1
|
Jacobs EJ, Rubinsky B, Davalos RV. Pulsed field ablation in medicine: irreversible electroporation and electropermeabilization theory and applications. Radiol Oncol 2025; 59:1-22. [PMID: 40014783 PMCID: PMC11867574 DOI: 10.2478/raon-2025-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Focal ablation techniques are integral in the surgical intervention of diseased tissue, where it is necessary to minimize damage to the surrounding parenchyma and critical structures. Irreversible electroporation (IRE) and high-frequency IRE (H-FIRE), colloquially called pulsed-field ablation (PFA), utilize high-amplitude, low-energy pulsed electric fields (PEFs) to nonthermally ablate soft tissue. PEFs induce cell death through permeabilization of the cellular membrane, leading to loss of homeostasis. The unique nonthermal nature of PFA allows for selective cell death while minimally affecting surrounding proteinaceous structures, permitting treatment near sensitive anatomy where thermal ablation or surgical resection is contraindicated. Further, PFA is being used to treat tissue when tumor margins are not expected after surgical resection, termed margin accentuation. This review explores both the theoretical foundations of PFA, detailing how PEFs induce cell membrane destabilization and selective tissue ablation, the outcomes following treatment, and its clinical implications across oncology and cardiology. CONCLUSIONS Clinical experience is still progressing, but reports have demonstrated that PFA reduces complications often seen with thermal ablation techniques. Mounting oncology data also support that PFA produces a robust immune response that may prevent local recurrences and attenuate metastatic disease. Despite promising outcomes, challenges such as optimizing field delivery and addressing variations in tissue response require further investigation. Future directions include refining PFA protocols and expanding its application to other therapeutic areas like benign tissue hyperplasia and chronic bronchitis.
Collapse
Affiliation(s)
- Edward J Jacobs
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| | - Boris Rubinsky
- Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Rafael V Davalos
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Aycock KN, Campelo SN, Salameh ZS, Davis JMK, Iannitti DA, McKillop IH, Davalos RV. Toward Large Ablations With Single-Needle High-Frequency Irreversible Electroporation In Vivo. IEEE Trans Biomed Eng 2025; 72:705-715. [PMID: 39320996 PMCID: PMC11908801 DOI: 10.1109/tbme.2024.3468159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Irreversible electroporation (IRE) is a minimally thermal tissue ablation modality used to treat solid tumors adjacent to critical structures. Widespread clinical adoption of IRE has been limited due to complicated anesthetic management requirements and technical demands associated with placing multiple needle electrodes in anatomically challenging environments. High-frequency irreversible electroporation (H-FIRE) delivered using a novel single-insertion bipolar probe system could potentially overcome these limitations, but ablation volumes have remained small using this approach. While H-FIRE is minimally thermal in mode of action, high voltages or multiple pulse trains can lead to unwanted Joule heating. In this work, we improve the H-FIRE waveform design to increase the safe operating voltage using a single-insertion bipolar probe before electrical arcing occurs. By uniformly increasing interphase () and interpulse () delays, we achieved higher maximum operating voltages for all pulse lengths. Additionally, increasing pulse length led to higher operating voltages up to a certain delay length (25 μs), after which shorter pulses enabled higher voltages. We then delivered novel H-FIRE waveforms via an actively cooled single-insertion bipolar probe in swine liver in vivo to determine the upper limits to ablation volume possible using a single-needle H-FIRE device. Ablations up to 4.62 0.12 cm x 1.83 0.05 cm were generated in 5 minutes without a requirement for cardiac synchronization during treatment. Ablations were minimally thermal, easily visualized with ultrasound, and stimulated an immune response 24 hours post H-FIRE delivery. These data suggest H-FIRE can rapidly produce clinically relevant, minimally thermal ablations with a more user-friendly electrode design.
Collapse
|
3
|
Liu X, Wang H, Zhao Z, Zhong Q, Wang X, Liu X, Chen J, Han C, Shi Z, Liang Q. Advances in irreversible electroporation for prostate cancer. Discov Oncol 2024; 15:713. [PMID: 39589586 PMCID: PMC11599553 DOI: 10.1007/s12672-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Irreversible electroporation is a nonthermal ablation technique that uses a high-voltage electric current to create nanosized pores in the cell membrane of a malignant tumor, thus resulting in cell death. In recent years, an increasing number of clinical studies have shown that irreversible electroporation is a safe and effective treatment for prostate cancer. We describe the progress of irreversible electroporation in prostate cancer in recent years in terms of its mechanism of action, clinical studies, advantages and disadvantages and summarize the gaps in existing studies and directions for future research.
Collapse
Affiliation(s)
- Xinyu Liu
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Hao Wang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zilin Zhao
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qikai Zhong
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xinlei Wang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xing Liu
- Southeast University, Nanjing, Jiangsu, China
| | - Junzhi Chen
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Conghui Han
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhenduo Shi
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| | - Qing Liang
- Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Jacobs EJ, Aycock KN, Santos PP, Tuohy JL, Davalos RV. Rapid estimation of electroporation-dependent tissue properties in canine lung tumors using a deep neural network. Biosens Bioelectron 2024; 244:115777. [PMID: 37924653 DOI: 10.1016/j.bios.2023.115777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The efficiency of electroporation treatments depends on the application of a critical electric field over the targeted tissue volume. Both the electric field and temperature distribution strongly depend on the tissue-specific electrical properties, which both differ between patients in healthy and malignant tissues and change in an electric field-dependent manner from the electroporation process itself. Therefore, tissue property estimations are paramount for treatment planning with electroporation therapies. Ex vivo methods to find electrical tissue properties often misrepresent the targeted tissue, especially when translating results to tumors. A voltage ramp is an in situ method that applies a series of increasing electric potentials across treatment electrodes and measures the resulting current. Here, we develop a robust deep neural network, trained on finite element model simulations, to directly predict tissue properties from a measured voltage ramp. There was minimal test error (R2>0.94;p<0.0001) in three important electric tissue properties. Further, our model was validated to correctly predict the complete dynamic conductivity curve in a previously characterized ex vivo liver model (R2>0.93;p<0.0001) within 100 s from probe insertion, showing great utility for a clinical application. Lastly, we characterize the first reported electrical tissue properties of lung tumors from five canine patients (R2>0.99;p<0.0001). We believe this platform can be incorporated prior to treatment to quickly ascertain patient-specific tissue properties required for electroporation treatment planning models or real-time treatment prediction algorithms. Further, this method can be used over traditional ex vivo methods for in situ tissue characterization with clinically relevant geometries.
Collapse
Affiliation(s)
- Edward J Jacobs
- Department of Biomedical Engineering and Mechanics, Virginia Tech and Wake Forest University, Blacksburg, VA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA.
| | - Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech and Wake Forest University, Blacksburg, VA, USA
| | - Pedro P Santos
- Department of Biomedical Engineering and Mechanics, Virginia Tech and Wake Forest University, Blacksburg, VA, USA; Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joanne L Tuohy
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech and Wake Forest University, Blacksburg, VA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Gabay B, Levkov K, Berl A, Wise J, Shir-Az O, Vitkin E, Saulis G, Shalom A, Golberg A. Electroporation-Based Biopsy Treatment Planning with Numerical Models and Tissue Phantoms. Ann Biomed Eng 2024; 52:71-88. [PMID: 37154990 DOI: 10.1007/s10439-023-03208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Molecular sampling with vacuum-assisted tissue electroporation is a novel, minimally invasive method for molecular profiling of solid lesions. In this paper, we report on the design of the battery-powered pulsed electric field generator and electrode configuration for an electroporation-based molecular sampling device for skin cancer diagnostics. Using numerical models of skin electroporation corroborated by the potato tissue phantom model, we show that the electroporated tissue volume, which is the maximum volume for biomarker sampling, strongly depends on the electrode's geometry, needle electrode skin penetration depths, and the applied pulsed electric field protocol. In addition, using excised human basal cell carcinoma (BCC) tissues, we show that diffusion of proteins out of human BCC tissues into water strongly depends on the strength of the applied electric field and on the time after the field application. The developed numerical simulations, confirmed by experiments in potato tissue phantoms and excised human cancer lesions, provide essential tools for the development of electroporation-based molecular markers sampling devices for personalized skin cancer diagnostics.
Collapse
Affiliation(s)
- Batel Gabay
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Klimentiy Levkov
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Julia Wise
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Shir-Az
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Edward Vitkin
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gintautas Saulis
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Jouni A, Baragona M, Pedersoli F, Ritter A. Temperature Distribution on Classical Two Needles IRE Setup Versus a Single Needle Prototype. Technol Cancer Res Treat 2024; 23:15330338241288342. [PMID: 39440388 PMCID: PMC11500228 DOI: 10.1177/15330338241288342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVES Irreversible Electroporation (IRE) is a non-thermal minimally invasive cancer therapy used in the treatment of liver tumors. However, the therapy entails an electrical current flux which can be high enough to cause a noticeable temperature increase. Therefore, the analysis of the heat distribution is important: during any IRE treatment, the target area is intended to be treated with non-thermal effects, where existing thermal effects should not damage nearby sensitive structures. This article aims to compare the established two parallel needles electrode setup, used by FDA-approved electroporation delivering devices, to a single needle, multiple electrode prototype design. METHODS Levels and distributions of the temperature at different distances from the applicators during an IRE liver treatment were investigated. The prototype results were collated with already published in-vivo data. All electrode configurations were analyzed numerically in COMSOL Multiphysics for different pulse protocols. RESULTS The extension of coagulation necrosis predicted by the model matched available in-vivo data. While the maximum average temperature during pulsation was higher for the prototype (74 °C) than for the two-needle IRE setup (57 °C), the thickness of the coagulation necrosis around the conductive electrodes was in the same range for both configurations. However, the location differed completely: the necrosis engendered by the prototype was located inside the tumor, while the two-needle IRE setup created necrosis outside the tumor, potentially closer to sensitive structures. CONCLUSION The results highlighted the importance of heat distribution analysis for the design of new IRE needles as well as for IRE treatment planning. Proper analysis ensures that the non-thermal effects are maximized while minimizing any potential thermal damage to surrounding sensitive structures.
Collapse
Affiliation(s)
- Ali Jouni
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| | | | - Federico Pedersoli
- Imaging Institute of Italian Switzerland, Bellinzona Regional Hospital, San Giovanni, Switzerland
| | - Andreas Ritter
- University Hospital RWTH Aachen, Clinic for Diagnostic and Interventional Radiology, Aachen, Germany
| |
Collapse
|
7
|
Perera-Bel E, Aycock KN, Salameh ZS, Gomez-Barea M, Davalos RV, Ivorra A, Ballester MAG. PIRET-A Platform for Treatment Planning in Electroporation-Based Therapies. IEEE Trans Biomed Eng 2023; 70:1902-1910. [PMID: 37015676 PMCID: PMC10281020 DOI: 10.1109/tbme.2022.3232038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue electroporation is the basis of several therapies. Electroporation is performed by briefly exposing tissues to high electric fields. It is generally accepted that electroporation is effective where an electric field magnitude threshold is overreached. However, it is difficult to preoperatively estimate the field distribution because it is highly dependent on anatomy and treatment parameters. OBJECTIVE We developed PIRET, a platform to predict the treatment volume in electroporation-based therapies. METHODS The platform seamlessly integrates tools to build patient-specific models where the electric field is simulated to predict the treatment volume. Patient anatomy is segmented from medical images and 3D reconstruction aids in placing the electrodes and setting up treatment parameters. RESULTS Four canine patients that had been treated with high-frequency irreversible electroporation were retrospectively planned with PIRET and with a workflow commonly used in previous studies, which uses different general-purpose segmentation (3D Slicer) and modeling software (3Matic and COMSOL Multiphysics). PIRET outperformed the other workflow by 65 minutes (× 1.7 faster), thanks to the improved user experience during treatment setup and model building. Both approaches computed similarly accurate electric field distributions, with average Dice scores higher than 0.93. CONCLUSION A platform which integrates all the required tools for electroporation treatment planning is presented. Treatment plan can be performed rapidly with minimal user interaction in a stand-alone platform. SIGNIFICANCE This platform is, to the best of our knowledge, the most complete software for treatment planning of irreversible electroporation. It can potentially be used for other electroporation applications.
Collapse
|
8
|
Jacobs EJ, Campelo SN, Aycock KN, Yao D, Davalos RV. Spatiotemporal estimations of temperature rise during electroporation treatments using a deep neural network. Comput Biol Med 2023; 161:107019. [PMID: 37220706 DOI: 10.1016/j.compbiomed.2023.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
The nonthermal mechanism for irreversible electroporation has been paramount for treating tumors and cardiac tissue in anatomically sensitive areas, where there is concern about damage to nearby bowels, ducts, blood vessels, or nerves. However, Joule heating still occurs as a secondary effect of applying current through a resistive tissue and must be minimized to maintain the benefits of electroporation at high voltages. Numerous thermal mitigation protocols have been proposed to minimize temperature rise, but intraoperative temperature monitoring is still needed. We show that an accurate and robust temperature prediction AI model can be developed using estimated tissue properties (bulk and dynamic conductivity), known geometric properties (probe spacing), and easily measurable treatment parameters (applied voltage, current, and pulse number). We develop the 2-layer neural network on realistic 2D finite element model simulations with conditions encompassing most electroporation applications. Calculating feature contributions, we found that temperature prediction is mostly dependent on current and pulse number and show that the model remains accurate when incorrect tissue properties are intentionally used as input parameters. Lastly, we show that the model can predict temperature rise within ex vivo perfused porcine livers, with error <0.5 °C. This model, using easily acquired parameters, is shown to predict temperature rise in over 1000 unique test conditions with <1 °C error and no observable outliers. We believe the use of simple, readily available input parameters would allow this model to be incorporated in many already available electroporation systems for real-time temperature estimations.
Collapse
Affiliation(s)
- Edward J Jacobs
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA, USA.
| | - Sabrina N Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Danfeng Yao
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| |
Collapse
|
9
|
Lakshmi Narasimhan P, Tokoutsi Z, Baroli D, Baragona M, Veroy K, Maessen R, Ritter A. Global sensitivity study for irreversible electroporation: Towards treatment planning under uncertainty. Med Phys 2023; 50:1290-1304. [PMID: 36635955 DOI: 10.1002/mp.16220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Electroporation-based cancer treatments are minimally invasive, nonthermal interventional techniques that leverage cell permeabilization to ablate the target tumor. However, the amount of permeabilization is susceptible to the numerous uncertainties during treatment, such as patient-specific variations in the tissue, type of the tumor, and the resolution of imaging equipment. These uncertainties can reduce the extent of ablation in the tissue, thereby affecting the effectiveness of the treatment. PURPOSE The aim of this work is to understand the effect of these treatment uncertainties on the treatment outcome for irreversible electroporation (IRE) in the case of colorectal liver metastasis (CRLM). Understanding the nature and extent of these effects can help us identify the influential treatment parameters and build better models for predicting the treatment outcome. METHODS This is an in silico study using a static computational model with a custom applicator design, spherical tissue, and tumor geometry. A nonlinear electrical conductivity, dependent on the local electric field, is considered. Morris analysis is used to identify the influential treatment parameters on the treatment outcome. Seven treatment parameters pertaining to the relative tumor location with respect to the applicator, the tumor growth pattern, and the electrical conductivity of tissue are analyzed. The treatment outcome is measured in terms of the relative tumor ablation with respect to the target ablation volume and total ablation volume. RESULTS The Morris analysis was performed with 800 model evaluations, sampled from the seven dimensional input parameter space. Electrical properties of the tissue, especially the electrical conductivity of the tumor before ablation, were found to be the most influential parameter for relative tumor ablation and total ablation volume. This parameter was found to be about 4-15 times more influential than the least influential parameter, depending on the tumor size. The tumor border configuration was identified as the least important parameter for treatment effectiveness. The most desired treatment outcome is obtained by a combination of high healthy liver conductivity and low tumor conductivity. This information can be used to tackle worst-case scenarios in treatment planning. Finally, when the safety margins used in the clinical applications are accounted for, the effects of uncertainties in the treatment parameters reduce drastically. CONCLUSIONS The results of this work can be used to create an efficient surrogate estimator for uncertainty quantification in the treatment outcome, that can be utilized in optimal real-time treatment planning solutions.
Collapse
Affiliation(s)
- Prashanth Lakshmi Narasimhan
- Philips Research, Eindhoven, AE, The Netherlands
- Centre for Analysis, Scientific Computing, and Applications, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
| | - Zoi Tokoutsi
- Philips Research, Eindhoven, AE, The Netherlands
| | - Davide Baroli
- Euler Institute (Instituto Eulero) and Cardiocentro Ticino, Faculty of Informatics, Universitá della Svizzera italiana, Viganello-Lugano, Switzerland
| | | | - Karen Veroy
- Centre for Analysis, Scientific Computing, and Applications, Eindhoven University of Technology, Eindhoven, AZ, The Netherlands
| | | | - Andreas Ritter
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
10
|
Casciola M, Keck D, Feaster TK, Blinova K. Human cardiomyocytes are more susceptible to irreversible electroporation by pulsed electric field than human esophageal cells. Physiol Rep 2022; 10:e15493. [PMID: 36301726 PMCID: PMC9612150 DOI: 10.14814/phy2.15493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022] Open
Abstract
Pulse electric field-based (PEF) ablation is a technique whereby short high-intensity electric fields inducing irreversible electroporation (IRE) are applied to various tissues. Here, we implemented a standardized in vitro model to compare the effects of biphasic symmetrical pulses (100 pulses, 1-10 μs phase duration (d), 10-1000 Hz pulse repetition rate (f)) using two different human cellular models: human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and human esophageal smooth muscle cells (hESMCs) cultured in monolayer format. We report the PEF-induced irreversibly electroporated cell monolayer areas and the corresponding electric field thresholds (EFTs) for both cardiac and esophageal cultures. Our results suggest marked cell type specificity with EFT estimated to be 2-2.5 times lower in hiPSC-CMs than in hESMCs when subjected to identical PEF treatments (e.g., 0.90 vs 1.85 kV/cm for the treatment of 100 pulses with d = 5 μs, f = 10 Hz, and 0.65 vs 1.67 kV/cm for the treatment of 100 pulses with d = 10 μs, f = 10 Hz). PEF treatment can result in increased temperature around the stimulating electrodes and lead to unanticipated thermal tissue damage that is proportional to the peak temperature rise and to the duration of the PEF-induced elevated temperatures. In our study, temperature increases ranged from less than 1°C to as high as 30°C, however, all temperature changes were transient and quickly returned to baseline and the highest observed ∆T returned to 50% of its maximum recorded temperature in tens of seconds.
Collapse
Affiliation(s)
- Maura Casciola
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Devin Keck
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Tromondae K. Feaster
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ksenia Blinova
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
11
|
Ranjbartehrani P, Etheridge M, Ramadhyani S, Natesan H, Bischof J, Shao Q. Characterization of Miniature Probes for Cryosurgery, Thermal Ablation, and Irreversible Electroporation on Small Animals. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pegah Ranjbartehrani
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| | - Michael Etheridge
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| | | | | | - John Bischof
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
- Department of Biomedical Engineering University of Minnesota Minneapolis MN 55455 USA
| | - Qi Shao
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
12
|
Aycock KN, Campelo SN, Davalos RV. A Comparative Modeling Study of Thermal Mitigation Strategies in Irreversible Electroporation Treatments. JOURNAL OF HEAT TRANSFER 2022; 144:031206. [PMID: 35833151 PMCID: PMC8823459 DOI: 10.1115/1.4053199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/03/2021] [Indexed: 05/09/2023]
Abstract
Irreversible electroporation (IRE), also referred to as nonthermal pulsed field ablation (PFA), is an attractive focal ablation modality for solid tumors and cardiac tissue due to its ability to destroy aberrant cells with limited disruption of the underlying tissue architecture. Despite its nonthermal cell death mechanism, application of electrical energy results in Joule heating that, if ignored, can cause undesired thermal injury. Engineered thermal mitigation (TM) technologies including phase change materials (PCMs) and active cooling (AC) have been reported and tested as a potential means to limit thermal damage. However, several variables affect TM performance including the pulsing paradigm, electrode geometry, PCM composition, and chosen active cooling parameters, meaning direct comparisons between approaches are lacking. In this study, we developed a computational model of conventional bipolar and monopolar probes with solid, PCM-filled, or actively cooled cores to simulate clinical IRE treatments in pancreatic tissue. This approach reveals that probes with integrated PCM cores can be tuned to drastically limit thermal damage compared to existing solid probes. Furthermore, actively cooled probes provide additional control over thermal effects within the probe vicinity and can altogether abrogate thermal damage. In practice, such differences in performance must be weighed against the increased time, expense, and effort required for modified probes compared to existing solid probes.
Collapse
Affiliation(s)
- Kenneth N. Aycock
- Bioelectromechanical Systems Lab, Virginia Tech—Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech Department of Biomedical Engineering and Mechanics, 320 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| | - Sabrina N. Campelo
- Bioelectromechanical Systems Lab, Virginia Tech—Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech Department of Biomedical Engineering and Mechanics, 320 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| | - Rafael V. Davalos
- Bioelectromechanical Systems Lab, Virginia Tech—Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech Department of Biomedical Engineering and Mechanics, 320 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| |
Collapse
|
13
|
Aycock KN, Vadlamani RA, Jacobs EJ, Imran KM, Verbridge S, Allen IC, Manuchehrabadi N, Davalos RV. Experimental and Numerical Investigation of Parameters Affecting High-frequency Irreversible Electroporation for Prostate Cancer Ablation. J Biomech Eng 2022; 144:1131491. [PMID: 35044426 DOI: 10.1115/1.4053595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/09/2022]
Abstract
While the primary goal of focal therapy for prostate cancer (PCa) is conserving patient quality of life by reducing oncological burden, available modalities use thermal energy or whole-gland radiation which can damage critical neurovascular structures within the prostate and increase risk of genitourinary dysfunction. High-frequency irreversible electroporation (H-FIRE) is a promising alternative ablation modality that utilizes bursts of pulsed electric fields (PEFs) to destroy aberrant cells via targeted membrane damage. Due to its non-thermal mechanism, H-FIRE offers several advantages over state-of-the-art treatments, but waveforms have not been optimized for treatment of PCa. In this study, we characterize lethal electric field thresholds (EFTs) for H-FIRE waveforms with three different pulse widths as well as three interpulse delays in vitro and compare them to conventional IRE. Experiments were performed in non-neoplastic and malignant prostate cells to determine the effect of waveforms on both targeted (malignant) and adjacent (non-neoplastic) tissue. A numerical modeling approach was developed to estimate the clinical effects of each waveform including extent of non-thermal ablation, undesired thermal damage, and nerve excitation. Our findings indicate that H-FIRE waveforms with pulse durations of 5 and 10 µs provide large ablations comparable to IRE with tolerable levels of thermal damage and minimized muscle contractions. Lower duration (2 µs) H-FIRE waveforms exhibit the least amount of muscle contractions but require increased voltages which may be accompanied by unwanted thermal damage.
Collapse
Affiliation(s)
- Kenneth N Aycock
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Ram Anand Vadlamani
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Edward J Jacobs
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Khan Mohammad Imran
- Virginia-Maryland College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, 205 Duck Pond Dr, Blacksburg, VA 24061
| | - Scott Verbridge
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Irving C Allen
- Virginia-Maryland College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, 205 Duck Pond Dr, Blacksburg, VA 24061
| | | | - Rafael V Davalos
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| |
Collapse
|
14
|
Guo F, Deng H, Qian K, Li X. Characterization of dispersion and anisotropic-conductivity in tissue model during electroporation pulses. Bioelectrochemistry 2021; 144:108029. [PMID: 34894430 DOI: 10.1016/j.bioelechem.2021.108029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022]
Abstract
Electroporation occurs when biological cells are exposed to intensive, short-duration pulses, which can be used to ablate biological tumor tissues. Based on the traditional numerical models, the isotropic conductivity model with the non-dispersion effect (ICND), the anisotropic conductivity model with the dispersion effect (ACD) is developed in this study. The second-order Debye function is introduced to manifest the dielectric relaxation effect, and the two-dimensional Cartesian conductivity matrix is applied to describe the anisotropy of the tissue conductivity during the electroporation process. A monopolar pulse and a monopolar burst are applied to the breast tumor model through the two-needle electrodes configuration. The results show that taking the dispersion into account can increase the total electroporated area more than 2.31%. Considering the conductivity anisotropy, the total electroporated area increases, but the irreversible electroporation (IRE) area decreases by more than 3.99%. The ACD model can achieve a larger electroporated area but a relatively smaller IRE area than those of the ICND model, and comparably minor maximum thermal damage is evaluated in the ACD model. Our model analyzes the effects of the dielectric dispersion and anisotropic conductivity of tissue, which have strong guiding significance for making the treatment planning before clinical practice.
Collapse
Affiliation(s)
- Fei Guo
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Hao Deng
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Kun Qian
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xin Li
- Institute of Ecological Safety, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
15
|
Lim B, Kim HB, Jeong S, Kim SH, Kang JM, Park Y, Won DS, Kim JW, Ryu DS, Kim Y, Park JH, Kim CS. Novel platinum bipolar electrode for irreversible electroporation in prostate cancer: preclinical study in the beagle prostate. Sci Rep 2021; 11:17194. [PMID: 34433890 PMCID: PMC8387373 DOI: 10.1038/s41598-021-96734-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 01/31/2023] Open
Abstract
The exposure of the prostate to high electric field strength during irreversible electroporation (IRE) has been extensively investigated. Multiple monopolar electrodes, however, have risks of organ piercing and bleeding when placing electrodes. A novel bipolar electrode made of pure platinum and stainless steel was developed for prostate cancer ablation. Voltages of 500 and 700 V were applied to the beagle prostate with this electrode to evaluate ablated tissues and their characteristics. IRE procedures were technically successful in all dogs without procedure-related complications. The current that flowed through the anode and cathode while applying 500 and 700 V were 1.75 ± 0.25 A and 2.22 ± 0.35 A, respectively. TUNEL assays showed that the estimated ablated areas when applying 500 and 700 V were 0.78 cm2 and 1.21 cm2, respectively. The minimum electric field strength threshold required for induction of IRE was 800 V/cm. The platinum electrode was resistant to corrosion. The IRE procedure for beagle prostates using a single bipolar electrode was technically feasible and safe. The novel bipolar electrode has great potential for treating human prostate cancer with fewer IRE-related complications.
Collapse
Affiliation(s)
- Bumjin Lim
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hong Bae Kim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Jeong
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Song Hee Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeon Min Kang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong-Sung Won
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji Won Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dae Sung Ryu
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yunlim Kim
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Choung-Soo Kim
- Departments of Urology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
16
|
Lorenzo MF, Bhonsle SP, Arena CB, Davalos RV. Rapid Impedance Spectroscopy for Monitoring Tissue Impedance, Temperature, and Treatment Outcome During Electroporation-Based Therapies. IEEE Trans Biomed Eng 2021; 68:1536-1546. [PMID: 33156779 PMCID: PMC8127872 DOI: 10.1109/tbme.2020.3036535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Electroporation-based therapies (EBTs) employ high voltage pulsed electric fields (PEFs) to permeabilize tumor tissue; this results in changes in electrical properties detectable using electrical impedance spectroscopy (EIS). Currently, commercial potentiostats for EIS are limited by impedance spectrum acquisition time ( ∼ 10 s); this timeframe is much larger than pulse periods used with EBTs ( ∼ 1 s). In this study, we utilize rapid EIS techniques to develop a methodology for characterizing electroporation (EP) and thermal effects associated with high-frequency irreversible EP (H-FIRE) in real-time by monitoring inter-burst impedance changes. METHODS A charge-balanced, bipolar rectangular chirp signal is proposed for rapid EIS. Validation of rapid EIS measurements against a commercial potentiostat was conducted in potato tissue using flat-plate electrodes and thereafter for the measurement of impedance changes throughout IRE treatment. Flat-plate electrodes were then utilized to uniformly heat potato tissue; throughout high-voltage H-FIRE treatment, low-voltage inter-burst impedance measurements were used to continually monitor impedance change and to identify a frequency at which thermal effects are delineated from EP effects. RESULTS Inter-burst impedance measurements (1.8 kHz - 4.93 MHz) were accomplished at 216 discrete frequencies. Impedance measurements at frequencies above ∼ 1 MHz served to delineate thermal and EP effects in measured impedance. CONCLUSION We demonstrate rapid-capture ( 1 s) EIS which enables monitoring of inter-burst impedance in real-time. For the first time, we show impedance analysis at high frequencies can delineate thermal effects from EP effects in measured impedance. SIGNIFICANCE The proposed waveform demonstrates the potential to perform inter-burst EIS using PEFs compatible with existing pulse generator topologies.
Collapse
|