1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Zhao K, Saucedo E, Basterrechea KF, Yang S, Haworth KJ, Holland CK, Racadio JM, Maxwell AD, Cursio JF, Wool GD, Ostdiek AM, Ahmed OS, Paul JD, Patel MV, Bader KB. Assessment of Catheter-Directed Thrombolysis and Histotripsy Treatment for Deep Vein Thrombosis. J Vasc Interv Radiol 2025:S1051-0443(25)00136-8. [PMID: 39890017 DOI: 10.1016/j.jvir.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE The hypothesis of this study was that histotripsy, an ultrasound therapy that disrupts tissue mechanically through the action of bubble clouds, increases the short-term rate of acute thrombus clearance for catheter-directed thrombolysis (CDT) in an animal model. MATERIALS AND METHODS Thrombi formed in the femoral vein of pigs were treated with CDT, histotripsy, or CDT and histotripsy (histotripsy+). Ultrasound (B-mode and color Doppler) and contrast fluoroscopy imaging data were scored by 4 observers for semiquantitative evaluation of each arm with ordinal regression models. Further, B-mode images were manually annotated by 3 observers to quantify the thrombus clearance rate. RESULTS A total of 27 thrombi (2.0 cm [SD ± 0.4] in length) in 27 animals were considered in this study (N = 8 for CDT, N = 9 for histotripsy, and N = 10 for histotripsy+). The mean treatment duration was 20.2 minutes (SD ± 1.3). The ordinal regression models indicated that the thrombus clearance rate increased for histotripsy+ relative to CDT based on B-mode and color Doppler but not fluoroscopy (P = .015, P = .001, and P = .900, respectively). Manual annotation of B-mode images denoted that histotripsy+ had an increased thrombus clearance rate relative to CDT and histotripsy (P = .001 and P = .022, respectively). Petechial hemorrhage was present in the perivascular soft tissue for 2 cases with histotripsy and 1 case with histotripsy+. CONCLUSIONS The clearance of acute thrombus was similar for treatment with CDT or histotripsy. Combining these individual approaches further increased the rate of thrombus clearance based on multiple imaging metrics.
Collapse
Affiliation(s)
- Kevin Zhao
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Erik Saucedo
- Department of Radiology, University of Chicago, Chicago, Illinois
| | | | - Shumeng Yang
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - John M Racadio
- Division of Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adam D Maxwell
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - John F Cursio
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Geoffrey D Wool
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | - Osman S Ahmed
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Jonathan D Paul
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mikin V Patel
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
3
|
Gong L, Wright AR, Hynynen K, Goertz DE. Inducing cavitation within hollow cylindrical radially polarized transducers for intravascular applications. ULTRASONICS 2024; 138:107223. [PMID: 38553135 DOI: 10.1016/j.ultras.2023.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 04/02/2024]
Abstract
Thrombotic occlusions of large blood vessels are increasingly treated with catheter based mechanical approaches, one of the most prominent being to employ aspiration to extract clots through a hollow catheter lumen. A central technical challenge for aspiration catheters is to achieve sufficient suction force to overcome the resistance of clot material entering into the distal tip. In this study, we examine the feasibility of inducing cavitation within hollow cylindrical transducers with a view to ultimately using them to degrade the mechanical integrity of thrombus within the tip of an aspiration catheter. Hollow cylindrical radially polarized PZT transducers with 3.3/2.5 mm outer/inner diameters were assessed. Finite element simulations and hydrophone experiments were used to investigate the pressure field distribution as a function of element length and resonant mode (thickness, length). Operating in thickness mode (∼5 MHz) was found to be associated with the highest internal pressures, estimated to exceed 23 MPa. Cavitation was demonstrated to be achievable within the transducer under degassed water (10 %) conditions using hydrophone detection and high-frequency ultrasound imaging (40 MHz). Cavitation clouds occupied a substantial portion of the transducer lumen, in a manner that was dependent on the pulsing scheme employed (10 and 100 μs pulse lengths; 1.1, 11, and 110 ms pulse intervals). Collectively the results support the feasibility of achieving cavitation within a transducer compatible with mounting in the tip of an aspiration format catheter.
Collapse
Affiliation(s)
- Li Gong
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
| | - Alex R Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
4
|
Worlikar T, Hall T, Zhang M, Mendiratta-Lala M, Green M, Cho CS, Xu Z. Insights from in vivo preclinical cancer studies with histotripsy. Int J Hyperthermia 2024; 41:2297650. [PMID: 38214171 PMCID: PMC11102041 DOI: 10.1080/02656736.2023.2297650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technique that mechanically fractionates target tissue into acellular homogenate via controlled acoustic cavitation. Histotripsy has been evaluated for various preclinical applications requiring noninvasive tissue removal including cancer, brain surgery, blood clot and hematoma liquefaction, and correction of neonatal congenital heart defects. Promising preclinical results including local tumor suppression, improved survival outcomes, local and systemic anti-tumor immune responses, and histotripsy-induced abscopal effects have been reported in various animal tumor models. Histotripsy is also being investigated in veterinary patients with spontaneously arising tumors. Research is underway to combine histotripsy with immunotherapy and chemotherapy to improve therapeutic outcomes. In addition to preclinical cancer research, human clinical trials are ongoing for the treatment of liver tumors and renal tumors. Histotripsy has been recently approved by the FDA for noninvasive treatment of liver tumors. This review highlights key learnings from in vivo shock-scattering histotripsy, intrinsic threshold histotripsy, and boiling histotripsy cancer studies treating cancers of different anatomic locations and discusses the major considerations in planning in vivo histotripsy studies regarding instrumentation, tumor model, study design, treatment dose, and post-treatment tumor monitoring.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiation Oncology, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Kutlu AZ, Laeseke PF, Zeighami Salimabad M, Minesinger GM, Periyasamy S, Pieper AA, Hall TJ, Wagner MG. A Multimodal Phantom for Visualization and Assessment of Histotripsy Treatments on Ultrasound and X-Ray Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1401-1407. [PMID: 36878828 PMCID: PMC10106430 DOI: 10.1016/j.ultrasmedbio.2023.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Histotripsy is an emerging non-invasive, non-ionizing and non-thermal focal tumor therapy. Although histotripsy targeting is currently based on ultrasound (US), other imaging modalities such as cone-beam computed tomography (CBCT) have recently been proposed to enable the treatment of tumors not visible on ultrasound. The objective of this study was to develop and evaluate a multi-modality phantom to facilitate the assessment of histotripsy treatment zones on both US and CBCT imaging. METHODS Fifteen red blood cell phantoms composed of alternating layers with and without barium were manufactured. Spherical 25-mm histotripsy treatments were performed, and treatment zone size and location were measured on CBCT and ultrasound. Sound speed, impedance and attenuation were measured for each layer type. RESULTS The average ± standard deviation signed difference between measured treatment diameters was 0.29 ± 1.25 mm. The Euclidean distance between measured treatment centers was 1.68 ± 0.63 mm. The sound speed in the different layers ranged from 1491 to 1514 m/s and was within typically reported soft tissue ranges (1480-1560 m/s). In all phantoms, histotripsy resulted in sharply delineated treatment zones, allowing segmentation in both modalities. CONCLUSION These phantoms will aid in the development and validation of X-ray-based histotripsy targeting techniques, which promise to expand the scope of treatable lesions beyond only those visible on ultrasound.
Collapse
Affiliation(s)
- Ayca Z Kutlu
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul F Laeseke
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Grace M Minesinger
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarvesh Periyasamy
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexander A Pieper
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin G Wagner
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Wagner MG, Periyasamy S, Kutlu AZ, Pieper AA, Swietlik JF, Ziemlewicz TJ, Hall TL, Xu Z, Speidel MA, Jr FTL, Laeseke PF. An X-Ray C-Arm Guided Automatic Targeting System for Histotripsy. IEEE Trans Biomed Eng 2023; 70:592-602. [PMID: 35984807 PMCID: PMC9929026 DOI: 10.1109/tbme.2022.3198600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Histotripsy is an emerging noninvasive, nonionizing and nonthermal focal cancer therapy that is highly precise and can create a treatment zone of virtually any size and shape. Current histotripsy systems rely on ultrasound imaging to target lesions. However, deep or isoechoic targets obstructed by bowel gas or bone can often not be treated safely using ultrasound imaging alone. This work presents an alternative x-ray C-arm based targeting approach and a fully automated robotic targeting system. METHODS The approach uses conventional cone beam CT (CBCT) images to localize the target lesion and 2D fluoroscopy to determine the 3D position and orientation of the histotripsy transducer relative to the C-arm. The proposed pose estimation uses a digital model and deep learning-based feature segmentation to estimate the transducer focal point relative to the CBCT coordinate system. Additionally, the integrated robotic arm was calibrated to the C-arm by estimating the transducer pose for four preprogrammed transducer orientations and positions. The calibrated system can then automatically position the transducer such that the focal point aligns with any target selected in a CBCT image. RESULTS The accuracy of the proposed targeting approach was evaluated in phantom studies, where the selected target location was compared to the center of the spherical ablation zones in post-treatment CBCTs. The mean and standard deviation of the Euclidean distance was 1.4 ±0.5 mm. The mean absolute error of the predicted treatment radius was 0.5 ±0.5 mm. CONCLUSION CBCT-based histotripsy targeting enables accurate and fully automated treatment without ultrasound guidance. SIGNIFICANCE The proposed approach could considerably decrease operator dependency and enable treatment of tumors not visible under ultrasound.
Collapse
|
7
|
Hendley SA, Bhargava A, Holland CK, Wool GD, Ahmed O, Paul JD, Bader KB. (More than) doubling down: Effective fibrinolysis at a reduced rt-PA dose for catheter-directed thrombolysis combined with histotripsy. PLoS One 2022; 17:e0261567. [PMID: 34982784 PMCID: PMC8726487 DOI: 10.1371/journal.pone.0261567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023] Open
Abstract
Deep vein thrombosis is a major source of morbidity and mortality worldwide. For acute proximal deep vein thrombosis, catheter-directed thrombolytic therapy is an accepted method for vessel recanalization. Thrombolytic therapy is not without risk, including the potential for hemorrhagic bleeding that increases with lytic dose. Histotripsy is a focused ultrasound therapy that generates bubble clouds spontaneously in tissue at depth. The mechanical activity of histotripsy increases the efficacy of thrombolytic therapy at doses consistent with current pharmacomechanical treatments for venous thrombosis. The objective of this study was to determine the influence of lytic dose on histotripsy-enhanced fibrinolysis. Human whole blood clots formed in vitro were exposed to histotripsy and a thrombolytic agent (recombinant tissue plasminogen activator, rt-PA) in a venous flow model perfused with plasma. Lytic was administered into the clot via an infusion catheter at concentrations ranging from 0 (control) to 4.54 μg/mL (a common clinical dose for catheter-directed thrombolysis). Following treatment, perfusate samples were assayed for markers of fibrinolysis, hemolysis, and intact red blood cells and platelets. Fibrinolysis was equivalent between the common clinical dose of rt-PA (4.54 μg/mL) and rt-PA at a reduction to one-twentieth of the common clinical dose (0.23 μg/mL) when combined with histotripsy. Minimal changes were observed in hemolysis for treatment arms with or without histotripsy, potentially due to clot damage from insertion of the infusion catheter. Likewise, histotripsy did not increase the concentration of red blood cells or platelets in the perfusate following treatment compared to rt-PA alone. At the highest lytic dose, a refined histotripsy exposure scheme was implemented to cover larger areas of the clot. The updated exposure scheme improved clot mass loss and fibrinolysis relative to administration of lytic alone. Overall, the data collected in this study indicate the rt-PA dose can be reduced by more than a factor of ten and still promote fibrinolysis when combined with histotripsy.
Collapse
Affiliation(s)
- Samuel A. Hendley
- Committee on Medical Physics, University of Chicago, Chicago, Illinois, United States of America
| | - Aarushi Bhargava
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| | - Christy K. Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Geoffrey D. Wool
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Osman Ahmed
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan D. Paul
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kenneth B. Bader
- Committee on Medical Physics, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Hendricks-Wenger A, Arnold L, Gannon J, Simon A, Singh N, Sheppard H, Nagai-Singer MA, Imran KM, Lee K, Clark-Deener S, Byron C, Edwards MR, Larson MM, Rossmeisl JH, Coutermarsh-Ott SL, Eden K, Dervisis N, Klahn S, Tuohy J, Allen IC, Vlaisavljevich E. Histotripsy Ablation in Preclinical Animal Models of Cancer and Spontaneous Tumors in Veterinary Patients: A Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:5-26. [PMID: 34478363 PMCID: PMC9284566 DOI: 10.1109/tuffc.2021.3110083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New therapeutic strategies are direly needed in the fight against cancer. Over the last decade, several tumor ablation strategies have emerged as stand-alone or combination therapies. Histotripsy is the first completely noninvasive, nonthermal, and nonionizing tumor ablation method. Histotripsy can produce consistent and rapid ablations, even near critical structures. Additional benefits include real-time image guidance, high precision, and the ability to treat tumors of any predetermined size and shape. Unfortunately, the lack of clinically and physiologically relevant preclinical cancer models is often a significant limitation with all focal tumor ablation strategies. The majority of studies testing histotripsy for cancer treatment have focused on small animal models, which have been critical in moving this field forward and will continue to be essential for providing mechanistic insight. While these small animal models have notable translational value, there are significant limitations in terms of scale and anatomical relevance. To address these limitations, a diverse range of large animal models and spontaneous tumor studies in veterinary patients have emerged to complement existing rodent models. These models and veterinary patients are excellent at providing realistic avenues for developing and testing histotripsy devices and techniques designed for future use in human patients. Here, we provide a review of animal models used in preclinical histotripsy studies and compare histotripsy ablation in these models using a series of original case reports across a broad spectrum of preclinical animal models and spontaneous tumors in veterinary patients.
Collapse
|
9
|
Edsall C, Ham E, Holmes H, Hall TL, Vlaisavljevich E. Effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy. Phys Med Biol 2021; 66:225009. [PMID: 34706348 DOI: 10.1088/1361-6560/ac33ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 11/11/2022]
Abstract
Objective.Histotripsy is a non-thermal focused ultrasound ablation method that destroys tissue through the generation of a cavitation bubble cloud. Previous work studying intrinsic threshold histotripsy has shown that dense bubble clouds can be formed by a single-cycle pulse when the negative pressure exceeds an intrinsic threshold of ∼25-30 MPa, with the ablation efficiency dependent upon the size and density of bubbles within the cloud. This work investigates the effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy.Approach.A modular transducer was used to expose agarose tissue phantoms to 500 kHz, 1 MHz, or 3 MHz, histotripsy pulses. Optical imaging was used to measure the bubble-cloud dimensions, bubble density, and bubble size. The effects of frequency on ablation efficiency were also investigated by applying histotripsy to red blood cell (RBC) phantoms.Main results.Results revealed that the bubble-cloud size closely matched theoretical predictions for all frequencies. The bubble density, which is a measure of the number of bubbles per unit area, was shown to increase with increasing frequency while the size of individual bubbles within the cloud decreased at higher frequencies. Finally, RBC phantom experiments showed decreasing ablation efficiency with increasing frequency.Significance.Overall, results demonstrate the effects of frequency on histotripsy bubble-cloud behavior and show that lower frequency generates more efficient tissue ablation, primarily due to enhanced bubble expansion.
Collapse
Affiliation(s)
- Connor Edsall
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, 325 Stanger St., Blacksburg, VA 24061, United States of America
| | - Emerson Ham
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, 325 Stanger St., Blacksburg, VA 24061, United States of America
| | - Hal Holmes
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, 325 Stanger St., Blacksburg, VA 24061, United States of America
- Conservation X Labs, Seattle, WA 98103, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Carl A. Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109-2133, United States of America
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, 325 Stanger St., Blacksburg, VA 24061, United States of America
- ICTAS Center for Engineered Health, Virginia Polytechnic Institute and State University, 325 Stanger St., Blacksburg, VA 24061, United States of America
| |
Collapse
|
10
|
Zhou X, Wang Y, Li Y, Zhao Y, Shan T, Gong X, Li F, Tang MX, Wang Z. Acoustic beam mapping for guiding HIFU therapy in vivo using sub-therapeutic sound pulse and passive beamforming. IEEE Trans Biomed Eng 2021; 69:1663-1673. [PMID: 34752379 DOI: 10.1109/tbme.2021.3126734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Although HIFU has been successfully applied in various clinical applications in the past two decades for the ablation of many types of tumors, one bottleneck in its wider applications is the lack of a reliable and affordable strategy to guide the therapy. This study aims at estimating the therapeutic beam path at the pre-treatment stage to guide the therapeutic procedure. METHODS An incident beam mapping technique using passive beamforming was proposed based on a clinical HIFU system and an ultrasound imaging research system. An optimization model was created to map the cross-like beam pattern by maximizing the total energy within the mapped area. This beam mapping technique was validated by comparing the estimated focal region with the HIFU-induced actual focal region (damaged region) through simulation, in-vitro, ex-vivo and in-vivo experiments. RESULTS The results of this study showed that the proposed technique was, to a large extent, tolerant of sound speed inhomogeneities, being able to estimate the focal location with errors of 0.15 mm and 0.93 mm under in-vitro and ex-vivo situations respectively, and slightly over 1 mm under the in-vivo situation. It should be noted that the corresponding errors were 6.8 mm, 3.2 mm, and 9.9 mm respectively when the conventional geometrical method was used. CONCLUSION This beam mapping technique can be very helpful in guiding the HIFU therapy and can be easily applied in clinical environments with an ultrasound-guided HIFU system. SIGNIFICANCE The technique is non-invasive and can potentially be adapted to other ultrasound-related beam manipulating applications.
Collapse
|
11
|
Hendley SA, Paul JD, Maxwell AD, Haworth KJ, Holland CK, Bader KB. Clot Degradation Under the Action of Histotripsy Bubble Activity and a Lytic Drug. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2942-2952. [PMID: 33460375 PMCID: PMC8445066 DOI: 10.1109/tuffc.2021.3052393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Deep vein thrombosis is a major source of morbidity worldwide. For critical obstructions, catheter-directed thrombolytics are the frontline therapy to achieve vessel recanalization. Techniques that aid lytic therapy are under development to improve treatment efficacy and reduce procedure-related complications. Histotripsy is one such adjuvant under development that relies on focused ultrasound for in situ nucleation of bubble clouds. Prior studies have demonstrated synergistic effects for clot dissolution when histotripsy is combined with lytic therapy. The success of this combination approach is hypothesized to promote thrombolytic efficacy via two mechanisms: erythrocyte fractionation (hemolysis) and increased lytic activity (fibrinolysis). In this study, the contributions of hemolysis and fibrinolysis to clot degradation under histotripsy and a lytic were quantified with measurements of hemoglobin and D-dimer, respectively. A linear regression analysis was used to determine the relationship between hemoglobin, D-dimer, and the overall treatment efficacy (clot mass loss). A similar analysis was conducted to gauge the role of bubble activity, which was assessed with passive cavitation imaging, on hemolysis and fibrinolysis. Tabulation of these data demonstrated hemolysis and fibrinolysis contributed equally to clot mass loss. Furthermore, bubble cloud activity promoted the generation of hemoglobin and D-dimer in equal proportion. These studies indicate a multifactorial process for clot degradation under the action of histotripsy and a lytic therapy.
Collapse
|
12
|
Xu Z, Hall TL, Vlaisavljevich E, Lee FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38:561-575. [PMID: 33827375 PMCID: PMC9404673 DOI: 10.1080/02656736.2021.1905189] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technology guided by real-time imaging. Using focused ultrasound delivered from outside the body, histotripsy mechanically destroys tissue through cavitation, rendering the target into acellular debris. The material in the histotripsy ablation zone is absorbed by the body within 1-2 months, leaving a minimal remnant scar. Histotripsy has also been shown to stimulate an immune response and induce abscopal effects in animal models, which may have positive implications for future cancer treatment. Histotripsy has been investigated for a wide range of applications in preclinical studies, including the treatment of cancer, neurological diseases, and cardiovascular diseases. Three human clinical trials have been undertaken using histotripsy for the treatment of benign prostatic hyperplasia, liver cancer, and calcified valve stenosis. This review provides a comprehensive overview of histotripsy covering the origin, mechanism, bioeffects, parameters, instruments, and the latest results on preclinical and human studies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fred T. Lee
- Departments of Radiology, Biomedical Engineering, and Urology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|