1
|
Campanella S, Paragliola G, Cherubini V, Pierleoni P, Palma L. Towards Personalized AI-Based Diabetes Therapy: A Review. IEEE J Biomed Health Inform 2024; 28:6944-6957. [PMID: 39137085 DOI: 10.1109/jbhi.2024.3443137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Insulin pumps and other smart devices have recently made significant advancements in the treatment of diabetes, a disorder that affects people all over the world. The development of medical AI has been influenced by AI methods designed to help physicians make diagnoses, choose a course of therapy, and predict outcomes. In this article, we thoroughly analyse how AI is being used to enhance and personalize diabetes treatment. The search turned up 77 original research papers, from which we've selected the most crucial information regarding the learning models employed, the data typology, the deployment stage, and the application domains. We identified two key trends, enabled mostly by AI: patient-based therapy personalization and therapeutic algorithm optimization. In the meanwhile, we point out various shortcomings in the existing literature, like a lack of multimodal database analysis or a lack of interpretability. The rapid improvements in AI and the expansion of the amount of data already available offer the possibility to overcome these difficulties shortly and enable a wider deployment of this technology in clinical settings.
Collapse
|
2
|
Cappon G, Facchinetti A. Digital Twins in Type 1 Diabetes: A Systematic Review. J Diabetes Sci Technol 2024:19322968241262112. [PMID: 38887022 PMCID: PMC11572256 DOI: 10.1177/19322968241262112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Digital twin is a new concept that is rapidly gaining recognition especially in the medical field. Indeed, being a virtual representation of real-world entities and processes, a digital twin can be used to accurately represent the patients' disease, clarify the treatment target, and realize personalized and precise therapies. However, despite being a revolutionary concept, the diffusion of digital twins in type 1 diabetes (T1D) is still limited. In this systematic review, we analyzed structure, operating conditions, and characteristics of digital twins being developed for T1D. Our search covered published documents until March 2024: 220 publications were identified, 37 of which were duplicated entries; in addition, 173 publications were removed after inspection of titles, abstracts, and keywords; and finally, 11 publications were fully reviewed, of which 8 were deemed eligible for inclusion. We found that all eight methodologies are not comprehensive multi-scale virtual replicas of the individual with T1D, but they all focus on describing glucose-insulin metabolism, aiming to simulate glucose concentration resultant from therapeutic interventions. In this review, we will compare and analyze different factors characterizing these digital twins, such as operating principles (mathematical model, twinning procedure, validation and assessment) and the key aspects for practical adoption (inclusion of physical activity, data required for twinning, open-source availability). We will conclude the paper listing which, in our opinion, are the current limitations and future directives of digital twins in T1D, hoping that this article can be helpful to researchers working on diabetes technologies to further develop the use of such an important instrument.
Collapse
Affiliation(s)
- Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Pavan J, Noaro G, Facchinetti A, Salvagnin D, Sparacino G, Del Favero S. A strategy based on integer programming for optimal dosing and timing of preventive hypoglycemic treatments in type 1 diabetes management. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108179. [PMID: 38642427 DOI: 10.1016/j.cmpb.2024.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND OBJECTIVES One of the major problems related to type 1 diabetes (T1D) management is hypoglycemia, a condition characterized by low blood glucose levels and responsible for reduced quality of life and increased mortality. Fast-acting carbohydrates, also known as hypoglycemic treatments (HT), can counteract this event. In the literature, dosage and timing of HT are usually based on heuristic rules. In the present work, we propose an algorithm for mitigating hypoglycemia by suggesting preventive HT consumption, with dosages and timing determined by solving an optimization problem. METHODS By leveraging integer programming and linear inequality constraints, the algorithm can bind the amount of suggested carbohydrates to standardized quantities (i.e., those available in "off-the-shelf" HT) and the minimal distance between consecutive suggestions (to reduce the nuisance for patients). RESULTS The proposed method was tested in silico and compared with competitor algorithms using the UVa/Padova T1D simulator. At the cost of a slight increase of HT consumed per day, the proposed algorithm produces the lowest median and interquartile range of the time spent in hypoglycemia, with a statistically significant improvement over most competitor algorithms. Also, the average number of hypoglycemic events per day is reduced to 0 in median. CONCLUSIONS Thanks to its positive performances and reduced computational burden, the proposed algorithm could be a candidate tool for integration in a DSS aimed at improving T1D management.
Collapse
Affiliation(s)
- J Pavan
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - G Noaro
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - A Facchinetti
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - D Salvagnin
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - G Sparacino
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| | - S Del Favero
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padova, 35131, Italy.
| |
Collapse
|
4
|
den Brok EJ, Svensson CH, Panagiotou M, van Greevenbroek MMJ, Mertens PR, Vazeou A, Mitrakou A, Makrilakis K, Franssen GHLM, van Kuijk S, Proennecke S, Mougiakakou S, Pedersen-Bjergaard U, de Galan BE. The effect of bolus advisors on glycaemic parameters in adults with diabetes on intensive insulin therapy: A systematic review with meta-analysis. Diabetes Obes Metab 2024; 26:1950-1961. [PMID: 38504142 DOI: 10.1111/dom.15521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/21/2024]
Abstract
AIM To conduct a systematic review with meta-analysis to provide a comprehensive synthesis of randomized controlled trials (RCTs) and prospective cohort studies investigating the effects of currently available bolus advisors on glycaemic parameters in adults with diabetes. MATERIALS AND METHODS An electronic search of PubMed, Embase, CINAHL, Cochrane Library and ClinicalTrials.gov was conducted in December 2022. The risk of bias was assessed using the revised Cochrane Risk of Bias tool. (Standardized) mean difference (MD) was selected to determine the difference in continuous outcomes between the groups. A random-effects model meta-analysis and meta-regression were performed. This systematic review was registered on PROSPERO (CRD42022374588). RESULTS A total of 18 RCTs involving 1645 adults (50% females) with a median glycated haemoglobin (HbA1c) concentration of 8.45% (7.95%-9.30%) were included. The majority of participants had type 1 diabetes (N = 1510, 92%) and were on multiple daily injections (N = 1173, 71%). Twelve of the 18 trials had low risk of bias. The meta-analysis of 10 studies with available data on HbA1c showed that the use of a bolus advisor modestly reduced HbA1c compared to standard treatment (MD -011%, 95% confidence interval -0.22 to -0.01; I2 = 0%). This effect was accompanied by small improvements in low blood glucose index and treatment satisfaction, but not with reductions in hypoglycaemic events or changes in other secondary outcomes. CONCLUSION Use of a bolus advisor is associated with slightly better glucose control and treatment satisfaction in people with diabetes on intensive insulin treatment. Future studies should investigate whether personalizing bolus advisors using artificial intelligence technology can enhance these effects.
Collapse
Affiliation(s)
- Elisabeth J den Brok
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Cecilie H Svensson
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
| | - Maria Panagiotou
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | | | - Peter R Mertens
- Department of Kidney and Hypertension Diseases, Diabetology and Endocrinology, Otto-Von-Guericke-Univeristat Magdeburg, Magdeburg, Germany
| | | | - Asimina Mitrakou
- Diabetes Center, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gregor H L M Franssen
- University Library, Department Education, Content & Support, Maastricht University, Maastricht, The Netherlands
| | - Sander van Kuijk
- Clinical epidemiology & Medical Technology Assessment (KEMTA), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Stavroula Mougiakakou
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Lausanne, Denmark
| | - Bastiaan E de Galan
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Eghbali-Zarch M, Masoud S. Application of machine learning in affordable and accessible insulin management for type 1 and 2 diabetes: A comprehensive review. Artif Intell Med 2024; 151:102868. [PMID: 38632030 DOI: 10.1016/j.artmed.2024.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Proper insulin management is vital for maintaining stable blood sugar levels and preventing complications associated with diabetes. However, the soaring costs of insulin present significant challenges to ensuring affordable management. This paper conducts a comprehensive review of current literature on the application of machine learning (ML) in insulin management for diabetes patients, particularly focusing on enhancing affordability and accessibility within the United States. The review encompasses various facets of insulin management, including dosage calculation and response, prediction of blood glucose and insulin sensitivity, initial insulin estimation, resistance prediction, treatment adherence, complications, hypoglycemia prediction, and lifestyle modifications. Additionally, the study identifies key limitations in the utilization of ML within the insulin management literature and suggests future research directions aimed at furthering accessible and affordable insulin treatments. These proposed directions include exploring insurance coverage, optimizing insulin type selection, assessing the impact of biosimilar insulin and market competition, considering mental health factors, evaluating insulin delivery options, addressing cost-related issues affecting insulin usage and adherence, and selecting appropriate patient cost-sharing programs. By examining the potential of ML in addressing insulin management affordability and accessibility, this work aims to envision improved and cost-effective insulin management practices. It not only highlights existing research gaps but also offers insights into future directions, guiding the development of innovative solutions that have the potential to revolutionize insulin management and benefit patients reliant on this life-saving treatment.
Collapse
Affiliation(s)
- Maryam Eghbali-Zarch
- Department of Industrial and Systems Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Sara Masoud
- Department of Industrial and Systems Engineering, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Danieli MG, Brunetto S, Gammeri L, Palmeri D, Claudi I, Shoenfeld Y, Gangemi S. Machine learning application in autoimmune diseases: State of art and future prospectives. Autoimmun Rev 2024; 23:103496. [PMID: 38081493 DOI: 10.1016/j.autrev.2023.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024]
Abstract
Autoimmune diseases are a group of disorders resulting from an alteration of immune tolerance, characterized by the formation of autoantibodies and the consequent development of heterogeneous clinical manifestations. Diagnosing autoimmune diseases is often complicated, and the available prognostic tools are limited. Machine learning allows us to analyze large amounts of data and carry out complex calculations quickly and with minimal effort. In this work, we examine the literature focusing on the use of machine learning in the field of the main systemic (systemic lupus erythematosus and rheumatoid arthritis) and organ-specific autoimmune diseases (type 1 diabetes mellitus, autoimmune thyroid, gastrointestinal, and skin diseases). From our analysis, interesting applications of machine learning emerged for developing algorithms useful in the early diagnosis of disease or prognostic models (risk of complications, therapeutic response). Subsequent studies and the creation of increasingly rich databases to be supplied to the algorithms will eventually guide the clinician in the diagnosis, allowing intervention when the pathology is still in an early stage and immediately directing towards a correct therapeutic approach.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti. AOU delle Marche & Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Silvia Brunetto
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Luca Gammeri
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, and Reichman University Herzliya, Israel.
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
7
|
Roversi C, Camerlingo N, Vettoretti M, Facchinetti A, Choudhary P, Sparacino G, Del Favero S. Risk of hypoglycemia in type 1 diabetes management: An in-silico sensitivity analysis to assess and rank the quantitative impact of different behavioral factors. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107943. [PMID: 38042693 DOI: 10.1016/j.cmpb.2023.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND AND OBJECTIVE In type 1 diabetes (T1D), a quantitative evaluation of the impact on hypoglycemia of suboptimal therapeutic decision (e.g. incorrect estimation of the ingested carbohydrates, inaccurate insulin timing, etc) is unavailable. Clinical trials to measure sensitivity to patient actions would be expensive, exposed to confounding factors and risky for the participants. In this work, a T1D patient decision simulator (T1D-PDS), realistically reproducing blood glucose dynamics in a large virtual population, is used to perform extensive in-silico trials and the so-derived data employed to implement a sensitivity analysis that ranks different behavioral factors based on their impact on a clinically meaningful parameter, the time below range (TBR). METHODS Eleven behavioral factors impacting on hypoglycemia are considered. The T1D-PDS was used to perform multiple 2-week simulations involving 100 adults, by testing about 3500 different perturbations for nominal behavior. A local linear approximation of the function linking the TBR and the factors were computed to derive sensitivity indices (SIs), quantifying the impact of each factor on TBR variations. RESULTS The obtained ranking quantifies importance of factors w.r.t. the others. Factors apparently related to hypoglycemia were correctly placed on the top of the ranking, including systematic (SI=2.05%) and random (SI=1.35%) carb-counting error, hypotreatment dose (SI=-1.21%), insulin bolus time w.r.t. mealtime (SI=1.09%). CONCLUSIONS The obtained SIs allowed to rank behavioral factors based on their impact on TBR. The behavioral factors identified as most influential can be prioritized in patient training.
Collapse
Affiliation(s)
- Chiara Roversi
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, Padova, 35131, Padova, Italy
| | - Nunzio Camerlingo
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, Padova, 35131, Padova, Italy
| | - Martina Vettoretti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, Padova, 35131, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, Padova, 35131, Padova, Italy
| | - Pratik Choudhary
- Department of Diabetes, King's College London, Weston Education Centre, Denmark Hill, London, SE5 9RJ, United Kingdom
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, Padova, 35131, Padova, Italy
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, Padova, 35131, Padova, Italy.
| |
Collapse
|
8
|
Jacobs PG, Herrero P, Facchinetti A, Vehi J, Kovatchev B, Breton MD, Cinar A, Nikita KS, Doyle FJ, Bondia J, Battelino T, Castle JR, Zarkogianni K, Narayan R, Mosquera-Lopez C. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Rev Biomed Eng 2024; 17:19-41. [PMID: 37943654 DOI: 10.1109/rbme.2023.3331297] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid. METHODS Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources. SIGNIFICANCE These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.
Collapse
|
9
|
Cobelli C, Kovatchev B. Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility. J Diabetes Sci Technol 2023; 17:1493-1505. [PMID: 37743740 PMCID: PMC10658679 DOI: 10.1177/19322968231195081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Arguably, diabetes mellitus is one of the best quantified human conditions. In the past 50 years, the metabolic monitoring technologies progressed from occasional assessment of average glycemia via HbA1c, through episodic blood glucose readings, to continuous glucose monitoring (CGM) producing data points every few minutes. The high-temporal resolution of CGM data enabled increasingly intensive treatments, from decision support assisting insulin injection or oral medication, to automated closed-loop control, known as the "artificial pancreas." Throughout this progress, mathematical models and computer simulation of the human metabolic system became indispensable for the technological progress of diabetes treatment, enabling every step, from assessment of insulin sensitivity via the now classic Minimal Model of Glucose Kinetics, to in silico trials replacing animal experiments, to automated insulin delivery algorithms. In this review, we follow these developments, beginning with the Minimal Model, which evolved through the years to become large and comprehensive and trigger a paradigm change in the design of diabetes optimization strategies: in 2007, we introduced a sophisticated model of glucose-insulin dynamics and a computer simulator equipped with a "population" of N = 300 in silico "subjects" with type 1 diabetes. In January 2008, in an unprecedented decision, the Food and Drug Administration (FDA) accepted this simulator as a substitute to animal trials for the pre-clinical testing of insulin treatment strategies. This opened the field for rapid and cost-effective development and pre-clinical testing of new treatment approaches, which continues today. Meanwhile, animal experiments for the purpose of designing new insulin treatment algorithms have been abandoned.
Collapse
Affiliation(s)
| | - Boris Kovatchev
- Center for Diabetes Technology,
University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
10
|
Cappon G, Vettoretti M, Sparacino G, Favero SD, Facchinetti A. ReplayBG: A Digital Twin-Based Methodology to Identify a Personalized Model From Type 1 Diabetes Data and Simulate Glucose Concentrations to Assess Alternative Therapies. IEEE Trans Biomed Eng 2023; 70:3227-3238. [PMID: 37368794 DOI: 10.1109/tbme.2023.3286856] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Design and assessment of new therapies for type 1 diabetes (T1D) management can be greatly facilitated by in silico simulations. The ReplayBG simulation methodology here proposed allows "replaying" the scenario behind data already collected by simulating the glucose concentration obtained in response to alternative insulin/carbohydrate therapies and evaluate their efficacy leveraging the concept of digital twin. METHODS ReplayBG is based on two steps. First, a personalized model of glucose-insulin dynamics is identified using insulin, carbohydrate, and continuous glucose monitoring (CGM) data. Then, this model is used to simulate the glucose concentration that would have been obtained by "replaying" the same portion of data using a different therapy. The validity of the methodology was evaluated on 100 virtual subjects using the UVa/Padova T1D Simulator (T1DS). In particular, the glucose concentration traces simulated by ReplayBG are compared with those provided by T1DS in five different scenarios of insulin and carbohydrate treatment modifications. Furthermore, we compared ReplayBG with a state-of-the-art methodology for the scope. Finally, two case studies using real data are also presented. RESULTS ReplayBG simulates with high accuracy the effect of the considered insulin and carbohydrate treatment alterations, performing significantly better than state-of-art method in almost all considered situations. CONCLUSION ReplayBG proved to be a reliable and robust tool to retrospectively explore the effect of new treatments for T1D on the glucose dynamics. It is freely available as open source software at https://github.com/gcappon/replay-bg. SIGNIFICANCE ReplayBG offers a new approach to preliminary evaluate new therapies for T1D management before clinical trials.
Collapse
|
11
|
Zhu T, Li K, Georgiou P. Offline Deep Reinforcement Learning and Off-Policy Evaluation for Personalized Basal Insulin Control in Type 1 Diabetes. IEEE J Biomed Health Inform 2023; 27:5087-5098. [PMID: 37607154 DOI: 10.1109/jbhi.2023.3303367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Recent advancements in hybrid closed-loop systems, also known as the artificial pancreas (AP), have been shown to optimize glucose control and reduce the self-management burdens for people living with type 1 diabetes (T1D). AP systems can adjust the basal infusion rates of insulin pumps, facilitated by real-time communication with continuous glucose monitoring. Deep reinforcement learning (DRL) has introduced new paradigms of basal insulin control algorithms. However, all the existing DRL-based AP controllers require extensive random online interactions between the agent and environment. While this can be validated in T1D simulators, it becomes impractical in real-world clinical settings. To this end, we propose an offline DRL framework that can develop and validate models for basal insulin control entirely offline. It comprises a DRL model based on the twin delayed deep deterministic policy gradient and behavior cloning, as well as off-policy evaluation (OPE) using fitted Q evaluation. We evaluated the proposed framework on an in silico dataset generated by the UVA/Padova T1D simulator, and the OhioT1DM dataset, a real clinical dataset. The performance on the in silico dataset shows that the offline DRL algorithm significantly increased time in range while reducing time below range and time above range for both adult and adolescent groups. Then, we used the OPE to estimate model performance on the clinical dataset, where a notable increase in policy values was observed for each subject. The results demonstrate that the proposed framework is a viable and safe method for improving personalized basal insulin control in T1D.
Collapse
|
12
|
Afsaneh E, Sharifdini A, Ghazzaghi H, Ghobadi MZ. Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review. Diabetol Metab Syndr 2022; 14:196. [PMID: 36572938 PMCID: PMC9793536 DOI: 10.1186/s13098-022-00969-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetes as a metabolic illness can be characterized by increased amounts of blood glucose. This abnormal increase can lead to critical detriment to the other organs such as the kidneys, eyes, heart, nerves, and blood vessels. Therefore, its prediction, prognosis, and management are essential to prevent harmful effects and also recommend more useful treatments. For these goals, machine learning algorithms have found considerable attention and have been developed successfully. This review surveys the recently proposed machine learning (ML) and deep learning (DL) models for the objectives mentioned earlier. The reported results disclose that the ML and DL algorithms are promising approaches for controlling blood glucose and diabetes. However, they should be improved and employed in large datasets to affirm their applicability.
Collapse
|
13
|
Machine Learning Approach for Care Improvement of Children and Youth with Type 1 Diabetes Treated with Hybrid Closed-Loop System. ELECTRONICS 2022. [DOI: 10.3390/electronics11142227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type 1 diabetes is a disease affecting beta cells of the pancreas and it’s responsible for a decreased insulin secretion, leading to an increased blood glucose level. The traditional method for glucose treatment is based on finger-stick measurement of the blood glucose concentration and consequent manual insulin injection. Nowadays insulin pumps and continuous glucose monitoring systems are replacing them, being simpler and automatized. This paper focuses on analyzing and improving the knowledge about which Machine Learning algorithms can work best with glycaemic data and tries to find out the relation between insulin pump settings and glycaemic control. The dataset is composed of 90 days of recordings taken from 16 children and adolescents. Three Machine Learning approaches, two for classification, Logistic Regression (LR) and Random Forest (RL), and one for regression, Multivariate Linear Regression (MLR), have been used for the purpose. Specifically, the pump settings analysis was performed based on the Time In Range (TIR) computation and comparison consequent to pump setting changes. RF and MLR have shown the best results, while, for the settings’ analysis, the data show a discrete correlation between changes and TIRs. This study provides an interesting closer look at the data recorded by the insulin pump and a suitable starting point for a thorough and complete analysis of them.
Collapse
|
14
|
Xu NY, Nguyen KT, DuBord AY, Pickup J, Sherr JL, Teymourian H, Cengiz E, Ginsberg BH, Cobelli C, Ahn D, Bellazzi R, Bequette BW, Gandrud Pickett L, Parks L, Spanakis EK, Masharani U, Akturk HK, Melish JS, Kim S, Kang GE, Klonoff DC. Diabetes Technology Meeting 2021. J Diabetes Sci Technol 2022; 16:1016-1056. [PMID: 35499170 PMCID: PMC9264449 DOI: 10.1177/19322968221090279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes Technology Society hosted its annual Diabetes Technology Meeting on November 4 to November 6, 2021. This meeting brought together speakers to discuss various developments within the field of diabetes technology. Meeting topics included blood glucose monitoring, continuous glucose monitoring, novel sensors, direct-to-consumer telehealth, metrics for glycemia, software for diabetes, regulation of diabetes technology, diabetes data science, artificial pancreas, novel insulins, insulin delivery, skin trauma, metabesity, precision diabetes, diversity in diabetes technology, use of diabetes technology in pregnancy, and green diabetes. A live demonstration on a mobile app to monitor diabetic foot wounds was presented.
Collapse
Affiliation(s)
- Nicole Y. Xu
- Diabetes Technology Society,
Burlingame, CA, USA
| | | | | | | | | | | | - Eda Cengiz
- University of California, San
Francisco, San Francisco, CA, USA
| | | | | | - David Ahn
- Mary & Dick Allen Diabetes Center
at Hoag, Newport Beach, CA, USA
| | | | | | | | - Linda Parks
- University of California, San
Francisco, San Francisco, CA, USA
| | - Elias K. Spanakis
- Baltimore VA Medical Center,
Baltimore, MD, USA
- University of Maryland, Baltimore,
MD, USA
| | - Umesh Masharani
- University of California, San
Francisco, San Francisco, CA, USA
| | - Halis K. Akturk
- Barbara Davis Center for Diabetes,
University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Sarah Kim
- University of California, San
Francisco, San Francisco, CA, USA
| | - Gu Eon Kang
- The University of Texas at Dallas,
Richardson, TX, USA
| | - David C. Klonoff
- Diabetes Research Institute,
Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
15
|
Liu R, Ou L, Sheng B, Hao P, Li P, Yang X, Xue G, Zhu L, Luo Y, Zhang P, Yang P, Li H, Feng DD. Mixed-weight Neural Bagging for Detecting m6A Modifications in SARS-CoV-2 RNA Sequencing. IEEE Trans Biomed Eng 2022; 69:2557-2568. [PMID: 35148261 PMCID: PMC9599617 DOI: 10.1109/tbme.2022.3150420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Objective: The m6A modification is the most common ribonucleic acid (RNA) modification, playing a role in prompting the virus's gene mutation and protein structure changes in the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Nanopore single-molecule direct RNA sequencing (DRS) provides data support for RNA modification detection, which can preserve the potential \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} signature compared to second-generation sequencing. However, due to insufficient DRS data, there is a lack of methods to find m6A RNA modifications in DRS. Our purpose is to identify \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} modifications in DRS precisely. Methods: We present a methodology for identifying \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} modifications that incorporated mapping and extracted features from DRS data. To detect \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} modifications, we introduce an ensemble method called mixed-weight neural bagging (MWNB), trained with 5-base RNA synthetic DRS containing modified and unmodified \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document}. Results: Our MWNB model achieved the highest classification accuracy of 97.85% and AUC of 0.9968. Additionally, we applied the MWNB model to the COVID-19 dataset; the experiment results reveal a strong association with biomedical experiments. Conclusion: Our strategy enables the prediction of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} modifications using DRS data and completes the identification of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} modifications on the SARS-CoV-2. Significance: The Corona Virus Disease 2019 (COVID-19) outbreak has significantly influence, caused by the SARS-CoV-2. An RNA modification called \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} is connected with viral infections. The appearance of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} modifications related to several essential proteins affects proteins’ structure and function. Therefore, finding the location and number of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$m^6A$\end{document} RNA modifications is crucial for subsequent analysis of the protein expression profile.
Collapse
|
16
|
Li T, Wang Z, Lu W, Zhang Q, Li D. Electronic health records based reinforcement learning for treatment optimizing. INFORM SYST 2022. [DOI: 10.1016/j.is.2021.101878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Swain S, Bhushan B, Dhiman G, Viriyasitavat W. Appositeness of Optimized and Reliable Machine Learning for Healthcare: A Survey. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 29:3981-4003. [PMID: 35342282 PMCID: PMC8939887 DOI: 10.1007/s11831-022-09733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/09/2022] [Indexed: 05/04/2023]
Abstract
Machine Learning (ML) has been categorized as a branch of Artificial Intelligence (AI) under the Computer Science domain wherein programmable machines imitate human learning behavior with the help of statistical methods and data. The Healthcare industry is one of the largest and busiest sectors in the world, functioning with an extensive amount of manual moderation at every stage. Most of the clinical documents concerning patient care are hand-written by experts, selective reports are machine-generated. This process elevates the chances of misdiagnosis thereby, imposing a risk to a patient's life. Recent technological adoptions for automating manual operations have witnessed extensive use of ML in its applications. The paper surveys the applicability of ML approaches in automating medical systems. The paper discusses most of the optimized statistical ML frameworks that encourage better service delivery in clinical aspects. The universal adoption of various Deep Learning (DL) and ML techniques as the underlying systems for a variety of wellness applications, is delineated by challenges and elevated by myriads of security. This work tries to recognize a variety of vulnerabilities occurring in medical procurement, admitting the concerns over its predictive performance from a privacy point of view. Finally providing possible risk delimiting facts and directions for active challenges in the future.
Collapse
Affiliation(s)
- Subhasmita Swain
- Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Bharat Bhushan
- Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Gaurav Dhiman
- Department of Computer Science, Government Bikram College of Commerce, Patiala, India
- University Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh University, Gharuan, Mohali, India
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, India
| | - Wattana Viriyasitavat
- Department of Statistics, Faculty of Commerce and Accountancy, Chulalongkorn Business School, Bangkok, Thailand
| |
Collapse
|
18
|
Vehi J, Mujahid O, Contreras I. Aim and Diabetes. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Cappon G, Pighin E, Prendin F, Sparacino G, Facchinetti A. A Correction Insulin Bolus Delivery Strategy for Decision Support Systems in Type 1 Diabetes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1832-1835. [PMID: 34891643 DOI: 10.1109/embc46164.2021.9630052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Management of type 1 diabetes (T1D) requires affected individuals to perform multiple daily actions to keep their blood glucose levels within the safe rage and avoid adverse hypo-/hyperglycemic episodes. Decision support systems (DSS) for T1D are composite tools that implement multiple software modules aiming to ease such a burden and to improve glucose control. At the University of Padova, we are developing a new DSS that currently integrate a smart insulin bolus calculator for optimal insulin dosing and a rescue carbohydrate intake advisor to tackle hypoglycemia. However, a module specifically targeting hyperglycemia, that suggests the administration of corrective insulin boluses (CIB), is still missing. For such a scope, this work aims to assess a recent literature methodology, proposed by Aleppo et al., which provides a simple strategy for dealing with hyperglycemia. The methodology is tested retrospectively on clinical data of individuals with T1D. In particular, here we leveraged a novel in silico tool that first identifies a non-linear model of glucose-insulin dynamics on data, then uses such model to simulate and compare the glucose trace obtained by "replaying" the recorded scenario and the glucose trace obtained using the CIB delivery strategy under evaluation. Results show that the CIB delivery strategy significantly reduce the percentage of time spent in hyperglycemia (-15.63%) without inducing any hypoglycemic episode, demonstrating both safety and efficacy of its use. These preliminary results suggest that the CIB delivery strategy proposed by Aleppo et al. is a promising candidate to be included in our system to counteract hyperglycemia. Future work will extensively evaluate the methodology and will compare it against other competing approaches.
Collapse
|
20
|
Noaro G, Cappon G, Sparacino G, Facchinetti A. An Ensemble Learning Algorithm Based on Dynamic Voting for Targeting the Optimal Insulin Dosage in Type 1 Diabetes Management. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1828-1831. [PMID: 34891642 DOI: 10.1109/embc46164.2021.9630843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
People with type 1 diabetes (T1D) need exogenous insulin administrations several times a day. The amount of injected insulin is key for maintaining the concentration of blood glucose (BG) within a physiological safe range. According to well-established clinical guidelines, insulin dosing at mealtime is calculated through an empirical formula which, however, does not take advantage of the knowledge of BG trend provided in real-time by continuous glucose monitoring (CGM) sensors. To overcome suboptimal insulin dosage, we recently used machine learning techniques to build two new models, one linear and one nonlinear, which incorporate BG trend information.In this work, we propose an ensemble learning method for mealtime insulin bolus estimation based on dynamic voting, which combines the two models by taking advantage of where each alternative performs better. Being the resulting model black-box, a tool that enables its interpretability was applied to evaluate the contribution of each feature. The proposed model was trained using a synthetic dataset having information on 100 virtual subjects with different mealtime conditions, and its performance was evaluated within a simulated environment.The benefit given by the ensemble method compared to the single models was confirmed by the high time within the target glycemic range, and the trade-off reached in terms of time spent below and above this range. Moreover, the model interpretation pointed out the key role played by the information on BG dynamics in the estimation of insulin dosage.
Collapse
|
21
|
Gautier T, Ziegler LB, Gerber MS, Campos-Náñez E, Patek SD. Artificial intelligence and diabetes technology: A review. Metabolism 2021; 124:154872. [PMID: 34480920 DOI: 10.1016/j.metabol.2021.154872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI) is widely discussed in the popular literature and is portrayed as impacting many aspects of human life, both in and out of the workplace. The potential for revolutionizing healthcare is significant because of the availability of increasingly powerful computational platforms and methods, along with increasingly informative sources of patient data, both in and out of clinical settings. This review aims to provide a realistic assessment of the potential for AI in understanding and managing diabetes, accounting for the state of the art in the methodology and medical devices that collect data, process data, and act accordingly. Acknowledging that many conflicting definitions of AI have been put forth, this article attempts to characterize the main elements of the field as they relate to diabetes, identifying the main perspectives and methods that can (i) affect basic understanding of the disease, (ii) affect understanding of risk factors (genetic, clinical, and behavioral) of diabetes development, (iii) improve diagnosis, (iv) improve understanding of the arc of disease (progression and personal/societal impact), and finally (v) improve treatment.
Collapse
Affiliation(s)
- Thibault Gautier
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America.
| | - Leah B Ziegler
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| | - Matthew S Gerber
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| | - Enrique Campos-Náñez
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| | - Stephen D Patek
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| |
Collapse
|
22
|
Cappon G, Noaro G, Camerlingo N, Cossu L, Sparacino G, Facchinetti A. A New Decision Support System for Type 1 Diabetes Management. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1993-1996. [PMID: 34891678 DOI: 10.1109/embc46164.2021.9629797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Type 1 diabetes (T1D) is a chronic life-threatening metabolic condition which needs to be accurately and continuously managed with care by multiple daily exogenous insulin injections, frequent blood glucose concentration monitoring, ad-hoc diet, and physical activity. In the last decades, new technologies, such as continuous glucose monitoring sensors, eased the burden for T1D patients and opened new therapy perspectives by fostering the development of decision support systems (DSS). A DSS for T1D should be able to provide patients with advice aimed at improving metabolic control and reducing the number of actions related to therapy handling. Major challenges are the vast intra-/inter-subject physiological variability and the many factors that impact glucose metabolism. The present work illustrates a new DSS for T1D management. The algorithmic core includes a module for optimal, personalized, insulin dose calculation and a module that triggers the assumption of rescue carbohydrates to avoid/mitigate impending hypoglycemic events. The algorithms are integrated within a prototype communication platform that comprises a mobile app, a real-time telemonitoring interface, and a cloud server to safely store patients' data. Tests made in silico show that the use of the new algorithms lead to metabolic control indices significantly better than those obtained by the standard care for T1D. The preliminary test of the prototype platform suggests that it is robust, performant, and well-accepted by both patients and clinicians. Future work will focus on the refinement of the communication platform and the design of a clinical trial to assess the system effectiveness in real-life conditions.Clinical Relevance- The presented DSS is a promising tool to facilitate T1D daily management and improve therapy efficacy.
Collapse
|
23
|
Nguyen M, Jankovic I, Kalesinskas L, Baiocchi M, Chen JH. Machine learning for initial insulin estimation in hospitalized patients. J Am Med Inform Assoc 2021; 28:2212-2219. [PMID: 34279615 PMCID: PMC8449602 DOI: 10.1093/jamia/ocab099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The study sought to determine whether machine learning can predict initial inpatient total daily dose (TDD) of insulin from electronic health records more accurately than existing guideline-based dosing recommendations. MATERIALS AND METHODS Using electronic health records from a tertiary academic center between 2008 and 2020 of 16,848 inpatients receiving subcutaneous insulin who achieved target blood glucose control of 100-180 mg/dL on a calendar day, we trained an ensemble machine learning algorithm consisting of regularized regression, random forest, and gradient boosted tree models for 2-stage TDD prediction. We evaluated the ability to predict patients requiring more than 6 units TDD and their point-value TDDs to achieve target glucose control. RESULTS The method achieves an area under the receiver-operating characteristic curve of 0.85 (95% confidence interval [CI], 0.84-0.87) and area under the precision-recall curve of 0.65 (95% CI, 0.64-0.67) for classifying patients who require more than 6 units TDD. For patients requiring more than 6 units TDD, the mean absolute percent error in dose prediction based on standard clinical calculators using patient weight is in the range of 136%-329%, while the regression model based on weight improves to 60% (95% CI, 57%-63%), and the full ensemble model further improves to 51% (95% CI, 48%-54%). DISCUSSION Owingto the narrow therapeutic window and wide individual variability, insulin dosing requires adaptive and predictive approaches that can be supported through data-driven analytic tools. CONCLUSIONS Machine learning approaches based on readily available electronic medical records can discriminate which inpatients will require more than 6 units TDD and estimate individual doses more accurately than standard guidelines and practices.
Collapse
Affiliation(s)
- Minh Nguyen
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, California, USA
| | - Ivana Jankovic
- Division of Endocrinology, Department of Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Laurynas Kalesinskas
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, California, USA
| | - Michael Baiocchi
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Jonathan H Chen
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
24
|
Mujahid O, Contreras I, Vehi J. Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges. SENSORS (BASEL, SWITZERLAND) 2021; 21:E546. [PMID: 33466659 PMCID: PMC7828835 DOI: 10.3390/s21020546] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
(1) Background: the use of machine learning techniques for the purpose of anticipating hypoglycemia has increased considerably in the past few years. Hypoglycemia is the drop in blood glucose below critical levels in diabetic patients. This may cause loss of cognitive ability, seizures, and in extreme cases, death. In almost half of all the severe cases, hypoglycemia arrives unannounced and is essentially asymptomatic. The inability of a diabetic patient to anticipate and intervene the occurrence of a hypoglycemic event often results in crisis. Hence, the prediction of hypoglycemia is a vital step in improving the life quality of a diabetic patient. The objective of this paper is to review work performed in the domain of hypoglycemia prediction by using machine learning and also to explore the latest trends and challenges that the researchers face in this area; (2) Methods: literature obtained from PubMed and Google Scholar was reviewed. Manuscripts from the last five years were searched for this purpose. A total of 903 papers were initially selected of which 57 papers were eventually shortlisted for detailed review; (3) Results: a thorough dissection of the shortlisted manuscripts provided an interesting split between the works based on two categories: hypoglycemia prediction and hypoglycemia detection. The entire review was carried out keeping this categorical distinction in perspective while providing a thorough overview of the machine learning approaches used to anticipate hypoglycemia, the type of training data, and the prediction horizon.
Collapse
Affiliation(s)
- Omer Mujahid
- Model Identification and Control Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (O.M.); (I.C.)
| | - Ivan Contreras
- Model Identification and Control Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (O.M.); (I.C.)
| | - Josep Vehi
- Model Identification and Control Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (O.M.); (I.C.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 17003 Girona, Spain
| |
Collapse
|
25
|
Aim and Diabetes. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors. SENSORS 2020; 20:s20143870. [PMID: 32664432 PMCID: PMC7412387 DOI: 10.3390/s20143870] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Wearable continuous glucose monitoring (CGM) sensors are revolutionizing the treatment of type 1 diabetes (T1D). These sensors provide in real-time, every 1-5 min, the current blood glucose concentration and its rate-of-change, two key pieces of information for improving the determination of exogenous insulin administration and the prediction of forthcoming adverse events, such as hypo-/hyper-glycemia. The current research in diabetes technology is putting considerable effort into developing decision support systems for patient use, which automatically analyze the patient's data collected by CGM sensors and other portable devices, as well as providing personalized recommendations about therapy adjustments to patients. Due to the large amount of data collected by patients with T1D and their variety, artificial intelligence (AI) techniques are increasingly being adopted in these decision support systems. In this paper, we review the state-of-the-art methodologies using AI and CGM sensors for decision support in advanced T1D management, including techniques for personalized insulin bolus calculation, adaptive tuning of bolus calculator parameters and glucose prediction.
Collapse
|