1
|
Hong W, Mao L, Lin K, Huang C, Su Y, Zhang S, Wang C, Wang D, Song J, Chen Z. Accurate and Noninvasive Dysphagia Assessment via a Soft High-Density sEMG Electrode Array Conformal to the Submental and Infrahyoid Muscles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500472. [PMID: 40125566 DOI: 10.1002/advs.202500472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
Accurate, noninvasive dysphagia assessment is important for rehabilitation therapy but current clinical diagnostic methods are either invasive or subjective. Surface electromyography (sEMG) that monitors muscle activity during swallowing, offers a promising alternative. However, existing sEMG electrode arrays for dysphagia assessment remain challenging in combining the advantages of a large coverage area and strong compliance to the entire swallowing muscles. Here, we report a stretchable, breathable, large-area high-density sEMG (HD-sEMG) electrode array, which enables intimate contact to complex surface of the submental and infrahyoid muscles to detect high-fidelity HD-sEMG signals during swallowing. The electrode array features a 64-channel soft on-skin sensing array for comprehensive data capture, and a stiff connector for simple and reliable connection to an external acquisition setup. Systemically experimental studies revealed the easy operability of the soft HD-sEMG electrode array for effortless integration with the skin, as well as the excellent mechanical and electrical characteristics even subject to substantial skin deformations. By comparing HD-sEMG signals collected from 38 participants, three objective indicators for quantitative dysphagia evaluation were discussed. Finally, a machine learning model was developed to accurately and automatically classify the severity of dysphagia, and the factors affecting the recognition accuracy of the model were discussed in depth.
Collapse
Affiliation(s)
- Weijie Hong
- Department of Rehabilitation Medicine, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Huanjiang Laboratory, Zhuji, 311899, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kai Lin
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Chongyuan Huang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yanyan Su
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Shun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Chengjun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Huanjiang Laboratory, Zhuji, 311899, China
| | - Daming Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jizhou Song
- Department of Rehabilitation Medicine, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, 310003, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Huanjiang Laboratory, Zhuji, 311899, China
| | - Zuobin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
2
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
3
|
Nguyen W, Gramann K, Gehrke L. Modeling the Intent to Interact With VR Using Physiological Features. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5893-5900. [PMID: 37624723 DOI: 10.1109/tvcg.2023.3308787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
OBJECTIVE Mixed-Reality (XR) technologies promise a user experience (UX) that rivals the interactive experience with the real-world. The key facilitators in the design of such a natural UX are that the interaction has zero lag and that users experience no excess mental load. This is difficult to achieve due to technical constraints such as motion-to-photon latency as well as false-positives during gesture-based interaction. METHODS In this paper, we explored the use of physiological features to model the user's intent to interact with a virtual reality (VR) environment. Accurate predictions about when users want to express an interaction intent could overcome the limitations of an interactive device that lags behind the intention of a user. We computed time-domain features from electroencephalography (EEG) and electromyography (EMG) recordings during a grab-and-drop task in VR and cross-validated a Linear Discriminant Analysis (LDA) for three different combinations of (1) EEG, (2) EMG and (3) EEG-EMG features. RESULTS & CONCLUSION We found the classifiers to detect the presence of a pre-movement state from background idle activity reflecting the users' intent to interact with the virtual objects (EEG: 62 % ± 10 %, EMG: 72 % ± 9 %, EEG-EMG: 69 % ± 10 %) above simulated chance level. The features leveraged in our classification scheme have a low computational cost and are especially useful for fast decoding of users' mental states. Our work is a further step towards a useful classification of users' intent to interact, as a high temporal resolution and speed of detection is crucial. This facilitates natural experiences through zero-lag adaptive interfaces.
Collapse
|
4
|
Namkoong M, McMurray J, Branan K, Hernandez J, Gandhi M, Ida-Oze S, Cote G, Tian L. Contact pressure-guided wearable dual-channel bioimpedance device for continuous hemodynamic monitoring. ADVANCED MATERIALS TECHNOLOGIES 2024; 9:2301407. [PMID: 38665229 PMCID: PMC11044990 DOI: 10.1002/admt.202301407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Indexed: 04/28/2024]
Abstract
Wearable devices for continuous monitoring of arterial pulse waves have the potential to improve the diagnosis, prognosis, and management of cardiovascular diseases. These pulse wave signals are often affected by the contact pressure between the wearable device and the skin, limiting the accuracy and reliability of hemodynamic parameter quantification. Here, we report a continuous hemodynamic monitoring device that enables the simultaneous recording of dual-channel bioimpedance and quantification of pulse wave velocity (PWV) used to calculate blood pressure (BP). Our investigations demonstrate the effect of contact pressure on bioimpedance and PWV. The pulsatile bioimpedance magnitude reached its maximum when the contact pressure approximated the mean arterial pressure of the subject. We employed PWV to continuously quantify BP while maintaining comfortable contact pressure for prolonged wear. The mean absolute error and standard deviation of the error compared to the reference value were determined to be 0.1 ± 3.3 mmHg for systolic BP, 1.3 ± 3.7 mmHg for diastolic BP, and -0.4 ± 3.0 mmHg for mean arterial pressure when measurements were conducted in the lying down position. This research demonstrates the potential of wearable dual-bioimpedance sensors with contact pressure guidance for reliable and continuous hemodynamic monitoring.
Collapse
Affiliation(s)
- Myeong Namkoong
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Justin McMurray
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Kimberly Branan
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Joanna Hernandez
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Mishika Gandhi
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Samuel Ida-Oze
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Gerard Cote
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Quinn KN, Tian Y, Budde R, Irazoqui PP, Tuffaha S, Thakor NV. Neuromuscular implants: Interfacing with skeletal muscle for improved clinical translation of prosthetic limbs. Muscle Nerve 2024; 69:134-147. [PMID: 38126120 DOI: 10.1002/mus.28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.
Collapse
Affiliation(s)
- Kiara N Quinn
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yucheng Tian
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryan Budde
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pedro P Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Arnold D, Thielker J, Klingner CM, Guntinas-Lichius O, Volk GF. Selective zygomaticus muscle activation by ball electrodes in synkinetically reinnervated patients after facial paralysis. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1205154. [PMID: 37908489 PMCID: PMC10613664 DOI: 10.3389/fresc.2023.1205154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Introduction Although many different treatments were developed for facial palsy, only a few therapeutic options are available for facial synkinesis. Electrical stimulation of specific muscles via implants could be useful in restoring facial symmetry in synkinetic patients. A challenge in developing stimulation devices is finding the right stimulation location, type, and amplitude. This work assesses the ability to selectively stimulate the zygomaticus muscle (ZYG) in patients with oral-ocular synkinesis to elicit a visually detectable response of the ipsilateral corner of the mouth (COM), without causing a reaction of the orbicularis oculi muscle (OOM). We aimed to assess how close to the COM the stimulation should be delivered in order to be selective. Methods A total of 10 patients (eight females, two males) were enrolled. Facial function was graded according to the Sunnybrook facial grading system. Needle EMG was used to test the activities of the muscles, during volitional and "unintended" movements, and the degree of synkinesis of the ZYG and OOM. Two ball electrodes connected to an external stimulator were placed on the paretic ZYG, as close as possible to the COM. Results Independent of the waveform with which the stimulation was presented, a selective ZYG response was observed within 4.5 cm of the horizontal plane and 3 cm of the vertical plane of the COM. When the distance between the electrodes was kept to ≤2 cm, the amplitude necessary to trigger a response ranged between 3 and 6 mA when the stimulation was delivered with triangular pulses and between 2.5 and 3.5 mA for rectangular pulses. The required amplitude did not seem to be dependent on the applied phase duration (PD), as long as the PD was ≥5 ms. Conclusion Our results show that selective stimulation of the ZYG presenting synkinetic ZYG-OOM reinnervation can be achieved using a broad PD range (25-1,000 ms) and an average amplitude ≤6 mA, which may be further decreased to 3.5 mA if the stimulation is delivered via rectangular rather than triangular waves. The most comfortable and effective results were observed with PDs between 50 and 250 ms, suggesting that this range should be selected in future studies. Clinical Trial Registration [https://drks.de/search/de/trial/DRKS00019992], identifier (DRKS00019992).
Collapse
Affiliation(s)
- Dirk Arnold
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
| | - Jovanna Thielker
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Jena, Germany
| | - Orlando Guntinas-Lichius
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Jena, Germany
| | - Gerd Fabian Volk
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- Facial-Nerve-Center Jena, Jena University Hospital, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Jena, Germany
| |
Collapse
|
7
|
Yang S, Cheng J, Shang J, Hang C, Qi J, Zhong L, Rao Q, He L, Liu C, Ding L, Zhang M, Chakrabarty S, Jiang X. Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention. Nat Commun 2023; 14:6494. [PMID: 37838683 PMCID: PMC10576757 DOI: 10.1038/s41467-023-42149-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life. Here, we address these constraints by design of an adhesive dry electrode using tannic acid, polyvinyl alcohol, and PEDOT:PSS (TPP). The TPP electrode offers superior stretchability (~200%) and adhesiveness (0.58 N/cm) compared to current electrodes, ensuring stable and long-term contact with the skin for recording (>20 dB; >5 days). In addition, we developed a metal-polymer electrode array patch (MEAP) comprising liquid metal (LM) circuits and TPP electrodes. The MEAP demonstrated better conformability than commercial arrays, resulting in higher signal-to-noise ratio and more stable recordings during muscle movements. Manufactured using scalable screen-printing, these MEAPs feature a completely stretchable material and array architecture, enabling real-time monitoring of muscle stress, fatigue, and tendon displacement. Their potential to reduce muscle and tendon injuries and enhance performance in daily exercise and professional sports holds great promise.
Collapse
Grants
- We thank the National Key R&D Program of China (2021YFF1200800, 2021YFF1200100, 2022YFB3804700, and 2018YFA0902600), the National Natural Science Foundation of China (22234004), Shenzhen Science and Technology Program (JCYJ20200109141231365 and KQTD 20190929172743294), Shenzhen Key Laboratory of Smart Healthcare Engineering (ZDSYS20200811144003009), Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08Y191), Guangdong Provincial Key Laboratory of Advanced Biomaterials (2022B1212010003), Tencent Foundation through the XPLORER PRIZE, Guangdong Major Talent Introduction Project (2019CX01Y196). We also acknowledge the assistance of SUSTech Core Research Facilities.
Collapse
Affiliation(s)
- Shuaijian Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jinhao Cheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jin Shang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chen Hang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Leni Zhong
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Qingyan Rao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Chenqi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Ding
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Mingming Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
8
|
Namkoong M, Baskar B, Singh L, Guo H, McMurray J, Branan K, Rahman MS, Hsiao CT, Kuriakose J, Hernandez J, Arikan AA, Garza-Rivera LE, Coté GL, Tian L. Add-on soft electronic interfaces for continuous cuffless blood pressure monitoring. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2300158. [PMID: 37701636 PMCID: PMC10495086 DOI: 10.1002/admt.202300158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 09/14/2023]
Abstract
Continuous monitoring of arterial blood pressure is clinically important for the diagnosis and management of cardiovascular diseases. Soft electronic devices with skin-like properties show promise in a wide range of applications, including the human-machine interface, the Internet of things, and health monitoring. Here, we report the use of add-on soft electronic interfaces to address the connection challenges between soft electrodes and rigid data acquisition circuitry for bioimpedance monitoring of cardiac signals, including heart rate and cuffless blood pressure. Nanocomposite films in add-on electrodes provide robust electrical and mechanical contact with the skin and the rigid circuitry. We demonstrate bioimpedance sensors composed of add-on electrodes for continuous blood pressure monitoring with high accuracy. Specifically, the bioimpedance collected with add-on nanocomposite electrodes shows a signal-to-noise ratio of 37.0 dB, higher than the ratio of 25.9 dB obtained with standard silver/silver chloride (Ag/AgCl gel) electrodes. Although the sample set is low, the continuously measured systolic and diastolic blood pressure offer accuracy of -2.0 ± 6.3 mmHg and -4.3 ± 3.9 mmHg, respectively, confirming the grade A performance based on the IEEE standard. These results show promise in bioimpedance measurements with add-on soft electrodes for cuffless blood pressure monitoring.
Collapse
Affiliation(s)
- Myeong Namkoong
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Balaji Baskar
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Lakhvir Singh
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Justin McMurray
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Kimberly Branan
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Md. Saifur Rahman
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Chin-To Hsiao
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Josh Kuriakose
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Joanna Hernandez
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | | | | | - Gerard L. Coté
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Lim J, Sun M, Liu JZ, Tan Y. A Preliminary Usability Study of Integrated Electronic Tattoo Surface Electromyography (sEMG) Sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082921 DOI: 10.1109/embc40787.2023.10340589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Surface electromyography (sEMG) sensor measures the user's muscle activities by noninvasively placing electrodes on the surface of the user's skin. It has been widely used in monitoring various human movements. Recently a wearable and flexible epidermal sensor system called Electronic Tattoo (E-Tattoo) has been developed to enable intimate attachment of electrodes on the skin, improving long-term comfort. In order to make the E-Tattoo usable in monitoring muscle activities, it is always connected with a connector and signal processing blocks to collect and process the measured sEMG signals. We call it an integrated system. This paper investigates the usability of a prototype of the integrated system developed in the laboratory for monitoring muscle activities by testing its comfort with user experience surveys and comparing the quality of the sEMG signals by widely used performance metrics. Two typical movements, maximum voluntary isometric and non-isometric contractions, are considered for the experiments. Our preliminary results on five subjects demonstrate the effectiveness of the proposed integrated system. This system showed a comparable signal quality for these two movements as the commercial product with a much better comfort feeling from the user. It is also interesting to note that this prototype shows a much better signal-to-motion artifact ratio (SMR), which reflects the ability to measure muscle activities during active movements, compared with the commercial product, showing the potential of using this integrated system in monitoring sEMGs during active and dynamic movements.
Collapse
|
10
|
Mascia A, Collu R, Spanu A, Fraschini M, Barbaro M, Cosseddu P. Wearable System Based on Ultra-Thin Parylene C Tattoo Electrodes for EEG Recording. SENSORS (BASEL, SWITZERLAND) 2023; 23:766. [PMID: 36679563 PMCID: PMC9861766 DOI: 10.3390/s23020766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In an increasingly interconnected world, where electronic devices permeate every aspect of our lives, wearable systems aimed at monitoring physiological signals are rapidly taking over the sport and fitness domain, as well as biomedical fields such as rehabilitation and prosthetics. With the intent of providing a novel approach to the field, in this paper we discuss the development of a wearable system for the acquisition of EEG signals based on a portable, low-power custom PCB specifically designed to be used in combination with non-conventional ultra-conformable and imperceptible Parylene-C tattoo electrodes. The proposed system has been tested in a standard rest-state experiment, and its performance in terms of discrimination of two different states has been compared to that of a commercial wearable device for EEG signal acquisition (i.e., the Muse headset), showing comparable results. This first preliminary validation demonstrates the possibility of conveniently employing ultra-conformable tattoo-electrodes integrated portable systems for the unobtrusive acquisition of brain activity.
Collapse
Affiliation(s)
- Antonello Mascia
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Riccardo Collu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Andrea Spanu
- Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Matteo Fraschini
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Massimo Barbaro
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| | - Piero Cosseddu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy
| |
Collapse
|
11
|
Ershad F, Houston M, Patel S, Contreras L, Koirala B, Lu Y, Rao Z, Liu Y, Dias N, Haces-Garcia A, Zhu W, Zhang Y, Yu C. Customizable, reconfigurable, and anatomically coordinated large-area, high-density electromyography from drawn-on-skin electrode arrays. PNAS NEXUS 2023; 2:pgac291. [PMID: 36712933 PMCID: PMC9837666 DOI: 10.1093/pnasnexus/pgac291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Accurate anatomical matching for patient-specific electromyographic (EMG) mapping is crucial yet technically challenging in various medical disciplines. The fixed electrode construction of multielectrode arrays (MEAs) makes it nearly impossible to match an individual's unique muscle anatomy. This mismatch between the MEAs and target muscles leads to missing relevant muscle activity, highly redundant data, complicated electrode placement optimization, and inaccuracies in classification algorithms. Here, we present customizable and reconfigurable drawn-on-skin (DoS) MEAs as the first demonstration of high-density EMG mapping from in situ-fabricated electrodes with tunable configurations adapted to subject-specific muscle anatomy. The DoS MEAs show uniform electrical properties and can map EMG activity with high fidelity under skin deformation-induced motion, which stems from the unique and robust skin-electrode interface. They can be used to localize innervation zones (IZs), detect motor unit propagation, and capture EMG signals with consistent quality during large muscle movements. Reconfiguring the electrode arrangement of DoS MEAs to match and extend the coverage of the forearm flexors enables localization of the muscle activity and prevents missed information such as IZs. In addition, DoS MEAs customized to the specific anatomy of subjects produce highly informative data, leading to accurate finger gesture detection and prosthetic control compared with conventional technology.
Collapse
Affiliation(s)
- Faheem Ershad
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16801, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shubham Patel
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16801, USA
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Luis Contreras
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Bikram Koirala
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Yuntao Lu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16801, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX, 77204, USA
| | - Zhoulyu Rao
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16801, USA
- Materials Science and Engineering Program, University of Houston, Houston, TX, 77204, USA
| | - Yang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Nicholas Dias
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Arturo Haces-Garcia
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Weihang Zhu
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
- Department of Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | | |
Collapse
|
12
|
Liu C, Li J, Zhang S, Yang H, Guo K. Study on Flexible sEMG Acquisition System and Its Application in Muscle Strength Evaluation and Hand Rehabilitation. MICROMACHINES 2022; 13:2047. [PMID: 36557346 PMCID: PMC9782516 DOI: 10.3390/mi13122047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/01/2023]
Abstract
Wearable devices based on surface electromyography (sEMG) to detect muscle activity can be used to assess muscle strength with the development of hand rehabilitation applications. However, conventional acquisition devices are usually complicated to operate and poorly comfortable for more medical and scientific application scenarios. Here, we report a flexible sEMG acquisition system that combines a graphene-based flexible electrode with a signal acquisition flexible printed circuit (FPC) board. Our system utilizes a polydimethylsiloxane (PDMS) substrate combined with graphene transfer technology to develop a flexible sEMG sensor. The single-lead sEMG acquisition system was designed and the FPC board was fabricated considering the requirements of flexible bending and twisting. We demonstrate the above design approach and extend this flexible sEMG acquisition system to applications for assessing muscle strength and hand rehabilitation training using a long- and short-term memory network training model trained to predict muscle strength, with 98.81% accuracy in the test set. The device exhibited good flexion and comfort characteristics. In general, the ability to accurately and imperceptibly monitor surface electromyography (EMG) signals is critical for medical professionals and patients.
Collapse
Affiliation(s)
- Chang Liu
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jiuqiang Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Yang
- College of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kai Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Namkoong M, Guo H, Rahman MS, Wang D, Pfeil CJ, Hager S, Tian L. Moldable and Transferrable Conductive Nanocomposites for Epidermal Electronics. NPJ FLEXIBLE ELECTRONICS 2022; 6:41. [PMID: 35996439 PMCID: PMC9393028 DOI: 10.1038/s41528-022-00170-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/10/2022] [Indexed: 05/31/2023]
Abstract
Skin-inspired soft and stretchable electronic devices based on functional nanomaterials have broad applications such as health monitoring, human-machine interface, and the Internet of things. Solution-processed conductive nanocomposites have shown great promise as a building block of soft and stretchable electronic devices. However, realizing conductive nanocomposites with high conductivity, electromechanical stability, and low modulus over a large area at sub-100 μm resolution remains challenging. Here, we report a moldable, transferrable, high-performance conductive nanocomposite comprised of an interpenetrating network of silver nanowires and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate). The stacked structure of the nanocomposite synergistically integrates the complementary electrical and mechanical properties of the individual components. We patterned the nanocomposite via a simple, low-cost micromolding process and then transferred the patterned large-area electrodes onto various substrates to realize soft, skin-interfaced electrophysiological sensors. Electrophysiological signals measured using the nanocomposite electrodes exhibit a higher signal-to-noise ratio than standard gel electrodes. The nanocomposite design and fabrication approach presented here can be broadly employed for soft and stretchable electronic devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Limei Tian
- Corresponding Author Dr. Limei Tian, Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
14
|
Hodges PW, van den Hoorn W. A vision for the future of wearable sensors in spine care and its challenges: narrative review. JOURNAL OF SPINE SURGERY (HONG KONG) 2022; 8:103-116. [PMID: 35441093 PMCID: PMC8990399 DOI: 10.21037/jss-21-112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE This review aimed to: (I) provide a brief overview of some topical areas of current literature regarding applications of wearable sensors in the management of low back pain (LBP); (II) present a vision for a future comprehensive system that integrates wearable sensors to measure multiple parameters in the real world that contributes data to guide treatment selection (aided by artificial intelligence), uses wearables to aid treatment support, adherence and outcome monitoring, and interrogates the response of the individual patient to the prescribed treatment to guide future decision support for other individuals who present with LBP; and (III) consider the challenges that will need to be overcome to make such a system a reality. BACKGROUND Advances in wearable sensor technologies are opening new opportunities for the assessment and management of spinal conditions. Although evidence of improvements in outcomes for individuals with LBP from the use of sensors is limited, there is enormous future potential. METHODS Narrative review and literature synthesis. CONCLUSIONS Substantial research is underway by groups internationally to develop and test elements of this system, to design innovative new sensors that enable recording of new data in new ways, and to fuse data from multiple sources to provide rich information about an individual's experience of LBP. Together this system, incorporating data from wearable sensors has potential to personalise care in ways that were hitherto thought impossible. The potential is high but will require concerted effort to develop and ultimately will need to be feasible and more effective than existing management.
Collapse
Affiliation(s)
- Paul W Hodges
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Wolbert van den Hoorn
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Truong TA, Nguyen TK, Zhao H, Nguyen NK, Dinh T, Park Y, Nguyen T, Yamauchi Y, Nguyen NT, Phan HP. Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105748. [PMID: 34874620 DOI: 10.1002/smll.202105748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.
Collapse
Affiliation(s)
- Thanh-An Truong
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nhat-Khuong Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Toan Dinh
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Thanh Nguyen
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
16
|
Wang W, Jiang N, Teng L, Sui M, Li C, Wang L, Li G. Synergy Analysis of Back Muscle Activities in Patients with Adolescent Idiopathic Scoliosis Based on High-Density Electromyogram. IEEE Trans Biomed Eng 2021; 69:2006-2017. [PMID: 34882541 DOI: 10.1109/tbme.2021.3133583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common structural spinal deformity and is typically associated with altered muscle properties. However, it is still unclear how muscle activities and the underlying neuromuscular control are changed in the entire scoliotic zone, restricting the corresponding pathology investigation and treatment enhancements. In this study, high-density electromyogram (HD-EMG) was utilized to explore the neuromuscular synergy of back muscle activities. For each of ten AIS patients and ten healthy subjects for comparison, a high-density electrode array was placed on their back from T8 to L4 to record EMG signals when performing five spinal motions (flexion/extension, lateral bending, axial rotation, siting, and standing). From the HD-EMG recordings, muscle synergies were extracted using the non-negative matrix factorization method and the topographical maps of EMG root-mean-square were constructed. For both the AIS and healthy subjects, the experimental results indicated that two muscle synergy groups could explain over 90% of recorded muscle activities for all five motions. During flexion/extension, the patients presented statistically significant higher activations on the convex side in the entire root-mean-square maps and synergy vector maps (p <0.05). During lateral bending and axial rotation, the patients exhibited less activated muscles on the dominant actuating side relative to the contralateral side and their synergy vector maps showed a less homogenous and more diffuse distribution of muscle contraction with statistically different centers of gravity. The findings suggest that a scoliotic spine might adopt an altered modular muscular coordination strategy to actuate different dominant muscles as adapted compensations for the deformation.
Collapse
|
17
|
Taccola S, Poliziani A, Santonocito D, Mondini A, Denk C, Ide AN, Oberparleiter M, Greco F, Mattoli V. Toward the Use of Temporary Tattoo Electrodes for Impedancemetric Respiration Monitoring and Other Electrophysiological Recordings on Skin. SENSORS 2021; 21:s21041197. [PMID: 33567724 PMCID: PMC7915056 DOI: 10.3390/s21041197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/04/2023]
Abstract
The development of dry, ultra-conformable and unperceivable temporary tattoo electrodes (TTEs), based on the ink-jet printing of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on top of commercially available temporary tattoo paper, has gained increasing attention as a new and promising technology for electrophysiological recordings on skin. In this work, we present a TTEs epidermal sensor for real time monitoring of respiration through transthoracic impedance measurements, exploiting a new design, based on the application of soft screen printed Ag ink and magnetic interlink, that guarantees a repositionable, long-term stable and robust interconnection of TTEs with external “docking” devices. The efficiency of the TTE and the proposed interconnection strategy under stretching (up to 10%) and over time (up to 96 h) has been verified on a dedicated experimental setup and on humans, fulfilling the proposed specific application of transthoracic impedance measurements. The proposed approach makes this technology suitable for large-scale production and suitable not only for the specific use case presented, but also for real time monitoring of different bio-electric signals, as demonstrated through specific proof of concept demonstrators.
Collapse
Affiliation(s)
- Silvia Taccola
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- Future Manufacturing Processes Research Group, School of Mechanical Engineering, Faculty of Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (S.T.); (F.G.); (V.M.)
| | - Aliria Poliziani
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Daniele Santonocito
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Alessio Mondini
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
| | - Christian Denk
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Alessandro Noriaki Ide
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Markus Oberparleiter
- Emerging Application Department, MED-EL Elektromedizinische Geräte Gesellschaft m.b.H., Fürstenweg 77a, 6020 Innsbruck, Austria; (D.S.); (C.D.); (A.N.I.); (M.O.)
| | - Francesco Greco
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
- Correspondence: (S.T.); (F.G.); (V.M.)
| | - Virgilio Mattoli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy; (A.P.); (A.M.)
- Correspondence: (S.T.); (F.G.); (V.M.)
| |
Collapse
|