1
|
Wei Z, Wang Z, Tang C. Dynamic Prediction of Drug-Target Interactions via Cross-Modal Feature Mapping with Learnable Association Information. J Chem Inf Model 2025; 65:3915-3927. [PMID: 40227648 DOI: 10.1021/acs.jcim.4c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Predicting drug-target interactions (DTIs) is essential for advancing drug discovery and personalized medicine. However, accurately capturing the intricate binding relationships between drugs and targets remains a significant challenge, particularly when attempting to fully leverage the vast correlation information inherent in molecular data. This complexity is further exacerbated by the structural differences and sequence length disparities between drug molecules and protein targets, which can hinder effective feature alignment and interaction modeling. To address these challenges, we propose a model named LAM-DTI. First, drug and target features are extracted from the original molecular sequence data using a multilayer convolutional neural network. To address the sequence length discrepancy between drug and target features, we apply a connectionist temporal classification module to generate normalized feature sequences. Building on this, we introduce a learnable association information matrix as a flexible intermediary, which dynamically adjusts to capture accurate DTI association information, thereby enhancing cross-modal mapping within a unified latent space. This progressive mapping strategy enables the model to form an interaction projection between drugs and targets, effectively identifying critical interaction regions and guiding the capture of complex interaction-related features. Extensive experiments on three well-known benchmark data sets demonstrate that LAM-DTI significantly outperforms previous models.
Collapse
Affiliation(s)
- Ziyu Wei
- School of Computer Science, China University of Geosciences, Wuhan 430074, China
| | - Zhengyu Wang
- Office of the Drug Clinical Trials Agency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Chang Tang
- School of Computer Science, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Yang Y, Cheng F. Artificial intelligence streamlines scientific discovery of drug-target interactions. Br J Pharmacol 2025. [PMID: 39843168 DOI: 10.1111/bph.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 01/24/2025] Open
Abstract
Drug discovery is a complicated process through which new therapeutics are identified to prevent and treat specific diseases. Identification of drug-target interactions (DTIs) stands as a pivotal aspect within the realm of drug discovery and development. The traditional process of drug discovery, especially identification of DTIs, is marked by its high costs of experimental assays and low success rates. Computational methods have emerged as indispensable tools, especially those employing artificial intelligence (AI) methods, which could streamline the process, thereby reducing costs and time consumption and potentially increasing success rates. In this review, we focus on the application of AI techniques in DTI prediction. Specifically, we commence with a comprehensive overview of drug discovery and development, along with systematic prediction and validation of DTIs. We proceed to highlight the prominent databases and toolkits used in developing AI methods for DTI prediction, as well as with methodologies for evaluating their efficacy. We further extend the exploration into three primary types of state-of-the-art AI methods used in DTI prediction, including classical machine learning, deep learning and network-based methods. Finally, we summarize the key findings and outline the current challenges and future directions that AI methods face in scientific drug discovery and development.
Collapse
Affiliation(s)
- Yuxin Yang
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Abubakar ML, Kapoor N, Sharma A, Gambhir L, Jasuja ND, Sharma G. Artificial Intelligence in Drug Identification and Validation: A Scoping Review. Drug Res (Stuttg) 2024; 74:208-219. [PMID: 38830370 DOI: 10.1055/a-2306-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The end-to-end process in the discovery of drugs involves therapeutic candidate identification, validation of identified targets, identification of hit compound series, lead identification and optimization, characterization, and formulation and development. The process is lengthy, expensive, tedious, and inefficient, with a large attrition rate for novel drug discovery. Today, the pharmaceutical industry is focused on improving the drug discovery process. Finding and selecting acceptable drug candidates effectively can significantly impact the price and profitability of new medications. Aside from the cost, there is a need to reduce the end-to-end process time, limiting the number of experiments at various stages. To achieve this, artificial intelligence (AI) has been utilized at various stages of drug discovery. The present study aims to identify the recent work that has developed AI-based models at various stages of drug discovery, identify the stages that need more concern, present the taxonomy of AI methods in drug discovery, and provide research opportunities. From January 2016 to September 1, 2023, the study identified all publications that were cited in the electronic databases including Scopus, NCBI PubMed, MEDLINE, Anthropology Plus, Embase, APA PsycInfo, SOCIndex, and CINAHL. Utilising a standardized form, data were extracted, and presented possible research prospects based on the analysis of the extracted data.
Collapse
Affiliation(s)
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Bian J, Lu H, Dong G, Wang G. Hierarchical multimodal self-attention-based graph neural network for DTI prediction. Brief Bioinform 2024; 25:bbae293. [PMID: 38920341 PMCID: PMC11200190 DOI: 10.1093/bib/bbae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Drug-target interactions (DTIs) are a key part of drug development process and their accurate and efficient prediction can significantly boost development efficiency and reduce development time. Recent years have witnessed the rapid advancement of deep learning, resulting in an abundance of deep learning-based models for DTI prediction. However, most of these models used a single representation of drugs and proteins, making it difficult to comprehensively represent their characteristics. Multimodal data fusion can effectively compensate for the limitations of single-modal data. However, existing multimodal models for DTI prediction do not take into account both intra- and inter-modal interactions simultaneously, resulting in limited presentation capabilities of fused features and a reduction in DTI prediction accuracy. A hierarchical multimodal self-attention-based graph neural network for DTI prediction, called HMSA-DTI, is proposed to address multimodal feature fusion. Our proposed HMSA-DTI takes drug SMILES, drug molecular graphs, protein sequences and protein 2-mer sequences as inputs, and utilizes a hierarchical multimodal self-attention mechanism to achieve deep fusion of multimodal features of drugs and proteins, enabling the capture of intra- and inter-modal interactions between drugs and proteins. It is demonstrated that our proposed HMSA-DTI has significant advantages over other baseline methods on multiple evaluation metrics across five benchmark datasets.
Collapse
Affiliation(s)
- Jilong Bian
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Hao Lu
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| |
Collapse
|
5
|
Yang M, Yang B, Duan G, Wang J. ITRPCA: a new model for computational drug repositioning based on improved tensor robust principal component analysis. Front Genet 2023; 14:1271311. [PMID: 37795241 PMCID: PMC10545866 DOI: 10.3389/fgene.2023.1271311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Background: Drug repositioning is considered a promising drug development strategy with the goal of discovering new uses for existing drugs. Compared with the experimental screening for drug discovery, computational drug repositioning offers lower cost and higher efficiency and, hence, has become a hot issue in bioinformatics. However, there are sparse samples, multi-source information, and even some noises, which makes it difficult to accurately identify potential drug-associated indications. Methods: In this article, we propose a new scheme with improved tensor robust principal component analysis (ITRPCA) in multi-source data to predict promising drug-disease associations. First, we use a weighted k-nearest neighbor (WKNN) approach to increase the overall density of the drug-disease association matrix that will assist in prediction. Second, a drug tensor with five frontal slices and a disease tensor with two frontal slices are constructed using multi-similarity matrices and an updated association matrix. The two target tensors naturally integrate multiple sources of data from the drug-side aspect and the disease-side aspect, respectively. Third, ITRPCA is employed to isolate the low-rank tensor and noise information in the tensor. In this step, an additional range constraint is incorporated to ensure that all the predicted entry values of a low-rank tensor are within the specific interval. Finally, we focus on identifying promising drug indications by analyzing drug-disease association pairs derived from the low-rank drug and low-rank disease tensors. Results: We evaluate the effectiveness of the ITRPCA method by comparing it with five prominent existing drug repositioning methods. This evaluation is carried out using 10-fold cross-validation and independent testing experiments. Our numerical results show that ITRPCA not only yields higher prediction accuracy but also exhibits remarkable computational efficiency. Furthermore, case studies demonstrate the practical effectiveness of our method.
Collapse
Affiliation(s)
- Mengyun Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
- School of Computer Science, Hunan First Normal University, Changsha, China
| | - Bin Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
6
|
Bi J, Zhang L, Yuan H, Zhang J. Multi-indicator Water Quality Prediction with Attention-assisted Bidirectional LSTM and Encoder-Decoder. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2022.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Lian M, Wang X, Du W. Integrated multi-similarity fusion and heterogeneous graph inference for drug-target interaction prediction. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.04.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Yu L, Xue L, Liu F, Li Y, Jing R, Luo J. The applications of deep learning algorithms on in silico druggable proteins identification. J Adv Res 2022; 41:219-231. [PMID: 36328750 PMCID: PMC9637576 DOI: 10.1016/j.jare.2022.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
We developed the first deep learning-based druggable protein classifier for fast and accurate identification of potential druggable proteins. Experimental results on a standard dataset demonstrate that the prediction performance of deep learning model is comparable to those of existing methods. We visualized the representations of druggable proteins learned by deep learning models, which helps us understand how they work. Our analysis reconfirms that the attention mechanism is especially useful for explaining deep learning models.
Introduction The top priority in drug development is to identify novel and effective drug targets. In vitro assays are frequently used for this purpose; however, traditional experimental approaches are insufficient for large-scale exploration of novel drug targets, as they are expensive, time-consuming and laborious. Therefore, computational methods have emerged in recent decades as an alternative to aid experimental drug discovery studies by developing sophisticated predictive models to estimate unknown drugs/compounds and their targets. The recent success of deep learning (DL) techniques in machine learning and artificial intelligence has further attracted a great deal of attention in the biomedicine field, including computational drug discovery. Objectives This study focuses on the practical applications of deep learning algorithms for predicting druggable proteins and proposes a powerful predictor for fast and accurate identification of potential drug targets. Methods Using a gold-standard dataset, we explored several typical protein features and different deep learning algorithms and evaluated their performance in a comprehensive way. We provide an overview of the entire experimental process, including protein features and descriptors, neural network architectures, libraries and toolkits for deep learning modelling, performance evaluation metrics, model interpretation and visualization. Results Experimental results show that the hybrid model (architecture: CNN-RNN (BiLSTM) + DNN; feature: dictionary encoding + DC_TC_CTD) performed better than the other models on the benchmark dataset. This hybrid model was able to achieve 90.0% accuracy and 0.800 MCC on the test dataset and 84.8% and 0.703 on a nonredundant independent test dataset, which is comparable to those of existing methods. Conclusion We developed the first deep learning-based classifier for fast and accurate identification of potential druggable proteins. We hope that this study will be helpful for future researchers who would like to use deep learning techniques to develop relevant predictive models.
Collapse
|
9
|
Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers 2021; 25:1315-1360. [PMID: 33844136 PMCID: PMC8040371 DOI: 10.1007/s11030-021-10217-3] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring and release, pharmacophore modeling, quantitative structure-activity relationship, drug repositioning, polypharmacology, and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learning in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent opportunity for rational drug design and discovery process, which will eventually impact mankind. The primary concern associated with drug design and development is time consumption and production cost. Further, inefficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning, and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug design and development. The artificial neural network, deep neural network, support vector machines, classification and regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and development process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative structure-activity relationship to drug repositioning, protein misfolding to protein-protein interactions, and molecular pathway identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity, and identification of mode of action.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Swati Tiwari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|