1
|
Huang C, Lok UW, Zhang J, Zhu XY, Krier JD, Stern A, Knoll KM, Petersen KE, Robinson KA, Hesley GK, Bentall AJ, Atwell TD, Rule AD, Lerman LO, Chen S. Optimizing in vivodata acquisition for robust clinical microvascular imaging using ultrasound localization microscopy. Phys Med Biol 2025; 70:10.1088/1361-6560/adc0de. [PMID: 40086078 PMCID: PMC12010384 DOI: 10.1088/1361-6560/adc0de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
Objective. Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature. This pilot study aims to investigate the temporal changes in MB signals during bolus injections in both pig and human models to optimize data acquisition for clinical ULM.Approach.Quantitative indices, mainly including individual MB SNR, normalized cross-correlation (NCC) of the MB signal with the point-spread function, and the number of localizable MBs, were developed to evaluate MB signal quality and guide the selection of acquisition timing. The effects of transmitted voltage and dosage on signal quality for MB localization were also explored.Main results. In both pig and human studies, MB localization quality (primarily indicated by NCC) reached a minimum at peak MB concentration, then improved as MB counts decreased during the wash-out phase. An optimal acquisition window was identified by balancing localization quality (empirically, NCC > 0.57) and MB concentration. In the pig model, a relatively short time window (approximately 10 s) for optimal acquisition was identified during the rapid wash-out phase, highlighting the need for real-time MB signal monitoring during data acquisition. The slower wash-out phase in humans allowed for a more flexible imaging window of 1-2 min, while trade-offs were observed between localization quality and MB density (or acquisition length) at different wash-out phase timings. Guided by these findings, robust ULM imaging was achieved in both pig and human kidneys using a short period of data acquisition (3.6 s and 9.6 s of data), demonstrating its feasibility in clinical practice.Significance.This study provides insights into optimizing data acquisition for consistent and reproducible ULM, paving the way for its standardization and broader clinical applications.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jingke Zhang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xiang Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amy Stern
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kate M. Knoll
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kendra E. Petersen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kathryn A. Robinson
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gina K. Hesley
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew J. Bentall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Thomas D. Atwell
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew D. Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
2
|
Wang F, Yu J, Lu X, Numata K, Ruan L, Zhang D, Liu X, Li X, Wan M, Zhang W, Zhang G. Relationship between contrast-enhanced ultrasound combined with ultrasound resolution microscopy imaging and histological features of hepatocellular carcinoma. Abdom Radiol (NY) 2025:10.1007/s00261-025-04825-y. [PMID: 39928101 DOI: 10.1007/s00261-025-04825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES Using contrast-enhanced ultrasound (CEUS) and ultrasound resolution microscopy (URM) imaging, this study aimed to evaluate the relationship between microvascular parameters of small hepatocellular carcinoma (sHCC) (≤ 3 cm) and microscopic histological features, which include vessels encapsulating tumour clusters (VETC), microvascular invasion (MVI), and histological grade. METHODS Sixteen patients with solitary resected sHCC were prospectively enrolled. CEUS and URM were performed one week before resection. All "ratio" refers to comparisons between the active area (where CEUS microbubble show visible motion track by URM) and the entire lesion. Blood vessel complexity (ratio), blood vessel density (ratio), area (ratio), flow velocity, blood vessel diameter, and perfusion index ("flow velocity" × "vessel ratio") were analysed using URM. The relationships between URM parameters and microscopic histological features (MVI, VETC, and histological grade) were analysed. RESULTS There were 5 (31.3%), 8 (50%), and 7 (43.7%) cases of poorly differentiated, MVI-positive, and VETC-positive HCC, respectively. The mean velocity of the entire lesion was higher in the poorly differentiated group than that in the moderately differentiated group (p = 0.026). The complexity ratio (MVI-positive: 1.07 ± 0.03, MVI-negative: 1.03 ± 0.02, p = 0.012), area ratio (MVI-positive: 0.63 ± 0.18, MVI-negative: 0.39 ± 0.16, p = 0.017), and perfusion index (MVI-positive: 8.67 ± 1.88, MVI-negative: 6.42 ± 0.94, p = 0.009) were greater in MVI-positive HCCs. The density ratio (VETC-positive: 1.30 ± 0.19, VETC-negative: 1.10 ± 0.05, p = 0.006) was larger in VETC-positive HCCs. CONCLUSION Higher blood flow velocity and area of HCC lesions, and higher blood vessel complexity and density may be related to microscopic histological features. This relationship might provide a strategy of using URM for preoperative non-invasive diagnostic VETC, MVI, and histological grade in the future.
Collapse
Affiliation(s)
- Feiqian Wang
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jingtong Yu
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Baoji Hospital of Traditional Chinese Medicine, Baoji, China
| | - Xingqi Lu
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Baoji Hospital of Traditional Chinese Medicine, Baoji, China
| | - Kazushi Numata
- Yokohama City University Medical Center, Yokohama, Japan
| | - Litao Ruan
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dong Zhang
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Liu
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaojing Li
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Wenbin Zhang
- VINNO Technology Company Limited, Jiangsu, China
| | - Guanjun Zhang
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Huang C, Lok UW, Zhang J, Zhu XY, Krier JD, Stern A, Knoll KM, Petersen KE, Robinson KA, Hesley GK, Bentall AJ, Atwell TD, Rule AD, Lerman LO, Chen S. Optimizing In Vivo Data Acquisition for Robust Clinical Microvascular Imaging Using Ultrasound Localization Microscopy. ARXIV 2024:arXiv:2412.18077v1. [PMID: 39764396 PMCID: PMC11703319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature. This pilot study investigated temporal changes in MB signals during bolus injections in both pig and human models to optimize data acquisition for clinical ULM. Quantitative indices were developed to evaluate MB signal quality, guiding selection of acquisition timing that balances the MB localization quality and adequate MB counts. The effects of transmitted voltage and dosage were also explored. In the pig model, a relatively short window (approximately 10 seconds) for optimal acquisition was identified during the rapid wash-out phase, highlighting the need for real-time MB signal monitoring during data acquisition. The slower wash-out phase in humans allowed for a more flexible imaging window of 1-2 minutes, while trade-offs were observed between localization quality and MB density (or acquisition length) at different wash-out phase timings. Guided by these findings, robust ULM imaging was achieved in both pig and human kidneys using a short period of data acquisition, demonstrating its feasibility in clinical practice. This study provides insights into optimizing data acquisition for consistent and reproducible ULM, paving the way for its standardization and broader clinical applications.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jingke Zhang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xiang Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - James D. Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amy Stern
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kate M. Knoll
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kendra E. Petersen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kathryn A. Robinson
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gina K. Hesley
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew J. Bentall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Thomas D. Atwell
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Andrew D. Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
4
|
Xia S, Zheng Y, Hua Q, Wen J, Luo X, Yan J, Bai B, Dong Y, Zhou J. Super-resolution ultrasound and microvasculomics: a consensus statement. Eur Radiol 2024; 34:7503-7513. [PMID: 38811389 DOI: 10.1007/s00330-024-10796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
This is a summary of a consensus statement on the introduction of "Ultrasound microvasculomics" produced by The Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound. The evaluation of microvessels is a very important part for the assessment of diseases. Super-resolution ultrasound (SRUS) microvascular imaging surpasses traditional ultrasound imaging in the morphological and functional analysis of microcirculation. SRUS microvascular imaging relies on contrast microbubbles to gain sensitivity to microvessels and improves the spatial resolution of ultrasound blood flow imaging for a more detailed depiction of vascular structures and hemodynamics. This method has been applied in preclinical animal models and pilot clinical studies, involving areas including neurology, oncology, nephrology, and cardiology. However, the current quantitative parameters of SRUS images are not enough for precise evaluation of microvessels. Therefore, by employing omics methods, more quantification indicators can be obtained, enabling a more precise and personalized assessment of microvascular status. Ultrasound microvasculomics - a high-throughput extraction of image features from SRUS images - is one novel approach that holds great promise but needs further validation in both bench and clinical settings. CLINICAL RELEVANCE STATEMENT: Super-resolution Ultrasound (SRUS) blood flow imaging improves spatial resolution. Ultrasound microvasculomics is possible to acquire high-throughput information of features from SRUS images. It provides more precise and abundant micro-blood flow information in clinical medicine. KEY POINTS: This consensus statement reviews the development and application of super-resolution ultrasound (SRUS). The shortcomings of the current quantification indicators of SRUS and strengths of the omics methodology are addressed. "Ultrasound microvasculomics" is introduced for a high-throughput extraction of image features from SRUS images.
Collapse
Affiliation(s)
- ShuJun Xia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - YuHang Zheng
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Qing Hua
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Jing Wen
- Department of Medical Ultrasound, Affiliated Hospital of Guizhou Medical University, 550001, Guiyang, China
| | - XiaoMao Luo
- Department of Medical Ultrasound, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, 650118, Kunming, China
| | - JiPing Yan
- Department of Ultrasound, Shanxi Provincial People's Hospital, 31th Shuangta Street, 030012, Taiyuan, China
| | - BaoYan Bai
- Department of Ultrasound, Affiliated Hospital of Yan 'an University, 43 North Street, Baota District, 716000, Yan'an, China
| | - YiJie Dong
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China.
| | - JianQiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, 200025, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China.
| |
Collapse
|
5
|
Zhang C, Lei S, Ma A, Wang B, Wang S, Liu J, Shang D, Zhang Q, Li Y, Zheng H, Ma T. Evaluation of tumor microvasculature with 3D ultrasound localization microscopy based on 2D matrix array. Eur Radiol 2024; 34:5250-5259. [PMID: 38265473 DOI: 10.1007/s00330-023-10039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVE Evaluation of tumor microvascular morphology is of great significance in tumor diagnosis, therapeutic effect prediction, and surgical planning. Recently, two-dimensional ultrasound localization microscopy (2DULM) has demonstrated its superiority in the field of microvascular imaging. However, it suffers from planar dependence and is unintuitive. We propose a novel three-dimensional ultrasound localization microscopy (3DULM) to avoid these limitations. METHODS We investigated 3DULM based on a 2D array for tumor microvascular imaging. After intravenous injection of contrast agents, all elements of the 2D array transmit and receive signals to ensure a high and stable frame rate. Microbubble signal extraction, filtering, positioning, tracking, and other processing were used to obtain a 3D vascular map, flow velocity, and flow direction. To verify the effectiveness of 3DULM, it was validated on double helix tubes and rabbit VX2 tumors. Cisplatin was used to verify the ability of 3DULM to detect microvascular changes during tumor treatment. RESULTS In vitro, the sizes measured by 3DULM at 3 mm and 13 mm were 178 μ m and 182 μ m , respectively. In the rabbit tumors, we acquired 9000 volumes to reveal vessels about 30 μ m in diameter, which surpasses the diffraction limit of ultrasound in traditional ultrasound imaging, and the results matched with micro-angiography. In addition, there were significant changes in vascular density and curvature between the treatment and control groups. CONCLUSIONS The effectiveness of 3DULM was verified in vitro and in vivo. Hence, 3DULM may have potential applications in tumor diagnosis, tumor treatment evaluation, surgical protocol guidance, and cardiovascular disease. CLINICAL RELEVANCE STATEMENT 3D ultrasound localization microscopy is highly sensitive to microvascular changes; thus, it has clinical potential for tumor diagnosis and treatment evaluation. KEY POINTS • 3D ultrasound localization microscopy is demonstrated on double helix tubes and rabbit VX2 tumors. • 3D ultrasound localization microscopy can reveal vessels about 30 μ m in diameter-far smaller than traditional ultrasound. • This form of imaging has potential applications in tumor diagnosis, tumor treatment evaluation, surgical protocol guidance, and cardiovascular disease.
Collapse
Affiliation(s)
- Changlu Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Shuang Lei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Aiqing Ma
- Nanomedicine and Nanoformulations Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuo Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiamei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dongqing Shang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Qi Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongchuan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100000, China
| | - Teng Ma
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of the Chinese Academy of Sciences, Beijing, 100000, China.
| |
Collapse
|
6
|
Chen H, Mirg S, Gaddale P, Agrawal S, Li M, Nguyen V, Xu T, Li Q, Liu J, Tu W, Liu X, Drew PJ, Zhang N, Gluckman BJ, Kothapalli S. Multiparametric Brain Hemodynamics Imaging Using a Combined Ultrafast Ultrasound and Photoacoustic System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401467. [PMID: 38884161 PMCID: PMC11336909 DOI: 10.1002/advs.202401467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Studying brain-wide hemodynamic responses to different stimuli at high spatiotemporal resolutions can help gain new insights into the mechanisms of neuro- diseases and -disorders. Nonetheless, this task is challenging, primarily due to the complexity of neurovascular coupling, which encompasses interdependent hemodynamic parameters including cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral oxygen saturation (SO2). The current brain imaging technologies exhibit inherent limitations in resolution, sensitivity, and imaging depth, restricting their capacity to comprehensively capture the intricacies of cerebral functions. To address this, a multimodal functional ultrasound and photoacoustic (fUSPA) imaging platform is reported, which integrates ultrafast ultrasound and multispectral photoacoustic imaging methods in a compact head-mountable device, to quantitatively map individual dynamics of CBV, CBF, and SO2 as well as contrast agent enhanced brain imaging at high spatiotemporal resolutions. Following systematic characterization, the fUSPA system is applied to study brain-wide cerebrovascular reactivity (CVR) at single-vessel resolution via relative changes in CBV, CBF, and SO2 in response to hypercapnia stimulation. These results show that cortical veins and arteries exhibit differences in CVR in the stimulated state and consistent anti-correlation in CBV oscillations during the resting state, demonstrating the multiparametric fUSPA system's unique capabilities in investigating complex mechanisms of brain functions.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Shubham Mirg
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Prameth Gaddale
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Sumit Agrawal
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Menghan Li
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Van Nguyen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tianbao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Qiong Li
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Jinyun Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wenyu Tu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiao Liu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Institute for Computational and Data SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Patrick J. Drew
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of NeurosurgeryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Bruce J. Gluckman
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of NeurosurgeryThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Sri‐Rajasekhar Kothapalli
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Penn State Cancer InstituteThe Pennsylvania State UniversityHersheyPA17033USA
- Graduate Program in AcousticsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
7
|
Lu Y, Hua Y, Wang B, Zhong F, Theophanous A, Tahir S, Lee PY, Sigal IA. The Robust Lamina Cribrosa Vasculature: Perfusion and Oxygenation Under Elevated Intraocular Pressure. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38691092 PMCID: PMC11077910 DOI: 10.1167/iovs.65.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 05/03/2024] Open
Abstract
Purpose Elevated intraocular pressure (IOP) is thought to cause lamina cribrosa (LC) blood vessel distortions and potentially collapse, adversely affecting LC hemodynamics, reducing oxygenation, and triggering, or contributing to, glaucomatous neuropathy. We assessed the robustness of LC perfusion and oxygenation to vessel collapses. Methods From histology, we reconstructed three-dimensional eye-specific LC vessel networks of two healthy monkey eyes. We used numerical simulations to estimate LC perfusion and from this the oxygenation. We then evaluated the effects of collapsing a fraction of LC vessels (0%-36%). The collapsed vessels were selected through three scenarios: stochastic (collapse randomly), systematic (collapse strictly by the magnitude of local experimentally determined IOP-induced compression), and mixed (a combination of stochastic and systematic). Results LC blood flow decreased linearly as vessels collapsed-faster for stochastic and mixed scenarios and slower for the systematic one. LC regions suffering severe hypoxia (oxygen <8 mm Hg) increased proportionally to the collapsed vessels in the systematic scenario. For the stochastic and mixed scenarios, severe hypoxia did not occur until 15% of vessels collapsed. Some LC regions had higher perfusion and oxygenation as vessels collapsed elsewhere. Some severely hypoxic regions maintained normal blood flow. Results were equivalent for both networks and patterns of experimental IOP-induced compression. Conclusions LC blood flow was sensitive to distributed vessel collapses (stochastic and mixed) and moderately vulnerable to clustered collapses (systematic). Conversely, LC oxygenation was robust to distributed vessel collapses and sensitive to clustered collapses. Locally normal flow does not imply adequate oxygenation. The actual nature of IOP-induced vessel collapse remains unknown.
Collapse
Affiliation(s)
- Yuankai Lu
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, University of Mississippi, Mississippi, United States
- Department of Mechanical Engineering, University of Mississippi, Mississippi, United States
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Andrew Theophanous
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shaharoz Tahir
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Xu Y, Zhu XY, Feng H, Yu XP, Wang Y, Rong X, Qi TY. The value of quantitative contrast-enhanced ultrasonography analysis in evaluating central retinal artery microcirculation in patients with diabetes mellitus: comparison with colour Doppler imaging. Clin Radiol 2024; 79:e560-e566. [PMID: 38336532 DOI: 10.1016/j.crad.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
AIM To compare the efficacy of quantitative contrast-enhanced ultrasonography (CEUS) analysis and colour Doppler ultrasound (CDU) in evaluating central retinal artery (CRA) microcirculation in patients with diabetes mellitus (DM). MATERIALS AND METHODS In this prospective study, a total of 55 patients (98 eyes) with DM were enrolled as the study group. They were compared to 46 age-matched healthy volunteers (92 eyes) who were selected as the control group. Each patient underwent CDU and subsequent CEUS examination. CDU and quantitative CEUS parameters were evaluated. The diagnostic efficiency of the diagnostic performance of CEUS and CDU was evaluated and compared, and the scale thresholds of predictive indicators for the diagnosis of proliferative diabetic retinopathy (PDR) were evaluated using receiver operating characteristics (ROC) curve analyses. RESULTS Group pairwise comparisons showed that the end diastolic velocity (EDV) and arrival time (AT) of CRA were significant predictors for PDR by CDU and by quantitative CEUS analysis, respectively (all p<0.05). The ROC curve analysis showed that the area under the curve value of AT was significantly higher than that of EDV (0.875 versus 0.634, p=0.0002). Accordingly, an AT cut-off value of 1.07 seconds resulted a sensitivity of 90.62 % and a specificity of 79.31 %. CONCLUSION Quantitative CEUS analysis can improve the accuracy of clinical staging of diabetic retinopathy for the patients with DM, and the AT showed the best diagnostic efficiency.
Collapse
Affiliation(s)
- Y Xu
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - X Y Zhu
- Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - H Feng
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - X P Yu
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - Y Wang
- Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - X Rong
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China
| | - T Y Qi
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, China.
| |
Collapse
|
9
|
Mano T, Grutman T, Ilovitsh T. Versatile Ultrasound-Compatible Microfluidic Platform for In Vitro Microvasculature Flow Research and Imaging Optimization. ACS OMEGA 2023; 8:47667-47677. [PMID: 38144052 PMCID: PMC10734021 DOI: 10.1021/acsomega.3c05849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Ultrasound localization microscopy (ULM) enables the creation of super-resolved images and velocity maps by localizing and tracking microbubble contrast agents through a vascular network over thousands of frames of ultrafast plane wave images. However, a significant challenge lies in developing ultrasound-compatible microvasculature phantoms to investigate microbubble flow and distribution in controlled environments. In this study, we introduce a new class of gelatin-based microfluidic-inspired phantoms uniquely tailored for ULM studies. These devices allow for the creation of complex and reproducible microvascular networks featuring channel diameters as small as 100 μm. Our experiments focused on microbubble behavior under ULM conditions within bifurcating and converging vessel phantoms. We evaluated the impact of bifurcation angles (25, 45, and 55°) and flow rates (0.01, 0.02, and 0.03 mL/min) on the acquisition time of branching channels. Additionally, we explored the saturation time effect of narrow channels branching off larger ones. Significantly longer acquisition times were observed for the narrow vessels, with an average increase of 72% when a 100 μm channel branched off from a 300 μm channel and an average increase of 90% for a 200 μm channel branching off from a 500 μm channel. The robustness of our fabrication method is demonstrated through the creation of two trifurcating microfluidic phantoms, including one that converges back into a single channel, a configuration that cannot be achieved through traditional methods. This new class of ULM phantoms serves as a versatile platform for noninvasively studying complex flow patterns using ultrasound imaging, unlocking new possibilities for in vitro microvasculature research and imaging optimization.
Collapse
Affiliation(s)
- Tamar Mano
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Grutman
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Zhang G, Liao C, Hu JR, Hu HM, Lei YM, Harput S, Ye HR. Nanodroplet-Based Super-Resolution Ultrasound Localization Microscopy. ACS Sens 2023; 8:3294-3306. [PMID: 37607403 DOI: 10.1021/acssensors.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the past decade, super-resolution ultrasound localization microscopy (SR-ULM) has revolutionized ultrasound imaging with its capability to resolve the microvascular structures below the ultrasound diffraction limit. The introduction of this imaging technique enables the visualization, quantification, and characterization of tissue microvasculature. The early implementations of SR-ULM utilize microbubbles (MBs) that require a long image acquisition time due to the requirement of capturing sparsely isolated microbubble signals. The next-generation SR-ULM employs nanodroplets that have the potential to significantly reduce the image acquisition time without sacrificing the resolution. This review discusses various nanodroplet-based ultrasound localization microscopy techniques and their corresponding imaging mechanisms. A summary is given on the preclinical applications of SR-ULM with nanodroplets, and the challenges in the clinical translation of nanodroplet-based SR-ULM are presented while discussing the future perspectives. In conclusion, ultrasound localization microscopy is a promising microvasculature imaging technology that can provide new diagnostic and prognostic information for a wide range of pathologies, such as cancer, heart conditions, and autoimmune diseases, and enable personalized treatment monitoring at a microlevel.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, PSL University, CNRS, Paris 75015, France
| | - Chen Liao
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
- Medical College, Wuhan University of Science and Technology, Wuhan 430065, People's Republic of China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London SE1 0AA, U.K
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan 430080, People's Republic of China
| |
Collapse
|
11
|
Song P, Rubin JM, Lowerison MR. Super-resolution ultrasound microvascular imaging: Is it ready for clinical use? Z Med Phys 2023; 33:309-323. [PMID: 37211457 PMCID: PMC10517403 DOI: 10.1016/j.zemedi.2023.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/23/2023]
Abstract
The field of super-resolution ultrasound microvascular imaging has been rapidly growing over the past decade. By leveraging contrast microbubbles as point targets for localization and tracking, super-resolution ultrasound pinpoints the location of microvessels and measures their blood flow velocity. Super-resolution ultrasound is the first in vivo imaging modality that can image micron-scale vessels at a clinically relevant imaging depth without tissue destruction. These unique capabilities of super-resolution ultrasound provide structural (vessel morphology) and functional (vessel blood flow) assessments of tissue microvasculature on a global and local scale, which opens new doors for many enticing preclinical and clinical applications that benefit from microvascular biomarkers. The goal of this short review is to provide an update on recent advancements in super-resolution ultrasound imaging, with a focus on summarizing existing applications and discussing the prospects of translating super-resolution imaging to clinical practice and research. In this review, we also provide brief introductions of how super-resolution ultrasound works, how does it compare with other imaging modalities, and what are the tradeoffs and limitations for an audience who is not familiar with the technology.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States.
| | - Jonathan M Rubin
- Department of Radiology, University of Michigan, Ann Arbor, United States
| | - Matthew R Lowerison
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States
| |
Collapse
|
12
|
Ul Banna H, Mitchell B, Chen S, Palko J. Super-Resolution Ultrasound Localization Microscopy Using High-Frequency Ultrasound to Measure Ocular Perfusion Velocity in the Rat Eye. Bioengineering (Basel) 2023; 10:689. [PMID: 37370620 PMCID: PMC10295416 DOI: 10.3390/bioengineering10060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Imaging of the ocular vasculature can provide new insights into the pathophysiology of ocular diseases. This study proposes a novel high-frequency super-resolution ultrasound localization microscopy (SRULM) technique and evaluates its ability to measure in vivo perfusion changes in the rat eye at elevated intraocular pressure (IOP). A 38.4 MHz center frequency linear array transducer on a VisualSonics Vevo F2 imaging platform was used to collect high frame rate (1 kHz) radiofrequency data of the posterior rat eye following systemic microbubble contrast injection. Following clutter and spatiotemporal non-local means filtering, individual microbubbles were localized and tracked. The microbubble tracks were accumulated over 10,000 frames to generate vascular images quantifying perfusion velocity and direction. Experiments were performed using physiologic relevant controlled flow states for algorithm validation and subsequently performed in vivo on the rat eye at 10 mm Hg IOP increments from 10 to 60 mm Hg. The posterior vasculature of the rat eye, including the ophthalmic artery, long posterior ciliary arteries and their branches, central retinal artery and retinal arterioles and venules were successfully visualized, and velocities quantified at each IOP level. Significant reductions in arterial flow were measured as IOP was elevated. High-frequency SRULM can be used to visualize and quantify the perfusion velocity of the rat eye in both the retrobulbar and intraocular vasculature simultaneously. The ability to detect ocular perfusion changes throughout the depth of the eye may help elucidate the role ischemia has in the pathophysiology of ocular diseases such as glaucoma.
Collapse
Affiliation(s)
- Hasan Ul Banna
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Benjamin Mitchell
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Stephen Chen
- School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Joel Palko
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
13
|
Lei S, Zhang C, Zhu B, Gao Z, Zhang Q, Liu J, Li Y, Zheng H, Ma T. In vivo ocular microvasculature imaging in rabbits with 3D ultrasound localization microscopy. ULTRASONICS 2023; 133:107022. [PMID: 37178486 DOI: 10.1016/j.ultras.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Morphological and hemodynamic changes in the ocular vasculature are important signs of various ocular diseases. The evaluation of the ocular microvasculature with high resolution is valuable in comprehensive diagnoses. However, it is difficult for current optical imaging techniques to visualize the posterior segment and retrobulbar microvasculature due to the limited penetration depth of light, particularly when the refractive medium is opaque. Thus, we have developed a 3D ultrasound localization microscopy (ULM) imaging method to visualize the ocular microvasculature in rabbits with micron-scale resolution. We used a 32 × 32 matrix array transducer (center frequency: 8 MHz) with a compounding plane wave sequence and microbubbles. Block-wise singular value decomposition spatiotemporal clutter filtering and block-matching 3D denoising were implemented to extract the flowing microbubble signals at different imaging depths with high signal-to-noise ratios. The center points of microbubbles were localized and tracked in 3D space to achieve the micro-angiography. The in vivo results demonstrate the ability of 3D ULM to visualize the microvasculature of the eye in rabbits, where vessels down to 54 μm were successfully revealed. Moreover, the microvascular maps indicated the morphological abnormalities in the eye with retinal detachment. This efficient modality shows potential for use in the diagnosis of ocular diseases.
Collapse
Affiliation(s)
- Shuang Lei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Changlu Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zeping Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Jiamei Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China
| | - Yongchuan Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Teng Ma
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; National Innovation Center for Advanced Medical Devices, Shenzhen 518126, China.
| |
Collapse
|
14
|
Quan B, Liu X, Zhao S, Chen X, Zhang X, Chen Z. Detecting Early Ocular Choroidal Melanoma Using Ultrasound Localization Microscopy. Bioengineering (Basel) 2023; 10:bioengineering10040428. [PMID: 37106615 PMCID: PMC10136200 DOI: 10.3390/bioengineering10040428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Ocular choroidal melanoma (OCM) is the most common ocular primary malignant tumor in adults, and there is an increasing emphasis on its early detection and treatment worldwide. The main obstacle in early detection of OCM is its overlapping clinical features with benign choroidal nevus. Thus, we propose ultrasound localization microscopy (ULM) based on the image deconvolution algorithm to assist the diagnosis of small OCM in early stages. Furthermore, we develop ultrasound (US) plane wave imaging based on three-frame difference algorithm to guide the placement of the probe on the field of view. A high-frequency Verasonics Vantage system and an L22-14v linear array transducer were used to perform experiments on both custom-made modules in vitro and a SD rat with ocular choroidal melanoma in vivo. The results demonstrate that our proposed deconvolution method implement more robust microbubble (MB) localization, reconstruction of microvasculature network in a finer grid and more precise flow velocity estimation. The excellent performance of US plane wave imaging was successfully validated on the flow phantom and in an in vivo OCM model. In the future, the super-resolution ULM, a critical complementary imaging modality, can provide doctors with conclusive suggestions for early diagnosis of OCM, which is significant for the treatment and prognosis of patients.
Collapse
Affiliation(s)
- Biao Quan
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiangdong Liu
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuang Zhao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuan Zhang
- The Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (X.Z.); (Z.C.)
| | - Zeyu Chen
- The College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Correspondence: (X.Z.); (Z.C.)
| |
Collapse
|
15
|
Andersen SB, Sørensen CM, Jensen JA, Nielsen MB. Microvascular Imaging with Super-Resolution Ultrasound. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2022; 43:543-547. [PMID: 36470255 DOI: 10.1055/a-1937-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
16
|
Morisset C, Dizeux A, Larrat B, Selingue E, Boutin H, Picaud S, Sahel JA, Ialy-Radio N, Pezet S, Tanter M, Deffieux T. Retinal functional ultrasound imaging (rfUS) for assessing neurovascular alterations: a pilot study on a rat model of dementia. Sci Rep 2022; 12:19515. [PMID: 36376408 PMCID: PMC9663720 DOI: 10.1038/s41598-022-23366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Fifty million people worldwide are affected by dementia, a heterogeneous neurodegenerative condition encompassing diseases such as Alzheimer's, vascular dementia, and Parkinson's. For them, cognitive decline is often the first marker of the pathology after irreversible brain damage has already occurred. Researchers now believe that structural and functional alterations of the brain vasculature could be early precursors of the diseases and are looking at how functional imaging could provide an early diagnosis years before irreversible clinical symptoms. In this preclinical pilot study, we proposed using functional ultrasound (fUS) on the retina to assess neurovascular alterations non-invasively, bypassing the skull limitation. We demonstrated for the first time the use of functional ultrasound in the retina and applied it to characterize the retinal hemodynamic response function in vivo in rats following a visual stimulus. We then demonstrated that retinal fUS could measure robust neurovascular coupling alterations between wild-type rats and TgF344-AD rat models of Alzheimer's disease. We observed an average relative increase in blood volume of 21% in the WT versus 37% for the TG group (p = 0.019). As a portable, non-invasive and inexpensive technique, rfUS is a promising functional screening tool in clinics for dementia years before symptoms.
Collapse
Affiliation(s)
- Clementine Morisset
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Alexandre Dizeux
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Benoit Larrat
- grid.457334.20000 0001 0667 2738NeuroSpin, Institut Des Sciences du Vivant Frédéric Joliot, Commissariat À L’Energie Atomique Et Aux Energies Alternatives (CEA), CNRS, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France
| | - Erwan Selingue
- grid.457334.20000 0001 0667 2738NeuroSpin, Institut Des Sciences du Vivant Frédéric Joliot, Commissariat À L’Energie Atomique Et Aux Energies Alternatives (CEA), CNRS, Université Paris-Saclay, 91191 Gif-Sur-Yvette, France
| | - Herve Boutin
- grid.5379.80000000121662407Faculty of Biology, Medicine and Health, School of Biological Sciences Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PL UK ,grid.5379.80000000121662407Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, Manchester, M20 3LJ UK ,grid.462482.e0000 0004 0417 0074Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, UK
| | - Serge Picaud
- grid.418241.a0000 0000 9373 1902Institut de La Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France
| | - Jose-Alain Sahel
- grid.418241.a0000 0000 9373 1902Institut de La Vision, Sorbonne Université, INSERM, CNRS, 17 Rue Moreau, 75012 Paris, France ,grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.417888.a0000 0001 2177 525XDepartment of Ophthalmology and Vitreo-Retinal Diseases, Fondation Ophtalmologique Rothschild, 75019 Paris, France
| | - Nathalie Ialy-Radio
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Sophie Pezet
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Mickael Tanter
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| | - Thomas Deffieux
- grid.440907.e0000 0004 1784 3645Institute Physics for Medicine Paris, INSERM U1273, ESPCI PSL Paris, CNRS UMR 8631, PSL Research University, Paris, France
| |
Collapse
|
17
|
Andersen SB, Taghavi I, Søgaard SB, Hoyos CAV, Nielsen MB, Jensen JA, Sørensen CM. Super-Resolution Ultrasound Imaging Can Quantify Alterations in Microbubble Velocities in the Renal Vasculature of Rats. Diagnostics (Basel) 2022; 12:1111. [PMID: 35626267 PMCID: PMC9140053 DOI: 10.3390/diagnostics12051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Super-resolution ultrasound imaging, based on the localization and tracking of single intravascular microbubbles, makes it possible to map vessels below 100 µm. Microbubble velocities can be estimated as a surrogate for blood velocity, but their clinical potential is unclear. We investigated if a decrease in microbubble velocity in the arterial and venous beds of the renal cortex, outer medulla, and inner medulla was detectable after intravenous administration of the α1-adrenoceptor antagonist prazosin. The left kidneys of seven rats were scanned with super-resolution ultrasound for 10 min before, during, and after prazosin administration using a bk5000 ultrasound scanner and hockey-stick probe. The super-resolution images were manually segmented, separating cortex, outer medulla, and inner medulla. Microbubble tracks from arteries/arterioles were separated from vein/venule tracks using the arterial blood flow direction. The mean microbubble velocities from each scan were compared. This showed a significant prazosin-induced velocity decrease only in the cortical arteries/arterioles (from 1.59 ± 0.38 to 1.14 ± 0.31 to 1.18 ± 0.33 mm/s, p = 0.013) and outer medulla descending vasa recta (from 0.70 ± 0.05 to 0.66 ± 0.04 to 0.69 ± 0.06 mm/s, p = 0.026). Conclusively, super-resolution ultrasound imaging makes it possible to detect and differentiate microbubble velocity responses to prazosin simultaneously in the renal cortical and medullary vascular beds.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | | | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
| |
Collapse
|
18
|
Andersen SB, Taghavi I, Kjer HM, Søgaard SB, Gundlach C, Dahl VA, Nielsen MB, Dahl AB, Jensen JA, Sørensen CM. Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Sci Rep 2021; 11:24335. [PMID: 34934089 PMCID: PMC8692475 DOI: 10.1038/s41598-021-03726-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Super-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague-Dawley rat kidney with ex vivo μCT of the same kidney. Co-registering the SRUS images to the μCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 μm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use μCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | | |
Collapse
|