1
|
Shang Y, Wang Z, Chen Y, Yang X, Ren Z, Zeng X, Xu L. HNF-DDA: subgraph contrastive-driven transformer-style heterogeneous network embedding for drug-disease association prediction. BMC Biol 2025; 23:101. [PMID: 40241152 PMCID: PMC12004644 DOI: 10.1186/s12915-025-02206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Drug-disease association (DDA) prediction aims to identify potential links between drugs and diseases, facilitating the discovery of new therapeutic potentials and reducing the cost and time associated with traditional drug development. However, existing DDA prediction methods often overlook the global relational information provided by other biological entities, and the complex association structure between drug diseases, limiting the potential correlations of drug and disease embeddings. RESULTS In this study, we propose HNF-DDA, a subgraph contrastive-driven transformer-style heterogeneous network embedding model for DDA prediction. Specifically, HNF-DDA adopts all-pairs message passing strategy to capture the global structure of the network, fully integrating multi-omics information. HNF-DDA also proposes the concept of subgraph contrastive learning to capture the local structure of drug-disease subgraphs, learning the high-order semantic information of nodes. Experimental results on two benchmark datasets demonstrate that HNF-DDA outperforms several state-of-the-art methods. Additionally, it shows superior performance across different dataset splitting schemes, indicating HNF-DDA's capability to generalize to novel drug and disease categories. Case studies for breast cancer and prostate cancer reveal that 9 out of the top 10 predicted candidate drugs for breast cancer and 8 out of the top 10 for prostate cancer have documented therapeutic effects. CONCLUSIONS HNF-DDA incorporates all-pairs message passing and subgraph capture strategies into heterogeneous network embedding, enabling effective learning of drug and disease representations enriched with heterogeneous information, while also demonstrating significant potential for applications in drug repositioning.
Collapse
Affiliation(s)
- Yifan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Zixu Wang
- Department of Computer Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Yangyang Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xinyu Yang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Zhonghao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Sun Y, Pan Z, Wang Z, Wang H, Wei L, Cui F, Zou Q, Zhang Z. Single-cell transcriptome analysis reveals immune microenvironment changes and insights into the transition from DCIS to IDC with associated prognostic genes. J Transl Med 2024; 22:894. [PMID: 39363164 PMCID: PMC11448450 DOI: 10.1186/s12967-024-05706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of the breast is an early stage of breast cancer, and preventing its progression to invasive ductal carcinoma (IDC) is crucial for the early detection and treatment of breast cancer. Although single-cell transcriptome analysis technology has been widely used in breast cancer research, the biological mechanisms underlying the transition from DCIS to IDC remain poorly understood. RESULTS We identified eight cell types through cell annotation, finding significant differences in T cell proportions between DCIS and IDC. Using this as a basis, we performed pseudotime analysis on T cell subpopulations, revealing that differentially expressed genes primarily regulate immune cell migration and modulation. By intersecting WGCNA results of T cells highly correlated with the subtypes and the differentially expressed genes, we identified six key genes: FGFBP2, GNLY, KLRD1, TYROBP, PRF1, and NKG7. Excluding PRF1, the other five genes were significantly associated with overall survival in breast cancer, highlighting their potential as prognostic biomarkers. CONCLUSIONS We identified immune cells that may play a role in the progression from DCIS to IDC and uncovered five key genes that can serve as prognostic markers for breast cancer. These findings provide insights into the mechanisms underlying the transition from DCIS to IDC, offering valuable perspectives for future research. Additionally, our results contribute to a better understanding of the biological processes involved in breast cancer progression.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis
- Female
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Gene Expression Profiling
- Prognosis
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/immunology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/immunology
- Disease Progression
- Transcriptome/genetics
- Single-Cell Gene Expression Analysis
Collapse
Affiliation(s)
- Yidi Sun
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Zhuoyu Pan
- International Business School, Hainan University, Haikou, 570228, China
| | - Ziyi Wang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Haofei Wang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China
| | - Leyi Wei
- Centre for Artificial Intelligence driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China
- School of Informatics, Xiamen University, Xiamen, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China.
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Liu S, Shi T, Yu J, Li R, Lin H, Deng K. Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review. Int J Mol Sci 2024; 25:9844. [PMID: 39337334 PMCID: PMC11432553 DOI: 10.3390/ijms25189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
Collapse
Affiliation(s)
| | | | | | | | - Hao Lin
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China; (S.L.); (T.S.); (J.Y.); (R.L.)
| |
Collapse
|
4
|
Zhao H, Qiu S, Bai M, Wang L, Wang Z. Toxicity prediction and classification of Gunqile-7 with small sample based on transfer learning method. Comput Biol Med 2024; 173:108348. [PMID: 38531249 DOI: 10.1016/j.compbiomed.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Drug-induced diseases are the most important component of iatrogenic disease. It is the duty of doctors to provide a reasonable and safe dose of medication. Gunqile-7 is a Mongolian medicine with analgesic and anti-inflammatory effects. As a foreign substance in the body, even with reasonable medication, it may produce varying degrees of adverse reactions or toxic side effects. Since the cost of collecting Gunqile-7 for pharmacological animal trials is high and the data sample is small, this paper employs transfer learning and data augmentation methods to study the toxicity of Gunqile-7. More specifically, to reduce the necessary number of training samples, the data augmentation approach is employed to extend the data set. Then, the transfer learning method and one-dimensional convolutional neural network are utilized to train the network. In addition, we use the support vector machine-recursive feature elimination method for feature selection to reduce features that have adverse effects on model predictions. Furthermore, due to the important role of the pre-trained model of transfer learning, we select a quantitative toxicity prediction model as the pre-trained model, which is consistent with the purpose of this paper. Lastly, the experimental results demonstrate the efficiency of the proposed method. Our method can improve accuracy by up to 9 percentage points compared to the method without transfer learning on a small sample set.
Collapse
Affiliation(s)
- Hongkai Zhao
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China; School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Sen Qiu
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China; School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Meirong Bai
- Key Laboratory of Ministry of Education of Mongolian Medicine RD Engineering, Inner Mongolia Minzu University, Tongliao 028000, China.
| | - Luyao Wang
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China; School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Zhelong Wang
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China; School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Chen S, Li M, Semenov I. MFA-DTI: Drug-target interaction prediction based on multi-feature fusion adopted framework. Methods 2024; 224:79-92. [PMID: 38430967 DOI: 10.1016/j.ymeth.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
The identification of drug-target interactions (DTI) is a valuable step in the drug discovery and repositioning process. However, traditional laboratory experiments are time-consuming and expensive. Computational methods have streamlined research to determine DTIs. The application of deep learning methods has significantly improved the prediction performance for DTIs. Modern deep learning methods can leverage multiple sources of information, including sequence data that contains biological structural information, and interaction data. While useful, these methods cannot be effectively applied to each type of information individually (e.g., chemical structure and interaction network) and do not take into account the specificity of DTI data such as low- or zero-interaction biological entities. To overcome these limitations, we propose a method called MFA-DTI (Multi-feature Fusion Adopted framework for DTI). MFA-DTI consists of three modules: an interaction graph learning module that processes the interaction network to generate interaction vectors, a chemical structure learning module that extracts features from the chemical structure, and a fusion module that combines these features for the final prediction. To validate the performance of MFA-DTI, we conducted experiments on six public datasets under different settings. The results indicate that the proposed method is highly effective in various settings and outperforms state-of-the-art methods.
Collapse
Affiliation(s)
- Siqi Chen
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Minghui Li
- Beidahuang Industry Group General Hospital, Harbin, 150006, China
| | - Ivan Semenov
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
6
|
Chen S, Semenov I, Zhang F, Yang Y, Geng J, Feng X, Meng Q, Lei K. An effective framework for predicting drug-drug interactions based on molecular substructures and knowledge graph neural network. Comput Biol Med 2024; 169:107900. [PMID: 38199213 DOI: 10.1016/j.compbiomed.2023.107900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Drug-drug interactions (DDIs) play a central role in drug research, as the simultaneous administration of multiple drugs can have harmful or beneficial effects. Harmful interactions lead to adverse reactions, some of which can be life-threatening, while beneficial interactions can promote efficacy. Therefore, it is crucial for physicians, patients, and the research community to identify potential DDIs. Although many AI-based techniques have been proposed for predicting DDIs, most existing computational models primarily focus on integrating multiple data sources or combining popular embedding methods. Researchers often overlook the valuable information within the molecular structure of drugs or only consider the structural information of drugs, neglecting the relationship or topological information between drugs and other biological objects. In this study, we propose MSKG-DDI - a two-component framework that incorporates the Drug Chemical Structure Graph-based component and the Drug Knowledge Graph-based component to capture multimodal characteristics of drugs. Subsequently, a multimodal fusion neural layer is utilized to explore the complementarity between multimodal representations of drugs. Extensive experiments were conducted using two real-world datasets, and the results demonstrate that MSKG-DDI outperforms other state-of-the-art models in binary-class, multi-class, and multi-label prediction tasks under both transductive and inductive settings. Furthermore, the ablation analysis further confirms the practical usefulness of MSKG-DDI.
Collapse
Affiliation(s)
- Siqi Chen
- School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ivan Semenov
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Fengyun Zhang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Jie Geng
- TianJin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Xuequan Feng
- Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Qinghua Meng
- Tianjin Key Laboratory of Sports Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Kaiyou Lei
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
7
|
Guo W, Liu J, Dong F, Song M, Li Z, Khan MKH, Patterson TA, Hong H. Review of machine learning and deep learning models for toxicity prediction. Exp Biol Med (Maywood) 2023; 248:1952-1973. [PMID: 38057999 PMCID: PMC10798180 DOI: 10.1177/15353702231209421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
The ever-increasing number of chemicals has raised public concerns due to their adverse effects on human health and the environment. To protect public health and the environment, it is critical to assess the toxicity of these chemicals. Traditional in vitro and in vivo toxicity assays are complicated, costly, and time-consuming and may face ethical issues. These constraints raise the need for alternative methods for assessing the toxicity of chemicals. Recently, due to the advancement of machine learning algorithms and the increase in computational power, many toxicity prediction models have been developed using various machine learning and deep learning algorithms such as support vector machine, random forest, k-nearest neighbors, ensemble learning, and deep neural network. This review summarizes the machine learning- and deep learning-based toxicity prediction models developed in recent years. Support vector machine and random forest are the most popular machine learning algorithms, and hepatotoxicity, cardiotoxicity, and carcinogenicity are the frequently modeled toxicity endpoints in predictive toxicology. It is known that datasets impact model performance. The quality of datasets used in the development of toxicity prediction models using machine learning and deep learning is vital to the performance of the developed models. The different toxicity assignments for the same chemicals among different datasets of the same type of toxicity have been observed, indicating benchmarking datasets is needed for developing reliable toxicity prediction models using machine learning and deep learning algorithms. This review provides insights into current machine learning models in predictive toxicology, which are expected to promote the development and application of toxicity prediction models in the future.
Collapse
Affiliation(s)
- Wenjing Guo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jie Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fan Dong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Meng Song
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Zoe Li
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Md Kamrul Hasan Khan
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
8
|
Balasubramanian S, Duraikannan V, Perumal E. Toxicogenomic analysis of physiologically important metals: An integrated in silico approach. Food Chem Toxicol 2023:113895. [PMID: 37328090 DOI: 10.1016/j.fct.2023.113895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Biologically important metals regulate cellular homeostasis in living systems. Anthropogenic exposure to these metals can cause adverse effects, including an increased incidence of diseases in humans such as cancer, lung, and cardiovascular defects. However, the effects of metals and the common genes/signaling pathways involved in metal toxicity have not been elucidated. Hence, the present study used toxicogenomic data mining with the comparative toxicogenomics database to explore the impact of these metals. The metals were categorized into transition, alkali, and alkali earth. The common genes were identified and subjected to functional enrichment analysis. Further, gene-gene and protein-protein interactions were assessed. Also, the top ten transcription factors and miRNAs that regulate the genes were identified. The phenotypes and diseases that have increased incidence upon alterations of these genes were detected. Overall, we were able to identify IL1B and SOD2 as the common genes, along with the AGE-RAGE signaling pathway in diabetic complications as the common pathway altered. Enriched genes and pathways specific to each metal category were also found. Further, we identified heart failure as the major diseases that have increased the incidence of these metals' exposure. In conclusion, exposure to essential metals might cause adverse effects via inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Vaishnavi Duraikannan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
9
|
Kumar R, Yadav G, Kuddus M, Ashraf GM, Singh R. Unlocking the microbial studies through computational approaches: how far have we reached? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48929-48947. [PMID: 36920617 PMCID: PMC10016191 DOI: 10.1007/s11356-023-26220-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
The metagenomics approach accelerated the study of genetic information from uncultured microbes and complex microbial communities. In silico research also facilitated an understanding of protein-DNA interactions, protein-protein interactions, docking between proteins and phyto/biochemicals for drug design, and modeling of the 3D structure of proteins. These in silico approaches provided insight into analyzing pathogenic and nonpathogenic strains that helped in the identification of probable genes for vaccines and antimicrobial agents and comparing whole-genome sequences to microbial evolution. Artificial intelligence, more precisely machine learning (ML) and deep learning (DL), has proven to be a promising approach in the field of microbiology to handle, analyze, and utilize large data that are generated through nucleic acid sequencing and proteomics. This enabled the understanding of the functional and taxonomic diversity of microorganisms. ML and DL have been used in the prediction and forecasting of diseases and applied to trace environmental contaminants and environmental quality. This review presents an in-depth analysis of the recent application of silico approaches in microbial genomics, proteomics, functional diversity, vaccine development, and drug design.
Collapse
Affiliation(s)
- Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Garima Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah , 27272, United Arab Emirates
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
10
|
Zhang L, Li H, Zhang Z, Wang J, Chen G, Chen D, Shi W, Jia G, Liu M. Hybrid gMLP model for interaction prediction of MHC-peptide and TCR. Front Genet 2023; 13:1092822. [PMID: 36685858 PMCID: PMC9845249 DOI: 10.3389/fgene.2022.1092822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Understanding the interaction of T-cell receptor (TCR) with major histocompatibility-peptide (MHC-peptide) complex is extremely important in human immunotherapy and vaccine development. However, due to the limited available data, the performance of existing models for predicting the interaction of T-cell receptors (TCR) with major histocompatibility-peptide complexes is still unsatisfactory. Deep learning models have been applied to prediction tasks in various fields and have achieved better results compared with other traditional models. In this study, we leverage the gMLP model combined with attention mechanism to predict the interaction of MHC-peptide and TCR. Experiments show that our model can predict TCR-peptide interactions accurately and can handle the problems caused by different TCR lengths. Moreover, we demonstrate that the models trained with paired CDR3β-chain and CDR3α-chain data are better than those trained with only CDR3β-chain or with CDR3α-chain data. We also demonstrate that the hybrid model has greater potential than the traditional convolutional neural network.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Haojin Li
- School of Software, Shandong University, Jinan, China
| | - Zhenjiu Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Jinjin Wang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | | | | | - Wentao Shi
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Mingjun Liu
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
11
|
Identification of adaptor proteins using the ANOVA feature selection technique. Methods 2022; 208:42-47. [DOI: 10.1016/j.ymeth.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
12
|
Identification of DNA-binding proteins via Multi-view LSSVM with independence criterion. Methods 2022; 207:29-37. [PMID: 36087888 DOI: 10.1016/j.ymeth.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
DNA-binding proteins actively participate in life activities such as DNA replication, recombination, gene expression and regulation and play a prominent role in these processes. As DNA-binding proteins continue to be discovered and increase, it is imperative to design an efficient and accurate identification tool. Considering the time-consuming and expensive traditional experimental technology and the insufficient number of samples in the biological computing method based on structural information, we proposed a machine learning algorithm based on sequence information to identify DNA binding proteins, named multi-view Least Squares Support Vector Machine via Hilbert-Schmidt Independence Criterion (multi-view LSSVM via HSIC). This method took 6 feature sets as multi-view input and trains a single view through the LSSVM algorithm. Then, we integrated HSIC into LSSVM as a regular term to reduce the dependence between views and explored the complementary information of multiple views. Subsequently, we trained and coordinated the submodels and finally combined the submodels in the form of weights to obtain the final prediction model. On training set PDB1075, the prediction results of our model were better than those of most existing methods. Independent tests are conducted on the datasets PDB186 and PDB2272. The accuracy of the prediction results was 85.5% and 79.36%, respectively. This result exceeded the current state-of-the-art methods, which showed that the multi-view LSSVM via HSIC can be used as an efficient predictor.
Collapse
|
13
|
Su R, Yang H, Wei L, Chen S, Zou Q. A multi-label learning model for predicting drug-induced pathology in multi-organ based on toxicogenomics data. PLoS Comput Biol 2022; 18:e1010402. [PMID: 36070305 PMCID: PMC9451100 DOI: 10.1371/journal.pcbi.1010402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Drug-induced toxicity damages the health and is one of the key factors causing drug withdrawal from the market. It is of great significance to identify drug-induced target-organ toxicity, especially the detailed pathological findings, which are crucial for toxicity assessment, in the early stage of drug development process. A large variety of studies have devoted to identify drug toxicity. However, most of them are limited to single organ or only binary toxicity. Here we proposed a novel multi-label learning model named Att-RethinkNet, for predicting drug-induced pathological findings targeted on liver and kidney based on toxicogenomics data. The Att-RethinkNet is equipped with a memory structure and can effectively use the label association information. Besides, attention mechanism is embedded to focus on the important features and obtain better feature presentation. Our Att-RethinkNet is applicable in multiple organs and takes account the compound type, dose, and administration time, so it is more comprehensive and generalized. And more importantly, it predicts multiple pathological findings at the same time, instead of predicting each pathology separately as the previous model did. To demonstrate the effectiveness of the proposed model, we compared the proposed method with a series of state-of-the-arts methods. Our model shows competitive performance and can predict potential hepatotoxicity and nephrotoxicity in a more accurate and reliable way. The implementation of the proposed method is available at https://github.com/RanSuLab/Drug-Toxicity-Prediction-MultiLabel.
Collapse
Affiliation(s)
- Ran Su
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Haitang Yang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, Shandong, China
| | - Siqi Chen
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| |
Collapse
|
14
|
Pu Y, Li J, Tang J, Guo F. DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2760-2769. [PMID: 34379594 DOI: 10.1109/tcbb.2021.3103966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identification of drug-target interaction (DTI) is the most important issue in the broad field of drug discovery. Using purely biological experiments to verify drug-target binding profiles takes lots of time and effort, so computational technologies for this task obviously have great benefits in reducing the drug search space. Most of computational methods to predict DTI are proposed to solve a binary classification problem, which ignore the influence of binding strength. Therefore, drug-target binding affinity prediction is still a challenging issue. Currently, lots of studies only extract sequence information that lacks feature-rich representation, but we consider more spatial features in order to merge various data in drug and target spaces. In this study, we propose a two-stage deep neural network ensemble model for detecting drug-target binding affinity, called DeepFusionDTA, via various information analysis modules. First stage is to utilize sequence and structure information to generate fusion feature map of candidate protein and drug pair through various analysis modules based deep learning. Second stage is to apply bagging-based ensemble learning strategy for regression prediction, and we obtain outstanding results by combining the advantages of various algorithms in efficient feature abstraction and regression calculation. Importantly, we evaluate our novel method, DeepFusionDTA, which delivers 1.5 percent CI increase on KIBA dataset and 1.0 percent increase on Davis dataset, by comparing with existing prediction tools, DeepDTA. Furthermore, the ideas we have offered can be applied to in-silico screening of the interaction space, to provide novel DTIs which can be experimentally pursued. The codes and data are available from https://github.com/guofei-tju/DeepFusionDTA.
Collapse
|
15
|
Jeong J, Choi J. Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7532-7543. [PMID: 35666838 DOI: 10.1021/acs.est.1c07413] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, research on the development of artificial intelligence (AI)-based computational toxicology models that predict toxicity without the use of animal testing has emerged because of the rapid development of computer technology. Various computational toxicology techniques that predict toxicity based on the structure of chemical substances are gaining attention, including the quantitative structure-activity relationship. To understand the recent development of these models, we analyzed the databases, molecular descriptors, fingerprints, and algorithms considered in recent studies. Based on a selection of 96 papers published since 2014, we found that AI models have been developed to predict approximately 30 different toxicity end points using more than 20 toxicity databases. For model development, molecular access system and extended-connectivity fingerprints are the most commonly used molecular descriptors. The most used algorithm among the machine learning techniques is the random forest, while the most used algorithm among the deep learning techniques is a deep neural network. The use of AI technology in the development of toxicity prediction models is a new concept that will aid in achieving a scientific accord and meet regulatory applications. The comprehensive overview provided in this study will provide a useful guide for the further development and application of toxicity prediction models.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, South Korea
| |
Collapse
|
16
|
Zhao S, Pan Q, Zou Q, Ju Y, Shi L, Su X. Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7518779. [PMID: 35422876 PMCID: PMC9005296 DOI: 10.1155/2022/7518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Enhancers are a class of noncoding DNA elements located near structural genes. In recent years, their identification and classification have been the focus of research in the field of bioinformatics. However, due to their high free scattering and position variability, although the performance of the prediction model has been continuously improved, there is still a lot of room for progress. In this paper, density-based spatial clustering of applications with noise (DBSCAN) was used to screen the physicochemical properties of dinucleotides to extract dinucleotide-based auto-cross covariance (DACC) features; then, the features are reduced by feature selection Python toolkit MRMD 2.0. The reduced features are input into the random forest to identify enhancers. The enhancer classification model was built by word2vec and attention-based Bi-LSTM. Finally, the accuracies of our enhancer identification and classification models were 77.25% and 73.50%, respectively, and the Matthews' correlation coefficients (MCCs) were 0.5470 and 0.4881, respectively, which were better than the performance of most predictors.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Qingfeng Pan
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| |
Collapse
|
17
|
Zhang H, Zou Q, Ju Y, Song C, Chen D. Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220404145517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
DNA N6-methyladenine plays an important role in the restriction-modification system to isolate invasion from adventive DNA. The shortcomings of the high time-consumption and high costs of experimental methods have been exposed, and some computational methods have emerged. The support vector machine theory has received extensive attention in the bioinformatics field due to its solid theoretical foundation and many good characteristics.
Objective:
General machine learning methods include an important step of extracting features. The research has omitted this step and replaced with easy-to-obtain sequence distances matrix to obtain better results
Method:
First sequence alignment technology was used to achieve the similarity matrix. Then a novel transformation turned the similarity matrix into a distance matrix. Next, the similarity-distance matrix is made positive semi-definite so that it can be used in the kernel matrix. Finally, the LIBSVM software was applied to solve the support vector machine.
Results:
The five-fold cross-validation of this model on rice and mouse data has achieved excellent accuracy rates of 92.04% and 96.51%, respectively. This shows that the DB-SVM method has obvious advantages compared with traditional machine learning methods. Meanwhile this model achieved 0.943,0.982 and 0.818 accuracy,0.944, 0.982, and 0.838 Matthews correlation coefficient and 0.942, 0.982 and 0.840 F1 scores for the rice, M. musculus and cross-species genome datasets, respectively.
Conclusion:
These outcomes show that this model outperforms the iIM-CNN and csDMA in the prediction of DNA 6mA modification, which are the lastest research on DNA 6mA.
Collapse
Affiliation(s)
- Haoyu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Chenggang Song
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China
| |
Collapse
|
18
|
Jiao S, Chen Z, Zhang L, Zhou X, Shi L. ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning. Amino Acids 2022; 54:799-809. [PMID: 35286461 DOI: 10.1007/s00726-022-03145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
Autophagy plays an important role in biological evolution and is regulated by many autophagy proteins. Accurate identification of autophagy proteins is crucially important to reveal their biological functions. Due to the expense and labor cost of experimental methods, it is urgent to develop automated, accurate and reliable sequence-based computational tools to enable the identification of novel autophagy proteins among numerous proteins and peptides. For this purpose, a new predictor named ATGPred-FL was proposed for the efficient identification of autophagy proteins. We investigated various sequence-based feature descriptors and adopted the feature learning method to generate corresponding, more informative probability features. Then, a two-step feature selection strategy based on accuracy was utilized to remove irrelevant and redundant features, leading to the most discriminative 14-dimensional feature set. The final predictor was built using a support vector machine classifier, which performed favorably on both the training and testing sets with accuracy values of 94.40% and 90.50%, respectively. ATGPred-FL is the first ATG machine learning predictor based on protein primary sequences. We envision that ATGPred-FL will be an effective and useful tool for autophagy protein identification, and it is available for free at http://lab.malab.cn/~acy/ATGPred-FL , the source code and datasets are accessible at https://github.com/jiaoshihu/ATGPred .
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, 7098 Liuxian Street, Shenzhen, 518055, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu, 61005, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xun Zhou
- Beidahuang Industry Group General Hospital, Harbin, 150001, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, No 415, Fengyang Road, Huangpu District, Shanghai, 210000, China.
| |
Collapse
|
19
|
Chen S, Yang Y, Su R. Deep reinforcement learning with emergent communication for coalitional negotiation games. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4592-4609. [PMID: 35430829 DOI: 10.3934/mbe.2022212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For tasks intractable for a single agent, agents must cooperate to accomplish complex goals. A good example is coalitional games, where a group of individuals forms coalitions to produce jointly and share surpluses. In such coalitional negotiation games, how to strategically negotiate to reach agreements on gain allocation is however a key challenge, when the agents are independent and selfish. This work therefore employs deep reinforcement learning (DRL) to build autonomous agent called DALSL that can deal with arbitrary coalitional games without human input. Furthermore, DALSL agent is equipped with the ability to exchange information between them through emergent communication. We have proved that the agent can successfully form a team, distribute the team's benefits fairly, and can effectively use the language channel to exchange specific information, thereby promoting the establishment of small coalition and shortening the negotiation process. The experimental results shows that the DALSL agent obtains higher payoff when negotiating with handcrafted agents and other RL-based agents; moreover, it outperforms other competitors with a larger margin when the language channel is allowed.
Collapse
Affiliation(s)
- Siqi Chen
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Yang Yang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
20
|
Meng C, Ju Y, Shi H. TMPpred: A support vector machine-based thermophilic protein identifier. Anal Biochem 2022; 645:114625. [PMID: 35218736 DOI: 10.1016/j.ab.2022.114625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022]
Abstract
MOTIVATION The thermostability of proteins will cause them to break the temperature binding and play more functions. Using machine learning, we explored the mechanism of and reasons for protein thermostability characteristics. RESULTS Different from other methods that only pursue the performance of models, we aim to find important features so as to provide a powerful reference for in vitro experiments. We transformed this problem into a binary classification problem, that is, the distinction between thermophilic proteins and nonthermophilic proteins. Using support vector machine-based model construction and analysis, we inferred that Gly, Ala, Ser and Thr may be the most important components at the residue level that determine the thermal stability of proteins. It is also noteworthy that our proposed model obtains an Sn of 0.892, an Sp of 0.857, an ACC of 0.87566 and an AUC of 0.874. To facilitate other researchers, we wrapped our model and deployed it as a web server, which is accessible at http://112.124.26.17:7000/TMPpred/index.html.
Collapse
Affiliation(s)
- Chaolu Meng
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Hohhot, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China.
| | - Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.
| |
Collapse
|
21
|
Chen Z, Jiao S, Zhao D, Zou Q, Xu L, Zhang L, Su X. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Front Cell Dev Biol 2022; 10:845622. [PMID: 35178393 PMCID: PMC8844512 DOI: 10.3389/fcell.2022.845622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recurrence and new cases of cancer constitute a challenging human health problem. Aquaporins (AQPs) can be expressed in many types of tumours, including the brain, breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is positively correlated with AQP expression. Therefore, the identification of aquaporins is an area to explore. Computational tools play an important role in aquaporin identification. In this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF to identify AQPs. In this study, the feature extraction method was 188D (global protein sequence descriptor, GPSD). Six common classifiers, including random forest (RF), NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR) and decision tree (DT), were used for AQP classification. The classification results show that the random forest (RF) algorithm is the most suitable machine learning algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to analyse these characteristics. Feature rank based on the ANOVA method and IFS strategy was applied to search for the optimal features. The classification results suggest that the 26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most powerful and informative features that distinguish AQPs from non-AQPs. Previous studies reported that plasma membrane proteins have hydrophobic characteristics. Aquaporin subcellular localization prediction showed that all aquaporins were plasma membrane proteins with highly conserved transmembrane structures. In addition, the 3D structure of aquaporins was consistent with the localization results. Therefore, these studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins are highly conserved transmembrane structures, the phylogenetic tree shows the diversity of aquaporins during evolution. The PCA showed that positive and negative samples were well separated by 54D features, indicating that the 54D feature can effectively classify aquaporins. The online prediction server is accessible at http://lab.malab.cn/∼acy/iAQP.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, China
| |
Collapse
|
22
|
Han K, Cao P, Wang Y, Xie F, Ma J, Yu M, Wang J, Xu Y, Zhang Y, Wan J. A Review of Approaches for Predicting Drug-Drug Interactions Based on Machine Learning. Front Pharmacol 2022; 12:814858. [PMID: 35153767 PMCID: PMC8835726 DOI: 10.3389/fphar.2021.814858] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Drug-drug interactions play a vital role in drug research. However, they may also cause adverse reactions in patients, with serious consequences. Manual detection of drug-drug interactions is time-consuming and expensive, so it is urgent to use computer methods to solve the problem. There are two ways for computers to identify drug interactions: one is to identify known drug interactions, and the other is to predict unknown drug interactions. In this paper, we review the research progress of machine learning in predicting unknown drug interactions. Among these methods, the literature-based method is special because it combines the extraction method of DDI and the prediction method of DDI. We first introduce the common databases, then briefly describe each method, and summarize the advantages and disadvantages of some prediction models. Finally, we discuss the challenges and prospects of machine learning methods in predicting drug interactions. This review aims to provide useful guidance for interested researchers to further promote bioinformatics algorithms to predict DDI.
Collapse
Affiliation(s)
- Ke Han
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Peigang Cao
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Yu Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Fang Xie
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jiaqi Ma
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Mengyao Yu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jianchun Wang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yaoqun Xu
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Jie Wan
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
23
|
Lin C, Wang L, Shi L. AAPred-CNN: accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides. Methods 2022; 204:442-448. [PMID: 35031486 DOI: 10.1016/j.ymeth.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Recently, deep learning techniques have been developed for various bioactive peptide prediction tasks. However, there are only conventional machine learning-based methods for the prediction of anti-angiogenic peptides (AAP), which play an important role in cancer treatment. The main reason why no deep learning method has been involved in this field is that there are too few experimentally validated AAPs to support the training of deep models but researchers have believed that deep learning seriously depends on the amounts of labeled data. In this paper, as a tentative work, we try to predict AAP by constructing different classical deep learning models and propose the first deep convolution neural network-based predictor (AAPred-CNN) for AAP. Contrary to intuition, the experimental results show that deep learning models can achieve superior or comparable performance to the state-of-the-art model, although they are given a few labeled sequences to train. We also decipher the influence of hyper-parameters and training samples on the performance of deep learning models to help understand how the model work. Furthermore, we also visualize the learned embeddings by dimension reduction to increase the model interpretability and reveal the residue propensity of AAP through the statistics of convolutional features for different residues. In summary, this work demonstrates the powerful representation ability of AAPred-CNNfor AAP prediction, further improving the prediction accuracy of AAP.
Collapse
Affiliation(s)
- Changhang Lin
- School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuzhou, China
| | - Lei Wang
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
24
|
Li H, Shi L, Gao W, Zhang Z, Zhang L, Wang G. dPromoter-XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods 2022; 204:215-222. [PMID: 34998983 DOI: 10.1016/j.ymeth.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022] Open
Abstract
Promoters play an irreplaceable role in biological processes and genetics, which are responsible for stimulating the transcription and expression of specific genes. Promoter abnormalities have been found in some diseases, and the level of promoter-binding transcription factors can be used as a marker before a disease occurs. Hence, detecting promoters from DNA sequences has important biological significance, particular, distinguishing strong promoters can help to elucidate differences in gene expression and the mechanisms of specific diseases. With the introduction of third-generation sequencing, it is difficult to match the speed of sequencing to the speed of labeling promoters experimentally. Many computing models have been designed to fill this gap and identify unlabeled DNA. However, their feature representation methods are very singular, which cannot reflect the information contained in the original samples. With the aim of avoiding information loss, we propose a computational model based on multiple descriptors and feature selection to jointly express samples. It is worth mentioning that a new feature descriptor called K-mer word vector is defined. The promoter model of multiple feature descriptors dominated by K-mer word vector achieves similar performance to existing methods, the sensitivity of 85.72% can distinguish the promoter more effectively than other methods. Furthermore, the performance of the promoter strength has surpassed published methods, and accuracy of 77.00% greatly improves the ability to distinguish between strong and weak promoters.
Collapse
Affiliation(s)
- Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China; Yangtze Delta Region Institute, University of Electronic Science and Technology, Quzhou,China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.
| |
Collapse
|
25
|
Zhao D, Teng Z, Li Y, Chen D. iAIPs: Identifying Anti-Inflammatory Peptides Using Random Forest. Front Genet 2021; 12:773202. [PMID: 34917130 PMCID: PMC8669811 DOI: 10.3389/fgene.2021.773202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the inflammatory response, and these peptides have been used to treat some inflammatory and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino acid sequences is critical for the discovery of novel and efficient anti-inflammatory peptide-based therapeutics and the acceleration of their application in therapy. In this paper, a random forest-based model called iAIPs for identifying AIPs is proposed. First, the original samples were encoded with three feature extraction methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature subset is generated by a two-step feature selection method, in which the feature is ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is generated by the incremental feature selection strategy. Finally, the optimal feature subset is inputted into the random forest classifier, and the identification model is constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822 on an independent test dataset, which indicated that our proposed model has better performance than the existing methods. Furthermore, the extraction of features for peptide sequences provides the basis for evolutionary analysis. The study of peptide identification is helpful to understand the diversity of species and analyze the evolutionary history of species.
Collapse
Affiliation(s)
- Dongxu Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjuan Li
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
26
|
Gong Y, Liao B, Wang P, Zou Q. DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins. Front Pharmacol 2021; 12:771808. [PMID: 34916947 PMCID: PMC8669608 DOI: 10.3389/fphar.2021.771808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Drug targets are biological macromolecules or biomolecule structures capable of specifically binding a therapeutic effect with a particular drug or regulating physiological functions. Due to the important value and role of drug targets in recent years, the prediction of potential drug targets has become a research hotspot. The key to the research and development of modern new drugs is first to identify potential drug targets. In this paper, a new predictor, DrugHybrid_BS, is developed based on hybrid features and Bagging-SVM to identify potentially druggable proteins. This method combines the three features of monoDiKGap (k = 2), cross-covariance, and grouped amino acid composition. It removes redundant features and analyses key features through MRMD and MRMD2.0. The cross-validation results show that 96.9944% of the potentially druggable proteins can be accurately identified, and the accuracy of the independent test set has reached 96.5665%. This all means that DrugHybrid_BS has the potential to become a useful predictive tool for druggable proteins. In addition, the hybrid key features can identify 80.0343% of the potentially druggable proteins combined with Bagging-SVM, which indicates the significance of this part of the features for research.
Collapse
Affiliation(s)
- Yuxin Gong
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Peng Wang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
27
|
Charoenkwan P, Nantasenamat C, Hasan MM, Moni MA, Lio' P, Manavalan B, Shoombuatong W. StackDPPIV: A novel computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Methods 2021; 204:189-198. [PMID: 34883239 DOI: 10.1016/j.ymeth.2021.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The development of efficient and effective bioinformatics tools and pipelines for identifying peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activities from large-scale protein datasets is of great importance for the discovery and development of potential and promising antidiabetic drugs. In this study, we present a novel stacking-based ensemble learning predictor (termed StackDPPIV) designed for identification of DPP-IV inhibitory peptides. Unlike the existing method, which is based on single-feature-based methods, we combined five popular machine learning algorithms in conjunction with ten different feature encodings from multiple perspectives to generate a pool of various baseline models. Subsequently, the probabilistic features derived from these baseline models were systematically integrated and deemed as new feature representations. Finally, in order to improve the predictive performance, the genetic algorithm based on the self-assessment-report was utilized to determine a set of informative probabilistic features and then used the optimal one for developing the final meta-predictor (StackDPPIV). Experiment results demonstrated that StackDPPIV could outperform its constituent baseline models on both the training and independent datasets. Furthermore, StackDPPIV achieved an accuracy of 0.891, MCC of 0.784 and AUC of 0.961, which were 9.4%, 19.0% and 11.4%, respectively, higher than that of the existing method on the independent test. Feature analysis demonstrated that our feature representations had more discriminative ability as compared to conventional feature descriptors, which highlights the combination of different features was essential for the performance improvement. In order to implement the proposed predictor, we had built a user-friendly online web server at http://pmlabstack.pythonanywhere.com/StackDPPIV.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, the University of Queensland St Lucia, QLD 4072, Australia
| | - Pietro Lio'
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
28
|
Chen J, Si YW, Un CW, Siu SWI. Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network. J Cheminform 2021; 13:93. [PMID: 34838140 PMCID: PMC8627024 DOI: 10.1186/s13321-021-00570-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
As safety is one of the most important properties of drugs, chemical toxicology prediction has received increasing attentions in the drug discovery research. Traditionally, researchers rely on in vitro and in vivo experiments to test the toxicity of chemical compounds. However, not only are these experiments time consuming and costly, but experiments that involve animal testing are increasingly subject to ethical concerns. While traditional machine learning (ML) methods have been used in the field with some success, the limited availability of annotated toxicity data is the major hurdle for further improving model performance. Inspired by the success of semi-supervised learning (SSL) algorithms, we propose a Graph Convolution Neural Network (GCN) to predict chemical toxicity and trained the network by the Mean Teacher (MT) SSL algorithm. Using the Tox21 data, our optimal SSL-GCN models for predicting the twelve toxicological endpoints achieve an average ROC-AUC score of 0.757 in the test set, which is a 6% improvement over GCN models trained by supervised learning and conventional ML methods. Our SSL-GCN models also exhibit superior performance when compared to models constructed using the built-in DeepChem ML methods. This study demonstrates that SSL can increase the prediction power of models by learning from unannotated data. The optimal unannotated to annotated data ratio ranges between 1:1 and 4:1. This study demonstrates the success of SSL in chemical toxicity prediction; the same technique is expected to be beneficial to other chemical property prediction tasks by utilizing existing large chemical databases. Our optimal model SSL-GCN is hosted on an online server accessible through: https://app.cbbio.online/ssl-gcn/home .
Collapse
Affiliation(s)
- Jiarui Chen
- Department of Computer and Information Science, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, China
| | - Yain-Whar Si
- Department of Computer and Information Science, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, China
| | - Chon-Wai Un
- Department of Computer and Information Science, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, China
| | - Shirley W I Siu
- Department of Computer and Information Science, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, China.
- Institute of Science and Environment, University of Saint Joseph, Rua de Londres 106, 999078, Macau, China.
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia.
| |
Collapse
|
29
|
Su R, Liu X, Jin Q, Liu X, Wei L. Identification of glioblastoma molecular subtype and prognosis based on deep MRI features. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Liu T, Chen J, Zhang Q, Hippe K, Hunt C, Le T, Cao R, Tang H. The Development of Machine Learning Methods in discriminating Secretory Proteins of Malaria Parasite. Curr Med Chem 2021; 29:807-821. [PMID: 34636289 DOI: 10.2174/0929867328666211005140625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/28/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
Malaria caused by Plasmodium falciparum is one of the major infectious diseases in the world. It is essential to exploit an effective method to predict secretory proteins of malaria parasites to develop effective cures and treatment. Biochemical assays can provide details for accurate identification of the secretory proteins, but these methods are expensive and time-consuming. In this paper, we summarized the machine learning-based identification algorithms and compared the construction strategies between different computational methods. Also, we discussed the use of machine learning to improve the ability of algorithms to identify proteins secreted by malaria parasites.
Collapse
Affiliation(s)
- Ting Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Jiamao Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Qian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| | - Kyle Hippe
- Department of Computer Science, Pacific Lutheran University. United States
| | - Cassandra Hunt
- Department of Computer Science, Pacific Lutheran University. United States
| | - Thu Le
- Department of Computer Science, Pacific Lutheran University. United States
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University. United States
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou. China
| |
Collapse
|
31
|
Malik AA, Chotpatiwetchkul W, Phanus-Umporn C, Nantasenamat C, Charoenkwan P, Shoombuatong W. StackHCV: a web-based integrative machine-learning framework for large-scale identification of hepatitis C virus NS5B inhibitors. J Comput Aided Mol Des 2021; 35:1037-1053. [PMID: 34622387 DOI: 10.1007/s10822-021-00418-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Fast and accurate identification of inhibitors with potency against HCV NS5B polymerase is currently a challenging task. As conventional experimental methods is the gold standard method for the design and development of new HCV inhibitors, they often require costly investment of time and resources. In this study, we develop a novel machine learning-based meta-predictor (termed StackHCV) for accurate and large-scale identification of HCV inhibitors. Unlike the existing method, which is based on single-feature-based approach, we first constructed a pool of various baseline models by employing a wide range of heterogeneous molecular fingerprints with five popular machine learning algorithms (k-nearest neighbor, multi-layer perceptron, partial least squares, random forest and support vectors machine). Secondly, we integrated these baseline models in order to develop the final meta-based model by means of the stacking strategy. Extensive benchmarking experiments showed that StackHCV achieved a more accurate and stable performance as compared to its constituent baseline models on the training dataset and also outperformed the existing predictor on the independent test dataset. To facilitate the high-throughput identification of HCV inhibitors, we built a web server that can be freely accessed at http://camt.pythonanywhere.com/StackHCV . It is expected that StackHCV could be a useful tool for fast and precise identification of potential drugs against HCV NS5B particularly for liver cancer therapy and other clinical applications.
Collapse
Affiliation(s)
- Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Warot Chotpatiwetchkul
- Applied Computational Chemistry Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chuleeporn Phanus-Umporn
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
32
|
Xue Y, Ye X, Wei L, Zhang X, Sakurai T, Wei L. Better Performance with Transformer: CPPFormer in precise prediction of cell-Penetrating Peptides. Curr Med Chem 2021; 29:881-893. [PMID: 34544332 DOI: 10.2174/0929867328666210920103140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
With its superior performance, the Transformer model, which is based on the 'Encoder-Decoder' paradigm, has become the mainstream in natural language processing. On the other hand, bioinformatics has embraced machine learning and made great progress in drug design and protein property prediction. Cell-penetrating peptides (CPPs) are one kind of permeable protein that is convenient as a kind of 'postman' in drug penetration tasks. However, a small number of CPPs have been discovered by research, let alone practical applications in drug permeability. Therefore, correctly identifying the CPPs has opened up a new way to take macromolecules into cells without other potentially harmful materials in the drug. Most of the previous work only uses trivial machine learning techniques and hand-crafted features to construct a simple classifier. In CPPFormer, we learn from the idea of implementing the attention structure of Transformer, rebuilding the network based on the characteristics of CPPs according to its short length, and using an automatic feature extractor with a few manual engineered features to co-direct the predicted results. Compared to all previous methods and other classic text classification models, the empirical result has shown that our proposed deep model-based method has achieved the best performance of 92.16% accuracy in the CPP924 dataset and has passed various index tests.
Collapse
Affiliation(s)
- Yuyang Xue
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Lesong Wei
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Xin Zhang
- School of Software, Shandong University, Jinan. China
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba. Japan
| | - Leyi Wei
- School of Software, Shandong University, Jinan. China
| |
Collapse
|
33
|
Zhao YW, Zhang S, Ding H. Recent development of machine learning methods in sumoylation sites prediction. Curr Med Chem 2021; 29:894-907. [PMID: 34525906 DOI: 10.2174/0929867328666210915112030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Sumoylation of proteins is an important reversible post-translational modification of proteins and mediates a variety of cellular processes. Sumo-modified proteins can change their subcellular localization, activity and stability. In addition, it also plays an important role in various cellular processes such as transcriptional regulation and signal transduction. The abnormal sumoylation is involved in many diseases, including neurodegeneration and immune-related diseases, as well as the development of cancer. Therefore, identification of the sumoylation site (SUMO site) is fundamental to understanding their molecular mechanisms and regulatory roles. In contrast to labor-intensive and costly experimental approaches, computational prediction of sumoylation sites in silico also attracted much attention for its accuracy, convenience and speed. At present, many computational prediction models have been used to identify SUMO sites, but these contents have not been comprehensively summarized and reviewed. Therefore, the research progress of relevant models is summarized and discussed in this paper. We will briefly summarize the development of bioinformatics methods on sumoylation site prediction. We will mainly focus on the benchmark dataset construction, feature extraction, machine learning method, published results and online tools. We hope the review will provide more help for wet-experimental scholars.
Collapse
Affiliation(s)
- Yi-Wei Zhao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065. China
| | - Hui Ding
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| |
Collapse
|
34
|
Yang YH, Wang JS, Yuan SS, Liu ML, Su W, Lin H, Zhang ZY. A Survey for Predicting ATP Binding Residues of Proteins Using Machine Learning Methods. Curr Med Chem 2021; 29:789-806. [PMID: 34514982 DOI: 10.2174/0929867328666210910125802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
Protein-ligand interactions are necessary for majority protein functions. Adenosine-5'-triphosphate (ATP) is one such ligand that plays vital role as a coenzyme in providing energy for cellular activities, catalyzing biological reaction and signaling. Knowing ATP binding residues of proteins is helpful for annotation of protein function and drug design. However, due to the huge amounts of protein sequences influx into databases in the post-genome era, experimentally identifying ATP binding residues is cost-ineffective and time-consuming. To address this problem, computational methods have been developed to predict ATP binding residues. In this review, we briefly summarized the application of machine learning methods in detecting ATP binding residues of proteins. We expect this review will be helpful for further research.
Collapse
Affiliation(s)
- Yu-He Yang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Jia-Shu Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Shi-Shi Yuan
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Meng-Lu Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Wei Su
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Zhao-Yue Zhang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| |
Collapse
|
35
|
Niu M, Wu J, Zou Q, Liu Z, Xu L. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning. IEEE J Biomed Health Inform 2021; 25:3668-3676. [PMID: 33780344 DOI: 10.1109/jbhi.2021.3069259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-binding protein (RBP) is a powerful and wide-ranging regulator that plays an important role in cell development, differentiation, metabolism, health and disease. The prediction of RBPs provides valuable guidance for biologists. Although experimental methods have made great progress in predicting RBP, they are time-consuming and not flexible. Therefore, we developed a network model, rBPDL, by combining a convolutional neural network and long short-term memory for multilabel classification of RBPs. Moreover, to achieve better prediction results, we used a voting algorithm for ensemble learning of the model. We compared rBPDL with state-of-the-art methods and found that rBPDL significantly improved identification performance for the RBP68 dataset, with a macro-Area Under Curve (AUC), micro-AUC, and weighted AUC of 0.936, 0.962, and 0.946, respectively. Furthermore, through AUC statistical analysis of the RBP domain, we analyzed the performance of rBPDL and found that the RBP identification performance in the same domain was similar. In addition, we analyzed the performance preferences and physicochemical properties of the binding protein amino acids and explored the characteristics that affect the binding by using the RBP86 dataset.
Collapse
|
36
|
Lv Z, Cui F, Zou Q, Zhang L, Xu L. Anticancer peptides prediction with deep representation learning features. Brief Bioinform 2021; 22:bbab008. [PMID: 33529337 DOI: 10.1093/bib/bbab008] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/20/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Anticancer peptides constitute one of the most promising therapeutic agents for combating common human cancers. Using wet experiments to verify whether a peptide displays anticancer characteristics is time-consuming and costly. Hence, in this study, we proposed a computational method named identify anticancer peptides via deep representation learning features (iACP-DRLF) using light gradient boosting machine algorithm and deep representation learning features. Two kinds of sequence embedding technologies were used, namely soft symmetric alignment embedding and unified representation (UniRep) embedding, both of which involved deep neural network models based on long short-term memory networks and their derived networks. The results showed that the use of deep representation learning features greatly improved the capability of the models to discriminate anticancer peptides from other peptides. Also, UMAP (uniform manifold approximation and projection for dimension reduction) and SHAP (shapley additive explanations) analysis proved that UniRep have an advantage over other features for anticancer peptide identification. The python script and pretrained models could be downloaded from https://github.com/zhibinlv/iACP-DRLF or from http://public.aibiochem.net/iACP-DRLF/.
Collapse
Affiliation(s)
- Zhibin Lv
- University of Electronic Science and Technology of China
| | - Feifei Cui
- University of Electronic Science and Technology of China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences at University of Electronic Science and Technology of China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, China
| |
Collapse
|
37
|
Li Y, Pu F, Wang J, Zhou Z, Zhang C, He F, Ma Z, Zhang J. Machine Learning Methods in Prediction of Protein Palmitoylation Sites: A Brief Review. Curr Pharm Des 2021; 27:2189-2198. [PMID: 33183190 DOI: 10.2174/1381612826666201112142826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Protein palmitoylation is a fundamental and reversible post-translational lipid modification that involves a series of biological processes. Although a large number of experimental studies have explored the molecular mechanism behind the palmitoylation process, the computational methods has attracted much attention for its good performance in predicting palmitoylation sites compared with expensive and time-consuming biochemical experiments. The prediction of protein palmitoylation sites is helpful to reveal its biological mechanism. Therefore, the research on the application of machine learning methods to predict palmitoylation sites has become a hot topic in bioinformatics and promoted the development in the related fields. In this review, we briefly introduced the recent development in predicting protein palmitoylation sites by using machine learningbased methods and discussed their benefits and drawbacks. The perspective of machine learning-based methods in predicting palmitoylation sites was also provided. We hope the review could provide a guide in related fields.
Collapse
Affiliation(s)
- Yanwen Li
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Feng Pu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Jingru Wang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Zhiguo Zhou
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Chunhua Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Zhiqiang Ma
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Jingbo Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
38
|
Feng C, Wei H, Yang D, Feng B, Ma Z, Han S, Zou Q, Shi H. ORS-Pred: An optimized reduced scheme-based identifier for antioxidant proteins. Proteomics 2021; 21:e2100017. [PMID: 34009737 DOI: 10.1002/pmic.202100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 12/30/2022]
Abstract
Antioxidant proteins can terminate a chain of reactions caused by free radicals and protect cells from damage. To identify antioxidant proteins rapidly, a computational model was proposed based on the optimized recoding scheme, sequence information and machine learning methods. First, over 600 recoding schemes were collected to build a scheme set. Then, the original sequence was recoded as a reduced expression whose g-gap dipeptides (g = 0, 1, 2) were used as the features of proteins. Furthermore, a random forest method was used to evaluate the classification ability of the obtained dipeptide features. After going through all schemes, the best predictive performance scheme was chosen as the optimized reduction scheme. Finally, for the RF method, a grid search strategy was used to select a better parameter combination to identify antioxidant proteins. In the experiment, the present method correctly recognized 90.13-99.87% of the antioxidant samples. Other experimental results also proved that the present method was efficient to identify antioxidant proteins. Finally, we also developed a web server that was freely accessible to researchers.
Collapse
Affiliation(s)
- Changli Feng
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Haiyan Wei
- Department of Teachers and Education, Taishan University, Taian, China
| | - Deyun Yang
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Bin Feng
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Zhaogui Ma
- Department of Information Science and Technology, Taishan University, Taian, China
| | - Shuguang Han
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,China and Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
| | - Hua Shi
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
| |
Collapse
|
39
|
Min X, Lu F, Li C. Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction. Curr Pharm Des 2021; 27:1847-1855. [PMID: 33234095 DOI: 10.2174/1381612826666201124112710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Enhancer-promoter interactions (EPIs) in the human genome are of great significance to transcriptional regulation, which tightly controls gene expression. Identification of EPIs can help us better decipher gene regulation and understand disease mechanisms. However, experimental methods to identify EPIs are constrained by funds, time, and manpower, while computational methods using DNA sequences and genomic features are viable alternatives. Deep learning methods have shown promising prospects in classification and efforts that have been utilized to identify EPIs. In this survey, we specifically focus on sequence-based deep learning methods and conduct a comprehensive review of the literature. First, we briefly introduce existing sequence- based frameworks on EPIs prediction and their technique details. After that, we elaborate on the dataset, pre-processing means, and evaluation strategies. Finally, we concluded with the challenges these methods are confronted with and suggest several future opportunities. We hope this review will provide a useful reference for further studies on enhancer-promoter interactions.
Collapse
Affiliation(s)
- Xiaoping Min
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Fengqing Lu
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Chunyan Li
- Graduate School, Yunnan Minzu University, Kunming 650504, China
| |
Collapse
|
40
|
Zhu W, Guo Y, Zou Q. Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5943-5958. [PMID: 34517517 DOI: 10.3934/mbe.2021297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A neurotoxin is essentially a protein that mainly acts on the nervous system; it has a selective toxic effect on the central nervous system and neuromuscular nodes, can cause muscle paralysis and respiratory paralysis, and has strong lethality. According to their principle of action, neurotoxins are divided into presynaptic neurotoxins and postsynaptic neurotoxins. Correctly identifying presynaptic and postsynaptic nerve toxins provides important clues for future drug development and the discovery of drug targets. Therefore, a predictive model, Neu_LR, was constructed in this paper. The monoMonokGap method was used to extract the frequency characteristics of presynaptic and postsynaptic neurotoxin sequences and carry out feature selection, then, based on the important features obtained after dimensionality reduction, the prediction model Neu_LR was constructed using a logistic regression algorithm, and ten-fold cross-validation and independent test set validation were used. The final accuracy rates were 99.6078 and 94.1176%, respectively, which proved that the Neu_LR model had good predictive performance and robustness, and could meet the prediction requirements of presynaptic and postsynaptic neurotoxins. The data and source code of the model can be freely download from https://github.com/gyx123681/.
Collapse
Affiliation(s)
- Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Yuxin Guo
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
41
|
CWLy-RF: A novel approach for identifying cell wall lyases based on random forest classifier. Genomics 2021; 113:2919-2924. [PMID: 34186189 DOI: 10.1016/j.ygeno.2021.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023]
Abstract
Drug resistance of pathogenic bacteria has become increasingly serious due to the abuse of antibiotics in recent years. Researchers have found that cell wall lyases are effective antibacterial agents that can specifically recognize target bacteria and degrade bacterial peptidoglycan. Traditional wet experiments are usually expensive, time-consuming and laborious for the identification of lyases. Therefore, there is an urgent need to develop prediction tools based on computer methods to identify lyases quickly and accurately. In this paper, a new predictor, CWLy-RF, is proposed based on the random forest (RF) algorithm to identify cell wall lyases. In this method, we combined three features, namely, 400D, 188D and the composition of k-spaced amino acid group pairs, using mixed-feature representation methods. Afterward, we improved the feature representation ability with the selected top 100 features by using the information gain method and trained a predictive model using RF. The constructed prediction model is evaluated by using 10-fold cross-validation. The accuracy obtained was 96.09%, the AUC was 0.993, the MCC was 0.922, the sensitivity was 94.92%, and the specificity was 97.32%. We have proved that the proposed predictor CWLy-RF is superior to other latest models, and it will hopefully become an effective and useful tool for identifying lyases.
Collapse
|
42
|
Zeng R, Cheng S, Liao M. 4mCPred-MTL: Accurate Identification of DNA 4mC Sites in Multiple Species Using Multi-Task Deep Learning Based on Multi-Head Attention Mechanism. Front Cell Dev Biol 2021; 9:664669. [PMID: 34041243 PMCID: PMC8141656 DOI: 10.3389/fcell.2021.664669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is one of the most extensive epigenetic modifications. DNA 4mC modification plays a key role in regulating chromatin structure and gene expression. In this study, we proposed a generic 4mC computational predictor, namely, 4mCPred-MTL using multi-task learning coupled with Transformer to predict 4mC sites in multiple species. In this predictor, we utilize a multi-task learning framework, in which each task is to train species-specific data based on Transformer. Extensive experimental results show that our multi-task predictive model can significantly improve the performance of the model based on single task and outperform existing methods on benchmarking comparison. Moreover, we found that our model can sufficiently capture better characteristics of 4mC sites as compared to existing commonly used feature descriptors, demonstrating the strong feature learning ability of our model. Therefore, based on the above results, it can be expected that our 4mCPred-MTL can be a useful tool for research communities of interest.
Collapse
Affiliation(s)
- Rao Zeng
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| | - Song Cheng
- Department of Thoracic Surgery, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Minghong Liao
- Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China
| |
Collapse
|
43
|
Charoenkwan P, Chiangjong W, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides. Brief Bioinform 2021; 22:6271998. [PMID: 33963832 DOI: 10.1093/bib/bbab172] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
The release of interleukin (IL)-6 is stimulated by antigenic peptides from pathogens as well as by immune cells for activating aggressive inflammation. IL-6 inducing peptides are derived from pathogens and can be used as diagnostic biomarkers for predicting various stages of disease severity as well as being used as IL-6 inhibitors for the suppression of aggressive multi-signaling immune responses. Thus, the accurate identification of IL-6 inducing peptides is of great importance for investigating their mechanism of action as well as for developing diagnostic and immunotherapeutic applications. This study proposes a novel stacking ensemble model (termed StackIL6) for accurately identifying IL-6 inducing peptides. More specifically, StackIL6 was constructed from twelve different feature descriptors derived from three major groups of features (composition-based features, composition-transition-distribution-based features and physicochemical properties-based features) and five popular machine learning algorithms (extremely randomized trees, logistic regression, multi-layer perceptron, support vector machine and random forest). To enhance the utility of baseline models, they were effectively and systematically integrated through a stacking strategy to build the final meta-based model. Extensive benchmarking experiments demonstrated that StackIL6 could achieve significantly better performance than the existing method (IL6PRED) and outperformed its constituent baseline models on both training and independent test datasets, which thereby support its excellent discrimination and generalization abilities. To facilitate easy access to the StackIL6 model, it was established as a freely available web server accessible at http://camt.pythonanywhere.com/StackIL6. It is anticipated that StackIL6 can help to facilitate rapid screening of promising IL-6 inducing peptides for the development of diagnostic and immunotherapeutic applications in the future.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | | | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
44
|
Abstract
Background:
Bioluminescence is a unique and significant phenomenon in nature.
Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical
research, including for gene expression analysis and bioluminescence imaging technology. In recent
years, researchers have identified a number of methods for predicting bioluminescent proteins
(BLPs), which have increased in accuracy, but could be further improved.
Method:
In this study, a new bioluminescent proteins prediction method, based on a voting
algorithm, is proposed. Four methods of feature extraction based on the amino acid sequence were
used. 314 dimensional features in total were extracted from amino acid composition,
physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest
MCC value to establish the optimal prediction model, a voting algorithm was then used to build the
model. To create the best performing model, the selection of base classifiers and vote counting rules
are discussed.
Results:
The proposed model achieved 93.4% accuracy, 93.4% sensitivity and
91.7% specificity in the test set, which was better than any other method. A previous prediction of
bioluminescent proteins in three lineages was also improved using the model building method,
resulting in greatly improved accuracy.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba Science City, Japan
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Shuguang Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
45
|
Yang X, Ye X, Li X, Wei L. iDNA-MT: Identification DNA Modification Sites in Multiple Species by Using Multi-Task Learning Based a Neural Network Tool. Front Genet 2021; 12:663572. [PMID: 33868390 PMCID: PMC8044371 DOI: 10.3389/fgene.2021.663572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Motivation DNA N4-methylcytosine (4mC) and N6-methyladenine (6mA) are two important DNA modifications and play crucial roles in a variety of biological processes. Accurate identification of the modifications is essential to better understand their biological functions and mechanisms. However, existing methods to identify 4mA or 6mC sites are all single tasks, which demonstrates that they can identify only a certain modification in one species. Therefore, it is desirable to develop a novel computational method to identify the modification sites in multiple species simultaneously. Results In this study, we proposed a computational method, called iDNA-MT, to identify 4mC sites and 6mA sites in multiple species, respectively. The proposed iDNA-MT mainly employed multi-task learning coupled with the bidirectional gated recurrent units (BGRU) to capture the sharing information among different species directly from DNA primary sequences. Experimental comparative results on two benchmark datasets, containing different species respectively, show that either for identifying 4mA or for 6mC site in multiple species, the proposed iDNA-MT outperforms other state-of-the-art single-task methods. The promising results have demonstrated that iDNA-MT has great potential to be a powerful and practically useful tool to accurately identify DNA modifications.
Collapse
Affiliation(s)
- Xiao Yang
- School of Software, Shandong University, Jinan, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Xuehong Li
- Department of Rehabilitation, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Lesong Wei
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
46
|
Lv Y, Huang S, Zhang T, Gao B. Application of Multilayer Network Models in Bioinformatics. Front Genet 2021; 12:664860. [PMID: 33868392 PMCID: PMC8044439 DOI: 10.3389/fgene.2021.664860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Multilayer networks provide an efficient tool for studying complex systems, and with current, dramatic development of bioinformatics tools and accumulation of data, researchers have applied network concepts to all aspects of research problems in the field of biology. Addressing the combination of multilayer networks and bioinformatics, through summarizing the applications of multilayer network models in bioinformatics, this review classifies applications and presents a summary of the latest results. Among them, we classify the applications of multilayer networks according to the object of study. Furthermore, because of the systemic nature of biology, we classify the subjects into several hierarchical categories, such as cells, tissues, organs, and groups, according to the hierarchical nature of biological composition. On the basis of the complexity of biological systems, we selected brain research for a detailed explanation. We describe the application of multilayer networks and chronological networks in brain research to demonstrate the primary ideas associated with the application of multilayer networks in biological studies. Finally, we mention a quality assessment method focusing on multilayer and single-layer networks as an evaluation method emphasizing network studies.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Niu K, Luo X, Zhang S, Teng Z, Zhang T, Zhao Y. iEnhancer-EBLSTM: Identifying Enhancers and Strengths by Ensembles of Bidirectional Long Short-Term Memory. Front Genet 2021; 12:665498. [PMID: 33833783 PMCID: PMC8021722 DOI: 10.3389/fgene.2021.665498] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are regulatory DNA sequences that could be bound by specific proteins named transcription factors (TFs). The interactions between enhancers and TFs regulate specific genes by increasing the target gene expression. Therefore, enhancer identification and classification have been a critical issue in the enhancer field. Unfortunately, so far there has been a lack of suitable methods to identify enhancers. Previous research has mainly focused on the features of the enhancer's function and interactions, which ignores the sequence information. As we know, the recurrent neural network (RNN) and long short-term memory (LSTM) models are currently the most common methods for processing time series data. LSTM is more suitable than RNN to address the DNA sequence. In this paper, we take the advantages of LSTM to build a method named iEnhancer-EBLSTM to identify enhancers. iEnhancer-ensembles of bidirectional LSTM (EBLSTM) consists of two steps. In the first step, we extract subsequences by sliding a 3-mer window along the DNA sequence as features. Second, EBLSTM model is used to identify enhancers from the candidate input sequences. We use the dataset from the study of Quang H et al. as the benchmarks. The experimental results from the datasets demonstrate the efficiency of our proposed model.
Collapse
Affiliation(s)
- Kun Niu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Ximei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
48
|
Xu L, Jiao S, Zhang D, Wu S, Zhang H, Gao B. Identification of long noncoding RNAs with machine learning methods: a review. Brief Funct Genomics 2021; 20:174-180. [PMID: 33758917 DOI: 10.1093/bfgp/elab017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs with a length greater than 200 nucleotides. Studies have shown that they play an important role in many life activities. Dozens of lncRNAs have been characterized to some extent, and they are reported to be related to the development of diseases in a variety of cells. However, the biological functions of most lncRNAs are currently still unclear. Therefore, accurately identifying and predicting lncRNAs would be helpful for research on their biological functions. Due to the disadvantages of high cost and high resource-intensiveness of experimental methods, scientists have developed numerous computational methods to identify and predict lncRNAs in recent years. In this paper, we systematically summarize the machine learning-based lncRNAs prediction tools from several perspectives, and discuss the challenges and prospects for the future work.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic
| | - Shihu Jiao
- College of Chemistry, Sichuan University, Sichuan, China
| | - Dandan Zhang
- Departments of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University
| | - Song Wu
- Preventive Treatment of Disease Centre of Qinhuangdao Hospital of Traditional Chinese Medicine
| | - Haihong Zhang
- First Affiliated Hospital of Harbin Medical University
| | - Bo Gao
- Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
49
|
Jiao S, Wu S, Huang S, Liu M, Gao B. Advances in the Identification of Circular RNAs and Research Into circRNAs in Human Diseases. Front Genet 2021; 12:665233. [PMID: 33815488 PMCID: PMC8017306 DOI: 10.3389/fgene.2021.665233] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) with a closed-loop structure that are mainly produced by variable processing of precursor mRNAs (pre-mRNAs). They are widely present in all eukaryotes and are very stable. Currently, circRNA studies have become a hotspot in RNA research. It has been reported that circRNAs constitute a significant proportion of transcript expression, and some are significantly more abundantly expressed than other transcripts. CircRNAs have regulatory roles in gene expression and critical biological functions in the development of organisms, such as acting as microRNA sponges or as endogenous RNAs and biomarkers. As such, they may have useful functions in the diagnosis and treatment of diseases. CircRNAs have been found to play an important role in the development of several diseases, including atherosclerosis, neurological disorders, diabetes, and cancer. In this paper, we review the status of circRNA research, describe circRNA-related databases and the identification of circRNAs, discuss the role of circRNAs in human diseases such as colon cancer, atherosclerosis, and gastric cancer, and identify remaining research questions related to circRNAs.
Collapse
Affiliation(s)
- Shihu Jiao
- Hainan Key Laboratory for Computational Science and Application, Hainan Normal University, Haikou, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Song Wu
- Director of Preventive Treatment of Disease Centre, Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mingyang Liu
- Department of Internal Medicine-Oncology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
50
|
Chen Y, Fu X, Li Z, Peng L, Zhuo L. Prediction of lncRNA-Protein Interactions via the Multiple Information Integration. Front Bioeng Biotechnol 2021; 9:647113. [PMID: 33718346 PMCID: PMC7947871 DOI: 10.3389/fbioe.2021.647113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
The long non-coding RNA (lncRNA)-protein interaction plays an important role in the post-transcriptional gene regulation, such as RNA splicing, translation, signaling, and the development of complex diseases. The related research on the prediction of lncRNA-protein interaction relationship is beneficial in the excavation and the discovery of the mechanism of lncRNA function and action occurrence, which are important. Traditional experimental methods for detecting lncRNA-protein interactions are expensive and time-consuming. Therefore, computational methods provide many effective strategies to deal with this problem. In recent years, most computational methods only use the information of the lncRNA-lncRNA or the protein-protein similarity and cannot fully capture all features to identify their interactions. In this paper, we propose a novel computational model for the lncRNA-protein prediction on the basis of machine learning methods. First, a feature method is proposed for representing the information of the network topological properties of lncRNA and protein interactions. The basic composition feature information and evolutionary information based on protein, the lncRNA sequence feature information, and the lncRNA expression profile information are extracted. Finally, the above feature information is fused, and the optimized feature vector is used with the recursive feature elimination algorithm. The optimized feature vectors are input to the support vector machine (SVM) model. Experimental results show that the proposed method has good effectiveness and accuracy in the lncRNA-protein interaction prediction.
Collapse
Affiliation(s)
- Yifan Chen
- College of Information Science and Engineering, Hunan University, Changsha, China
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Xiangzheng Fu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Zejun Li
- School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Li Peng
- College of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Linlin Zhuo
- Department of Mathematics and Information Engineering, Wenzhou University Oujiang College, Wenzhou, China
| |
Collapse
|