1
|
Talukder A, Jo J. Elastic textile-based wearable modulation of musculoskeletal load: A comprehensive review of passive exosuits and resistance clothing. WEARABLE TECHNOLOGIES 2025; 6:e11. [PMID: 40071238 PMCID: PMC11894418 DOI: 10.1017/wtc.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 03/14/2025]
Abstract
Elastic textiles play a critical role in passive wearable solutions for musculoskeletal load management in both passive exosuits and resistance clothing. These textiles, based on their ability to stretch and retract, can exhibit ambivalence in their load-modulating effects when used in occupational, rehabilitation, exercise, or everyday activity settings. While passive exosuits and resistance garments may appear similar in design, they have opposing goals: to reduce the musculoskeletal load in the case of exosuits and to increase it in the case of resistance clothing. Despite this intrinsic connection, these two approaches have not been extensively linked together. This review aims to fill this gap by examining the common and distinct principles of elastic textiles in passive exosuits and resistance clothing, shedding light on their interactions and the complex dynamics of musculoskeletal load systems. The effectiveness of different designs in passive exosuits that mimic musculoskeletal function and resistance clothing that increase the workload for strength training are critically reviewed. Current challenges in practical implementation and opportunities to improve critical issues, such as preload, thermal comfort, skin friction, and donning and doffing are also highlighted.
Collapse
Affiliation(s)
- Amit Talukder
- Department of Textiles, Merchandising, and Interiors, University of Georgia, Athens, GA, USA
| | - Jeyeon Jo
- Department of Textiles, Merchandising, and Interiors, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Zhang J, Zhu A, Song J, Bao B, Su Y, Xu P, Zheng C, Shi L, Zhang X, Li X. Parallel Elastic Self-Alignment Mechanism Enhances Energy Efficiency and Reduces Misalignment in a Powered Knee Exoskeleton. IEEE Trans Biomed Eng 2025; 72:528-539. [PMID: 39288068 DOI: 10.1109/tbme.2024.3461880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
OBJECTIVE This paper aims to enhance exoskeleton compliance during locomotion assistance by reducing misalignment and to improve energy efficiency by overcoming the limitations posed by the bulky structure of powered rigid exoskeletons. METHODS A novel compliant knee exoskeleton, featuring a parallel elastic self-alignment mechanism, has been developed and structurally optimized. The exoskeleton uses adaptive oscillators to determine the wearer's gait phase and provides real-time assistance to the knee joint. RESULTS Bench tests demonstrate that the parallel elastic mechanism significantly reduces the driving torque of the knee exoskeleton. Performance evaluations reveal that, compared to a commercial orthosis, the root-mean-square of knee angle error, joint misalignment, and unexpected interaction forces are reduced by 16.5 11.3%, 23.3 4.9%, and 17.7 1.3%, respectively. Gait intervention experiments show reductions in average and maximum muscle activity of the knee joint by 7.6 4.9% and 23.2 5.7%, respectively. Additionally, the exoskeleton decreases negative work performed by the knee joint and the total lower limb by 22.7% and 8.6%, respectively. CONCLUSION The parallel elastic self-alignment mechanism effectively mitigates joint misalignment, while the parallel springs offer partial gravity compensation, thereby enhancing both the energy efficiency and locomotion assistance of the exoskeleton. SIGNIFICANCE The parallel elastic self-alignment mechanism effectively addresses both misalignment and energy efficiency challenges in powered exoskeletons, providing valuable insights for future design improvements.
Collapse
|
3
|
Yang J, Augenstein TE, Qiu J, Washabaugh EP, Krishnan C. Design and Validation of a Pancake Style Planetary Gearbox for an Eddy Current-Based Wearable Gait Training Robot. IEEE Trans Biomed Eng 2025; 72:198-209. [PMID: 39146165 PMCID: PMC11841933 DOI: 10.1109/tbme.2024.3444688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Eddy current brakes have been recently used for functional resistance training in individuals with neurological and orthopaedic disorders. These devices consist of a gearbox, a conductive disc, and permanent magnets that can be moved relative to the disc to alter resistance. However, current devices use a commercial planetary gearbox with a tall profile that sticks out from the leg, which affects wearability. This is coupled with the large system inertia, which together impedes potential device transition to clinical and in-home use. In this study, we developed a low-profile, pancake-style planetary gearbox that greatly reduces the protrusion of the device from the leg. We performed a design analysis and optimization to minimize the thickness and inertia of the device while ensuring that it could withstand the maximum expected torque (50 Nm). We then performed human subjects experiments to examine the effectiveness of our new design for functional resistance training. The results indicated that all leg muscles showed a significant increase in activation during resisted conditions. There were also significant after-effects on medial hamstring activation. These results indicate that the new design is a feasible method for functional resistance training and may have a potential clinical value in gait rehabilitation.
Collapse
|
4
|
Washabaugh EP, Krishnan C. Functional resistance training during walking: do biomechanical and neural effects differ based on targeted joints? IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2024; 6:632-642. [PMID: 39635626 PMCID: PMC11612632 DOI: 10.1109/tmrb.2024.3369894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Devices for functional resistance training (FRT) during walking are often configured to resist the knee or both the hip and knee joints. Adding resistance to the hip in addition to the knee should alter the effects of training; however, these configurations have not been directly compared. We examined how FRT during walking differs during the knee or hip and knee conditions. Fourteen non-disabled individuals received FRT during treadmill walking with a device configured to provide a viscous resistance to the knee or the hip and knee during separate visits. Between these configurations, we compared gait kinetics, muscle activation, kinematic aftereffects, peripheral fatigue, and corticospinal excitability. Adding resistance to the hip increased hip flexion moment and concentric power during the swing phase. However, this did not result in significant differences in muscle activation, aftereffects, peripheral fatigue, or corticospinal excitability between the configurations. Instead, both configurations produced similar changes in these variables. These results indicate that, aside from kinetics, walking with resistance at the hip and knee was not different from resisting the knee in the acute setting. However, further research is needed to determine if long-term training with resistance at the hip induces differential effects than resisting the knee alone.
Collapse
Affiliation(s)
- Edward P Washabaugh
- Michigan Medicine Department of Physical Medicine and Rehabilitation but is now with the Wayne State University Department of Biomedical Engineering, Detroit, MI, 48201 USA
| | - Chandramouli Krishnan
- Michigan Medicine Department of Physical Medicine and Rehabilitation and the University of Michigan Robotics Institute, Ann Arbor, MI, 48108
| |
Collapse
|
5
|
Kowalczyk K, Mukherjee M, Malcolm P. Can a passive unilateral hip exosuit diminish walking asymmetry? A randomized trial. J Neuroeng Rehabil 2023; 20:88. [PMID: 37438846 DOI: 10.1186/s12984-023-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Asymmetric walking gait impairs activities of daily living in neurological patient populations, increases their fall risk, and leads to comorbidities. Accessible, long-term rehabilitation methods are needed to help neurological patients restore symmetrical walking patterns. This study aimed to determine if a passive unilateral hip exosuit can modify an induced asymmetric walking gait pattern. We hypothesized that a passive hip exosuit would diminish initial- and post-split-belt treadmill walking after-effects in healthy young adults. METHODS We divided 15 healthy young adults evenly between three experimental groups that each completed a baseline trial, an adaptation period with different interventions for each group, and a post-adaptation trial. To isolate the contribution of the exosuit we compared a group adapting to the exosuit and split-belt treadmill (Exo-Sb) to groups adapting to exosuit-only (Exo-only) and split-belt only (Sb-only) conditions. The independent variables step length, stance time, and swing time symmetry were analyzed across five timepoints (baseline, early- and late adaptation, and early- and late post-adaptation) using a 3 × 5 mixed ANOVA. RESULTS We found significant interaction and time effects on step length, stance time and swing time symmetry. Sb-only produced increased step length asymmetry at early adaptation compared to baseline (p < 0.0001) and an after-effect with increased asymmetry at early post-adaptation compared to baseline (p < 0.0001). Exo-only increased step length asymmetry (in the opposite direction as Sb-only) at early adaptation compared to baseline (p = 0.0392) but did not influence the participants sufficiently to result in a post-effect. Exo-Sb produced similar changes in step length asymmetry in the same direction as Sb-only (p = 0.0014). However, in contrast to Sb-only there was no significant after-effect between early post-adaptation and baseline (p = 0.0885). CONCLUSION The passive exosuit successfully diminished asymmetrical step length after-effects induced by the split-belt treadmill in Exo-Sb. These results support the passive exosuit's ability to alter walking gait patterns.
Collapse
Affiliation(s)
- Kayla Kowalczyk
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Mukul Mukherjee
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
| | - Philippe Malcolm
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA.
| |
Collapse
|
6
|
Washabaugh EP, Augenstein TE, Koje M, Krishnan C. Functional Resistance Training With Viscous and Elastic Devices: Does Resistance Type Acutely Affect Knee Function? IEEE Trans Biomed Eng 2023; 70:1274-1285. [PMID: 36240034 PMCID: PMC10170553 DOI: 10.1109/tbme.2022.3214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Functional resistance training (FRT) during walking is an emerging approach for rehabilitating individuals with neuromuscular or orthopedic injuries. During FRT, wearable exoskeleton/braces can target resistance to a weakened leg joint; however, the resistive properties of the training depend on the type of resistive elements used in the device. Hence, this study was designed to examine how the biomechanical and neural effects of functional resistance training differ with viscous and elastic resistances during both treadmill and overground walking. METHODS Fourteen able-bodied individuals were trained on two separate sessions with two devices that provided resistance to the knee (viscous and elastic) while walking on a treadmill. We measured gait biomechanics and muscle activation during training, as well as kinematic aftereffects and changes in peripheral fatigue and neural excitability after training. RESULTS We found the resistance type differentially altered gait kinetics during training-elastic resistance increased knee extension during stance while viscous resistance primarily affected swing. Also, viscous resistance increased power generation while elastic resistance could increase power absorption. Both devices resulted in significant kinematic and neural aftereffects. However, overground kinematic aftereffects and neural excitability did not differ between devices. CONCLUSION Different resistance types can be used to alter gait biomechanics during training. While there were no resistance-specific changes in acute neural adaptation following training, it is still possible that prolonged and repeated training could produce differential effects. SIGNIFICANCE Resistance type alters the kinetics of functional resistance training. Prolonged and repeated training sessions on patients will be needed to further measure the effects of these devices.
Collapse
Affiliation(s)
| | - Thomas E. Augenstein
- Michigan Medicine, Department of Physical Medicine and Rehabilitation, Ann Arbor, MI, USA; University of Michigan, Robotics Institute, Ann Arbor, MI, USA
| | - Mary Koje
- Michigan Medicine, Department of Physical Medicine and Rehabilitation, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- Michigan Medicine, Department of Physical Medicine and Rehabilitation, Ann Arbor, MI, USA; University of Michigan, Robotics Institute, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Gao Y, Lang G, Shen W, Zhao J. Three-Dimensional Modeling and Kinematic Analysis of Human Elbow Joint Axis Based on Anatomy and Screw Theory. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3205547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongsheng Gao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Heilongjiang, China
| | - Guodong Lang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Heilongjiang, China
| | - Wenpeng Shen
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Heilongjiang, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Heilongjiang, China
| |
Collapse
|
8
|
Conner BC, Lerner ZF. Improving Ankle Muscle Recruitment via Plantar Pressure Biofeedback during Robot Resisted Gait Training in Cerebral Palsy. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176108 DOI: 10.1109/icorr55369.2022.9896581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neurological impairment from stroke or cerebral palsy often presents with diminished ankle plantar flexor function during the propulsive phase of gait. This deficit often results in slow, energy-expensive walking patterns that limit community mobility. Robotic gait training interventions may prove effective in improving functional outcomes, including exoskeleton resistance used to provide targeted neuromuscular recruitment. However, these interventions to date have required regular verbal cues and coaching for proper plantar flexor engagement with resistance, particularly for pediatric applications. In this validation study, we sought to address the need for automating and improving the effectiveness of facilitating user engagement with robotic resistance. Specifically, our main goal was to compare changes in plantar flexor activity between walking with plantar flexor resistance alone vs plantar flexor resistance combined with plantar pressure biofeedback in individuals with cerebral palsy. We recruited 8 ambulatory adolescents with cerebral palsy between the ages of 11-18 years old to participate in this cross-sectional feasibility study. Supporting our hypothesis, we observed a 36 ± 36% and 46 ± 39% increase in mean and peak soleus activity, respectively, between resistance plus biofeedback vs resistance alone (both p < 0.05). Compared to other biofeedback sensing modalities like assessment of muscle activity via surface electrodes, integrating the plantar pressure-based system within the wearable robotic devices minimizes barriers to clinical implementation by reducing cost, complexity, and setup time. With these positive feasibility results, our future work will explore longer-term training effects of ankle resistance combined with plantar pressure biofeedback.
Collapse
|
9
|
Washabaugh EP, Brown SR, Palmieri-Smith RM, Krishnan C. Functional Resistance Training Differentially Alters Gait Kinetics After Anterior Cruciate Ligament Reconstruction: A Pilot Study. Sports Health 2022; 15:372-381. [PMID: 35766451 PMCID: PMC10170229 DOI: 10.1177/19417381221104042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Quadriceps weakness is common after anterior cruciate ligament (ACL) reconstruction and can alter gait mechanics. Functional resistance training (FRT) is a novel approach to retraining strength after injury, but it is unclear how it alters gait mechanics. Therefore, we tested how 3 different types of FRT devices: a knee brace resisting extension (unidirectional brace), a knee brace resisting extension and flexion (bidirectional brace), and an elastic band pulling backwards on the ankle (elastic band)-acutely alter gait kinetics in this population. HYPOTHESIS The type of FRT device will affect ground-reaction forces (GRFs) during and after the training. Specifically, the uni- and bidirectional braces will increase GRFs when compared with the elastic band. STUDY DESIGN Crossover study. LEVEL OF EVIDENCE Level 2. METHODS A total of 15 individuals with ACL reconstruction received FRT with each device over 3 separate randomized sessions. During training, participants walked on a treadmill while performing a tracking task with visual feedback. Sessions contained 5 training trials (180 seconds each) with rest between. Vertical and anterior-posterior GRFs were assessed on the ACL-reconstructed leg before, during, and after training. Changes in GRFs were compared across devices using 1-dimensional statistical parametric mapping. RESULTS Resistance applied via bidirectional brace acutely increased gait kinetics during terminal stance/pre-swing (ie, push-off), while resistance applied via elastic band acutely increased gait kinetics during initial contact/loading (ie, braking). Both braces behaved similarly, but the unidirectional brace was less effective for increasing push-off GRFs. CONCLUSION FRT after ACL reconstruction can acutely alter gait kinetics during training. Devices can be applied to selectively alter gait kinetics. However, the long-term effects of FRT after ACL reconstruction with these devices are still unknown. CLINICAL RELEVANCE FRT may be applied to alter gait kinetics of the involved limb after ACL reconstruction, depending on the device used.
Collapse
Affiliation(s)
- Edward P Washabaugh
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Scott R Brown
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Kinesiology, Aquinas College, Grand Rapids, Michigan
| | - Riann M Palmieri-Smith
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Michigan Robotics Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Washabaugh EP, Krishnan C. Functional resistance training methods for targeting patient-specific gait deficits: A review of devices and their effects on muscle activation, neural control, and gait mechanics. Clin Biomech (Bristol, Avon) 2022; 94:105629. [PMID: 35344781 DOI: 10.1016/j.clinbiomech.2022.105629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Injuries to the neuromusculoskeletal system often result in weakness and gait impairments. Functional resistance training during walking-where patients walk while a device increases loading on the leg-is an emerging approach to combat these symptoms. However, there are many methods that can be used to resist the patient, which may alter the biomechanics of the training. Thus, all methods may not address patient-specific deficits. METHODS We performed a comprehensive electronic database search to identify articles that acutely (i.e., after a single training session) examined how functional resistance training during walking alters muscle activation, gait biomechanics, and neural plasticity. Only articles that examined these effects during training or following the removal of resistance (i.e., aftereffects) were included. FINDINGS We found 41 studies that matched these criteria. Most studies (24) used passive devices (e.g., weighted cuffs or resistance bands) while the remainder used robotic devices. Devices varied on if they were wearable (14) or externally tethered, and the type of resistance they applied (i.e., inertial [14], elastic [8], viscous [7], or customized [12]). Notably, these methods provided device-specific changes in muscle activation, biomechanics, and spatiotemporal and kinematic aftereffects. Some evidence suggests this training results in task-specific increases in neural excitability. INTERPRETATION These findings suggest that careful selection of resistive strategies could help target patient-specific strength deficits and gait impairments. Also, many approaches are low-cost and feasible for clinical or in-home use. The results provide new insights for clinicians on selecting an appropriate functional resistance training strategy to target patient-specific needs.
Collapse
Affiliation(s)
- Edward P Washabaugh
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA; Michigan Medicine Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- Michigan Medicine Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA; Michigan Robotics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Unilateral non-electric assistive walking device helps neurological and orthopedic patients to improve gait patterns. Gait Posture 2022; 92:294-301. [PMID: 34902658 DOI: 10.1016/j.gaitpost.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Pathological gait patterns are common in neurological and orthopedic patients. These put them at risk of falling and restrict their autonomy and social participation. Novel assistive walking devices are designed to actively support physiological gait patterns by means of motor guidance and mechanical support of the lower limbs. RESEARCH QUESTION Does a non-electric assistive walking device powered by a cam-spring mechanism (aLQ, Imasen) improve or otherwise affect pathological gait patterns in neurological and orthopedic patients? METHODS A three-dimensional instrumented gait analysis was conducted on a treadmill (quasar, hp cosmos) using spatiotemporal, kinetic, and kinematic data obtained from synchronized motion capturing (Miqus M3, Qualisys), surface EMG (sEMG; Ultium, Noraxon), and pressure distribution measurements (FMD-T, Zebris). Participants with impaired walking were tested in a randomized repeated measures design (assisted/unassisted; at preferred/fast speed) and analyzed with regard to their medical condition (orthopedic or neurological group, n = 20 each). RESULTS In both groups, participants showed a significant increase of step length and decrease of cadence during assisted walking compared to baseline. Immediate kinematic effects included enhanced sagittal hip flexion but reduced extension. On the contrary, knee joint angles and muscle activity of M. gastrocnemius and M. rectus femoris seemed to be unaffected by the aLQ device. SIGNIFICANCE Participants appear to benefit from the assistive walking device regarding gait and movement patterns, which suggests that the tested device may help to improve patients' functional health status and quality of life. Activities of daily living (ADLs) that involve extensive hip flexion like stairs or curb climbing are promising applications. We propose the implementation of an invertible cam-spring that provides an additional resistance training option.
Collapse
|
12
|
Swaminathan K, Park S, Raza F, Porciuncula F, Lee S, Nuckols RW, Awad LN, Walsh CJ. Ankle resistance with a unilateral soft exosuit increases plantarflexor effort during pushoff in unimpaired individuals. J Neuroeng Rehabil 2021; 18:182. [PMID: 34961521 PMCID: PMC8711150 DOI: 10.1186/s12984-021-00966-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ankle-targeting resistance training for improving plantarflexion function during walking increases rehabilitation intensity, an important factor for motor recovery after stroke. However, understanding of the effects of resisting plantarflexion during stance on joint kinetics and muscle activity-key outcomes in evaluating its potential value in rehabilitation-remains limited. This initial study uses a unilateral exosuit that resists plantarflexion during mid-late stance in unimpaired individuals to test the hypotheses that when plantarflexion is resisted, individuals would (1) increase plantarflexor ankle torque and muscle activity locally at the resisted ipsilateral ankle, but (2) at higher forces, exhibit a generalized response that also uses the unresisted joints and limb. Further, we expected (3) short-term retention into gait immediately after removal of resistance. METHODS Ten healthy young adults walked at 1.25 m s-1 for four 10-min discrete bouts, each comprising baseline, exposure to active exosuit-applied resistance, and post-active sections. In each bout, a different force magnitude was applied based on individual baseline ankle torques. The peak resistance torque applied by the exosuit was 0.13 ± 0.01, 0.19 ± 0.01, 0.26 ± 0.02, and 0.32 ± 0.02 N m kg-1, in the LOW, MED, HIGH, and MAX bouts, respectively. RESULTS (1) Across all bouts, participants increased peak ipsilateral biological ankle torque by 0.13-0.25 N m kg-1 (p < 0.001) during exosuit-applied resistance compared to corresponding baselines. Additionally, ipsilateral soleus activity during stance increased by 5.4-11.3% (p < 0.05) in all but the LOW bout. (2) In the HIGH and MAX bouts, vertical ground reaction force decreased on the ipsilateral limb while increasing on the contralateral limb (p < 0.01). Secondary analysis found that the force magnitude that maximized increases in biological ankle torque without significant changes in limb loading varied by subject. (3) Finally, peak ipsilateral plantarflexion angle increased significantly during post-exposure in the intermediate HIGH resistance bout (p < 0.05), which corresponded to the greatest average increase in soleus activity (p > 0.10). CONCLUSIONS Targeted resistance of ankle plantarflexion during stance by an exosuit consistently increased local ipsilateral plantarflexor effort during active resistance, but force magnitude will be an important parameter to tune for minimizing the involvement of the unresisted joints and limb during training.
Collapse
Affiliation(s)
- Krithika Swaminathan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Sungwoo Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Fouzia Raza
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Franchino Porciuncula
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
- Sargent College of Health and Rehabilitation Science, Boston University, Boston, MA, 02215, USA
| | - Sangjun Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Richard W Nuckols
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Louis N Awad
- Sargent College of Health and Rehabilitation Science, Boston University, Boston, MA, 02215, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
| |
Collapse
|