Xiamen University, Xiamen, China
| | - E. Chen
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Wang Q, Li L, Qiao L, Liu M. Adaptive Multimodal Neuroimage Integration for Major Depression Disorder Detection. Front Neuroinform 2022; 16:856175. [PMID: 35571867 PMCID: PMC9100686 DOI: 10.3389/fninf.2022.856175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most common mental health disorders that can affect sleep, mood, appetite, and behavior of people. Multimodal neuroimaging data, such as functional and structural magnetic resonance imaging (MRI) scans, have been widely used in computer-aided detection of MDD. However, previous studies usually treat these two modalities separately, without considering their potentially complementary information. Even though a few studies propose integrating these two modalities, they usually suffer from significant inter-modality data heterogeneity. In this paper, we propose an adaptive multimodal neuroimage integration (AMNI) framework for automated MDD detection based on functional and structural MRIs. The AMNI framework consists of four major components: (1) a graph convolutional network to learn feature representations of functional connectivity networks derived from functional MRIs, (2) a convolutional neural network to learn features of T1-weighted structural MRIs, (3) a feature adaptation module to alleviate inter-modality difference, and (4) a feature fusion module to integrate feature representations extracted from two modalities for classification. To the best of our knowledge, this is among the first attempts to adaptively integrate functional and structural MRIs for neuroimaging-based MDD analysis by explicitly alleviating inter-modality heterogeneity. Extensive evaluations are performed on 533 subjects with resting-state functional MRI and T1-weighted MRI, with results suggesting the efficacy of the proposed method.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Long Li
- Taian Tumor Prevention and Treatment Hospital, Taian, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
41
|
Ali H, Haq IU, Cui L, Feng J. MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network. BMC Med Inform Decis Mak 2022; 22:90. [PMID: 35379228 PMCID: PMC8978355 DOI: 10.1186/s12911-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The digital pathology images obtain the essential information about the patient's disease, and the automated nuclei segmentation results can help doctors make better decisions about diagnosing the disease. With the speedy advancement of convolutional neural networks in image processing, deep learning has been shown to play a significant role in the various analysis of medical images, such as nuclei segmentation, mitosis detection and segmentation etc. Recently, several U-net based methods have been developed to solve the automated nuclei segmentation problems. However, these methods fail to deal with the weak features representation from the initial layers and introduce the noise into the decoder path. In this paper, we propose a multiscale attention learning network (MSAL-Net), where the dense dilated convolutions block captures more comprehensive nuclei context information, and a newly modified decoder part is introduced, which integrates with efficient channel attention and boundary refinement modules to effectively learn spatial information for better prediction and further refine the nuclei cell of boundaries. RESULTS Both qualitative and quantitative results are obtained on the publicly available MoNuseg dataset. Extensive experiment results verify that our proposed method significantly outperforms state-of-the-art methods as well as the vanilla Unet method in the segmentation task. Furthermore, we visually demonstrate the effect of our modified decoder part. CONCLUSION The MSAL-Net shows superiority with a novel decoder to segment the touching and blurred background nuclei cells obtained from histopathology images with better performance for accurate decoding.
Collapse
Affiliation(s)
- Haider Ali
- School of Information Science and Technology, Northwest University, Xian, China
| | - Imran ul Haq
- School of Information Science and Technology, Northwest University, Xian, China
| | - Lei Cui
- School of Information Science and Technology, Northwest University, Xian, China
| | - Jun Feng
- School of Information Science and Technology, Northwest University, Xian, China
| |
Collapse
|
42
|
Kazemivash B, Calhoun VD. A novel 5D brain parcellation approach based on spatio-temporal encoding of resting fMRI data from deep residual learning. J Neurosci Methods 2022; 369:109478. [PMID: 35031344 PMCID: PMC9394484 DOI: 10.1016/j.jneumeth.2022.109478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Brain parcellation is an essential aspect of computational neuroimaging research and deals with segmenting the brain into (possibly overlapping) sub-regions employed to study brain anatomy or function. In the context of functional parcellation, brain organization which is often measured via temporal metrics such as coherence, is highly dynamic. This dynamic aspect is ignored in most research, which typically applies anatomically based, fixed regions for each individual, and can produce misleading results. METHODS In this work, we propose a novel spatio-temporal-network (5D) brain parcellation scheme utilizing a deep residual network to predict the probability of each voxel belonging to a brain network at each point in time. RESULTS We trained 53 4D brain networks and evaluate the ability of these networks to capture spatial and temporal dynamics as well as to show sensitivity to individual or group-level variation (in our case with age). CONCLUSION The proposed system generates informative spatio-temporal networks that vary not only across individuals but also over time and space. SIGNIFICANCE The dynamic 5D nature of the developed approach provides a powerful framework that expands on existing work and has potential to identify novel and typically ignored findings when studying the healthy and disordered brain.
Collapse
Affiliation(s)
- Behnam Kazemivash
- Department of Computer Science, Georgia State University, Atlanta, GA 30332, USA.
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta GA 30303
| |
Collapse
|
43
|
Chu Y, Wang G, Cao L, Qiao L, Liu M. Multi-Scale Graph Representation Learning for Autism Identification With Functional MRI. Front Neuroinform 2022; 15:802305. [PMID: 35095453 PMCID: PMC8792610 DOI: 10.3389/fninf.2021.802305] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Resting-state functional MRI (rs-fMRI) has been widely used for the early diagnosis of autism spectrum disorder (ASD). With rs-fMRI, the functional connectivity networks (FCNs) are usually constructed for representing each subject, with each element representing the pairwise relationship between brain region-of-interests (ROIs). Previous studies often first extract handcrafted network features (such as node degree and clustering coefficient) from FCNs and then construct a prediction model for ASD diagnosis, which largely requires expert knowledge. Graph convolutional networks (GCNs) have recently been employed to jointly perform FCNs feature extraction and ASD identification in a data-driven manner. However, existing studies tend to focus on the single-scale topology of FCNs by using one single atlas for ROI partition, thus ignoring potential complementary topology information of FCNs at different spatial scales. In this paper, we develop a multi-scale graph representation learning (MGRL) framework for rs-fMRI based ASD diagnosis. The MGRL consists of three major components: (1) multi-scale FCNs construction using multiple brain atlases for ROI partition, (2) FCNs representation learning via multi-scale GCNs, and (3) multi-scale feature fusion and classification for ASD diagnosis. The proposed MGRL is evaluated on 184 subjects from the public Autism Brain Imaging Data Exchange (ABIDE) database with rs-fMRI scans. Experimental results suggest the efficacy of our MGRL in FCN feature extraction and ASD identification, compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Ying Chu
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Guangyu Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Liang Cao
- Taian Tumor Prevention and Treatment Hospital, Taian, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- *Correspondence: Lishan Qiao
| | - Mingxia Liu
- Department of Information Science and Technology, Taishan University, Taian, China
- Mingxia Liu
| |
Collapse
|
44
|
Self-attention Based High Order Sequence Features of Dynamic Functional Connectivity Networks with rs-fMRI for Brain Disease Classification. ARTIF INTELL 2022. [DOI: 10.1007/978-3-031-20500-2_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Guan H, Wang C, Tao D. MRI-based Alzheimer's disease prediction via distilling the knowledge in multi-modal data. Neuroimage 2021; 244:118586. [PMID: 34563678 DOI: 10.1016/j.neuroimage.2021.118586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mild cognitive impairment (MCI) conversion prediction, i.e., identifying MCI patients of high risks converting to Alzheimer's disease (AD), is essential for preventing or slowing the progression of AD. Although previous studies have shown that the fusion of multi-modal data can effectively improve the prediction accuracy, their applications are largely restricted by the limited availability or high cost of multi-modal data. Building an effective prediction model using only magnetic resonance imaging (MRI) remains a challenging research topic. In this work, we propose a multi-modal multi-instance distillation scheme, which aims to distill the knowledge learned from multi-modal data to an MRI-based network for MCI conversion prediction. In contrast to existing distillation algorithms, the proposed multi-instance probabilities demonstrate a superior capability of representing the complicated atrophy distributions, and can guide the MRI-based network to better explore the input MRI. To our best knowledge, this is the first study that attempts to improve an MRI-based prediction model by leveraging extra supervision distilled from multi-modal information. Experiments demonstrate the advantage of our framework, suggesting its potentials in the data-limited clinical settings.
Collapse
Affiliation(s)
- Hao Guan
- School of Computer Science, The University of Sydney, Australia
| | - Chaoyue Wang
- School of Computer Science, The University of Sydney, Australia.
| | - Dacheng Tao
- School of Computer Science, The University of Sydney, Australia; JD Explore Academy, China.
| |
Collapse
|
46
|
Fetanat M, Stevens M, Jain P, Hayward C, Meijering E, Lovell NH. Fully Elman Neural Network: A Novel Deep Recurrent Neural Network Optimized by an Improved Harris Hawks Algorithm for Classification of Pulmonary Arterial Wedge Pressure. IEEE Trans Biomed Eng 2021; 69:1733-1744. [PMID: 34813462 DOI: 10.1109/tbme.2021.3129459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the most prevalent life-threatening cardiovascular diseases in which 6.5 million people are suffering in the USA and more than 23 million worldwide. Mechanical circulatory support of HF patients can be achieved by implanting a left ventricular assist device (LVAD) into HF patients as a bridge to transplant, recovery or destination therapy and can be controlled by measurement of normal and abnormal pulmonary arterial wedge pressure (PAWP). While there are no commercial long-term implantable pressure sensors to measure PAWP, real-time non-invasive estimation of abnormal and normal PAWP becomes vital. In this work, first an improved Harris Hawks optimizer algorithm called HHO+ is presented and tested on 24 unimodal and multimodal benchmark functions. Second, a novel fully Elman neural network (FENN) is proposed to improve the classification performance. Finally, four novel 18-layer deep learning methods of convolutional neural networks (CNNs) with multi-layer perceptron (CNN-MLP), CNN with Elman neural networks (CNN-ENN), CNN with fully Elman neural networks (CNN-FENN), and CNN with fully Elman neural networks optimized by HHO+ algorithm (CNN-FENN-HHO+) for classification of abnormal and normal PAWP using estimated HVAD pump flow were developed and compared. The estimated pump flow was derived by a non-invasive method embedded into the commercial HVAD controller. The proposed methods are evaluated on an imbalanced clinical dataset using 5-fold cross-validation. The proposed CNN-FENN-HHO+ method outperforms the proposed CNN-MLP, CNN-ENN and CNN-FENN methods and improved the classification performance metrics across 5-fold cross-validation with an average sensitivity of 79%, accuracy of 78% and specificity of 76%. The proposed methods can reduce the likelihood of hazardous events like pulmonary congestion and ventricular suction for HF patients and notify identified abnormal cases to the hospital, clinician and cardiologist for emergency action, which can diminish the mortality rate of patients with HF.
Collapse
|
47
|
Wang N, Yao D, Ma L, Liu M. Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI. Med Image Anal 2021; 75:102279. [PMID: 34731776 DOI: 10.1016/j.media.2021.102279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.
Collapse
Affiliation(s)
- Nan Wang
- East China Normal University, Shanghai 200062, China
| | - Dongren Yao
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lizhuang Ma
- East China Normal University, Shanghai 200062, China; Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Guo T, Zhang Y, Xue Y, Qiao L, Shen D. Brain Function Network: Higher Order vs. More Discrimination. Front Neurosci 2021; 15:696639. [PMID: 34497485 PMCID: PMC8419271 DOI: 10.3389/fnins.2021.696639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Brain functional network (BFN) has become an increasingly important tool to explore individual differences and identify neurological/mental diseases. For estimating a "good" BFN (with more discriminative information for example), researchers have developed various methods, in which the most popular and simplest is Pearson's correlation (PC). Despite its empirical effectiveness, PC only encodes the low-order (second-order) statistics between brain regions. To model high-order statistics, researchers recently proposed to estimate BFN by conducting two sequential PCs (denoted as PC 2 in this paper), and found that PC 2-based BFN can provide additional information for group difference analysis. This inspires us to think about (1) what will happen if continuing the correlation operation to construct much higher-order BFN by PC n (n>2), and (2) whether the higher-order correlation will result in stronger discriminative ability. To answer these questions, we use PC n -based BFNs to predict individual differences (Female vs. Male) as well as identify subjects with mild cognitive impairment (MCI) from healthy controls (HCs). Through experiments, we have the following findings: (1) with the increase of n, the discriminative ability of PC n -based BFNs tends to decrease; (2) fusing the PC n -based BFNs (n>1) with the PC 1-based BFN can generally improve the sensitivity for MCI identification, but fail to help the classification accuracy. In addition, we empirically find that the sequence of BFN adjacency matrices estimated by PC n (n = 1,2,3,⋯ ) will converge to a binary matrix with elements of ± 1.
Collapse
Affiliation(s)
- Tingting Guo
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Yining Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Yanfang Xue
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.,Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.,Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
49
|
Wang Z, Jie B, Feng C, Wang T, Bian W, Ding X, Zhou W, Liu M. Distribution-guided Network Thresholding for Functional Connectivity Analysis in fMRI-based Brain Disorder Identification. IEEE J Biomed Health Inform 2021; 26:1602-1613. [PMID: 34428167 DOI: 10.1109/jbhi.2021.3107305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Brain functional connectivity (FC) networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely applied to automated identification of brain disorders, such as Alzheimer's disease (AD) and attention deficit hyperactivity disorder (ADHD). To generate compact representations of FC networks, various thresholding strategies have been developed to analyze brain FC networks. However, existing studies usually employ predefined thresholds or percentages of connections to threshold FC networks, thus ignoring the diversity of temporal correlation (particularly strong associations) among brain regions in same/different subject groups. Also, it is usually challenging to decide the optimal threshold or connection percentage in practice. To this end, in this paper, we propose a distribution-guided network thresholding (DNT) method for functional connectivity analysis in brain disorder identification with rs-fMRI. Specifically, for each functional connectivity of a pair of brain regions, we proposed to compute its specific threshold based on the distribution of connection strength (i.e., temporal correlation) between subject groups (e.g., patients and normal controls). The proposed DNT can adaptively yield FC-specific threshold for each connection in brain networks, thus preserving the diversity of temporal correlation among brain regions. Experiment results on both ADNI and ADHD-200 datasets demonstrate the effectiveness of our proposed DNT method in fMRI-based identification of AD and ADHD.
Collapse
|
50
|
Zhang Y, Jiang X, Qiao L, Liu M. Modularity-Guided Functional Brain Network Analysis for Early-Stage Dementia Identification. Front Neurosci 2021; 15:720909. [PMID: 34421530 PMCID: PMC8374334 DOI: 10.3389/fnins.2021.720909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/09/2021] [Indexed: 02/04/2023] Open
Abstract
Function brain network (FBN) analysis has shown great potential in identifying brain diseases, such as Alzheimer's disease (AD) and its prodromal stage, namely mild cognitive impairment (MCI). It is essential to identify discriminative and interpretable features from function brain networks, so as to improve classification performance and help us understand the pathological mechanism of AD-related brain disorders. Previous studies usually extract node statistics or edge weights from FBNs to represent each subject. However, these methods generally ignore the topological structure (such as modularity) of FBNs. To address this issue, we propose a modular-LASSO feature selection (MLFS) framework that can explicitly model the modularity information to identify discriminative and interpretable features from FBNs for automated AD/MCI classification. Specifically, the proposed MLFS method first searches the modular structure of FBNs through a signed spectral clustering algorithm, and then selects discriminative features via a modularity-induced group LASSO method, followed by a support vector machine (SVM) for classification. To evaluate the effectiveness of the proposed method, extensive experiments are performed on 563 resting-state functional MRI scans from the public ADNI database to identify subjects with AD/MCI from normal controls and predict the future progress of MCI subjects. Experimental results demonstrate that our method is superior to previous methods in both tasks of AD/MCI identification and MCI conversion prediction, and also helps discover discriminative brain regions and functional connectivities associated with AD.
Collapse
Affiliation(s)
- Yangyang Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Xiao Jiang
- School of Mathematics Science, Liaocheng University, Liaocheng, China.,School of Science and Technology, University of Camerino, Camerino, Italy
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|