1
|
Cruz-Garza JG, Bhenderu LS, Taghlabi KM, Frazee KP, Guerrero JR, Hogan MK, Humes F, Rostomily RC, Horner PJ, Faraji AH. Electrokinetic convection-enhanced delivery for infusion into the brain from a hydrogel reservoir. Commun Biol 2024; 7:869. [PMID: 39020197 PMCID: PMC11255224 DOI: 10.1038/s42003-024-06404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/31/2024] [Indexed: 07/19/2024] Open
Abstract
Electrokinetic convection-enhanced delivery (ECED) utilizes an external electric field to drive the delivery of molecules and bioactive substances to local regions of the brain through electroosmosis and electrophoresis, without the need for an applied pressure. We characterize the implementation of ECED to direct a neutrally charged fluorophore (3 kDa) from a doped biocompatible acrylic acid/acrylamide hydrogel placed on the cortical surface. We compare fluorophore infusion profiles using ECED (time = 30 min, current = 50 µA) and diffusion-only control trials, for ex vivo (N = 18) and in vivo (N = 12) experiments. The linear intensity profile of infusion to the brain is significantly higher in ECED compared to control trials, both for in vivo and ex vivo. The linear distance of infusion, area of infusion, and the displacement of peak fluorescence intensity along the direction of infusion in ECED trials compared to control trials are significantly larger for in vivo trials, but not for ex vivo trials. These results demonstrate the effectiveness of ECED to direct a solute from a surface hydrogel towards inside the brain parenchyma based predominantly on the electroosmotic vector.
Collapse
Affiliation(s)
- Jesus G Cruz-Garza
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
| | - Lokeshwar S Bhenderu
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
- Texas A&M University College of Medicine, Houston, TX, USA.
| | - Khaled M Taghlabi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kendall P Frazee
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- School of Engineering, Texas A&M, College Station, TX, USA
| | - Jaime R Guerrero
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Matthew K Hogan
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Frances Humes
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Philip J Horner
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
2
|
Sætra MJ, Ellingsrud AJ, Rognes ME. Neural activity induces strongly coupled electro-chemo-mechanical interactions and fluid flow in astrocyte networks and extracellular space-A computational study. PLoS Comput Biol 2023; 19:e1010996. [PMID: 37478153 PMCID: PMC10396022 DOI: 10.1371/journal.pcbi.1010996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
The complex interplay between chemical, electrical, and mechanical factors is fundamental to the function and homeostasis of the brain, but the effect of electrochemical gradients on brain interstitial fluid flow, solute transport, and clearance remains poorly quantified. Here, via in-silico experiments based on biophysical modeling, we estimate water movement across astrocyte cell membranes, within astrocyte networks, and within the extracellular space (ECS) induced by neuronal activity, and quantify the relative role of different forces (osmotic, hydrostatic, and electrical) on transport and fluid flow under such conditions. We find that neuronal activity alone may induce intracellular fluid velocities in astrocyte networks of up to 14μm/min, and fluid velocities in the ECS of similar magnitude. These velocities are dominated by an osmotic contribution in the intracellular compartment; without it, the estimated fluid velocities drop by a factor of ×34-45. Further, the compartmental fluid flow has a pronounced effect on transport: advection accelerates ionic transport within astrocytic networks by a factor of ×1-5 compared to diffusion alone.
Collapse
Affiliation(s)
- Marte J. Sætra
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Ada J. Ellingsrud
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Marie E. Rognes
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
3
|
Li X. Subject-Specific Head Model Generation by Mesh Morphing: A Personalization Framework and Its Applications. Front Bioeng Biotechnol 2021; 9:706566. [PMID: 34733827 PMCID: PMC8558307 DOI: 10.3389/fbioe.2021.706566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Finite element (FE) head models have become powerful tools in many fields within neuroscience, especially for studying the biomechanics of traumatic brain injury (TBI). Subject-specific head models accounting for geometric variations among subjects are needed for more reliable predictions. However, the generation of such models suitable for studying TBIs remains a significant challenge and has been a bottleneck hindering personalized simulations. This study presents a personalization framework for generating subject-specific models across the lifespan and for pathological brains with significant anatomical changes by morphing a baseline model. The framework consists of hierarchical multiple feature and multimodality imaging registrations, mesh morphing, and mesh grouping, which is shown to be efficient with a heterogeneous dataset including a newborn, 1-year-old (1Y), 2Y, adult, 92Y, and a hydrocephalus brain. The generated models of the six subjects show competitive personalization accuracy, demonstrating the capacity of the framework for generating subject-specific models with significant anatomical differences. The family of the generated head models allows studying age-dependent and groupwise brain injury mechanisms. The framework for efficient generation of subject-specific FE head models helps to facilitate personalized simulations in many fields of neuroscience.
Collapse
Affiliation(s)
- Xiaogai Li
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Wang T, Kleiven S, Li X. Influence of Anisotropic White Matter on Electroosmotic Flow Induced by Direct Current. Front Bioeng Biotechnol 2021; 9:689020. [PMID: 34485253 PMCID: PMC8414365 DOI: 10.3389/fbioe.2021.689020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment of cerebral edema remains a major challenge in clinical practice and new innovative therapies are needed. This study presents a novel approach for mitigating cerebral edema by inducing bulk fluid transport utilizing the brain’s electroosmotic property using an anatomically detailed finite element head model incorporating anisotropy in the white matter (WM). Three representative anisotropic conductivity algorithms are employed for the WM and compared with isotropic WM. The key results are (1) the electroosmotic flow (EOF) is driven from the edema region to the subarachnoid space under an applied electric field with its magnitude linearly correlated to the electric field and direction following current flow pathways; (2) the extent of EOF distribution variation correlates highly with the degree of the anisotropic ratio of the WM regions; (3) the directions of the induced EOF in the anisotropic models deviate from its isotropically defined pathways and tend to move along the principal fiber direction. The results suggest WM anisotropy should be incorporated in head models for more reliable EOF evaluations for cerebral edema mitigation and demonstrate the promise of the electroosmosis based approach to be developed as a new therapy for edema treatment as evaluated with enhanced head models incorporating WM anisotropy.
Collapse
Affiliation(s)
- Teng Wang
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| |
Collapse
|
5
|
Wang T, Kleiven S, Li X. Designing electrode configuration of electroosmosis based edema treatment as a complement to hyperosmotic therapy. Acta Neurochir (Wien) 2021; 163:2603-2614. [PMID: 34291383 PMCID: PMC8357759 DOI: 10.1007/s00701-021-04938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hyperosmotic therapy is a mainstay treatment for cerebral edema. Although often effective, its disadvantages include mainly acting on the normal brain region with limited effectiveness in eliminating excess fluid in the edema region. This study investigates how to configure our previously proposed novel electroosmosis based edema treatment as a complement to hyperosmotic therapy. METHODS Three electrode configurations are designed to drive the excess fluid out of the edema region, including 2-electrode, 3-electrode, and 5-electrode designs. The focality and directionality of the induced electroosmotic flow (EOF) are then investigated using the same patient-specific head model with localized edema. RESULTS The 5-electrode design shows improved EOF focality with reduced effect on the normal brain region than the other two designs. Importantly, this design also achieves better directionality driving excess edema tissue fluid to a larger region of surrounding normal brain where hyperosmotic therapy functions better. Thus, the 5-electrode design is suggested to treat edema more efficiently via a synergic effect: the excess fluid is first driven out from the edema to surrounding normal brain via EOF, where it can then be treated with hyperosmotic therapy. Meanwhile, the 5-electrode design drives 2.22 mL excess fluid from the edema region in an hour comparable to the other designs, indicating a similar efficiency of EOF. CONCLUSIONS The results show that the promise of our previously proposed novel electroosmosis based edema treatment can be designed to achieve better focality and directionality towards a complement to hyperosmotic therapy.
Collapse
Affiliation(s)
- Teng Wang
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, SE-141 52, Huddinge, Sweden.
| | - Svein Kleiven
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, SE-141 52, Huddinge, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, SE-141 52, Huddinge, Sweden
| |
Collapse
|