1
|
Yao D, Zhang B, Zhan X, Zhang B, Li XK. Predicting lncRNA-Disease Associations Based on a Dual-Path Feature Extraction Network with Multiple Sources of Information Integration. ACS OMEGA 2024; 9:35100-35112. [PMID: 39157140 PMCID: PMC11325412 DOI: 10.1021/acsomega.4c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Identifying the associations between long noncoding RNAs (lncRNAs) and disease is critical for disease prevention, diagnosis and treatment. However, conducting wet experiments to discover these associations is time-consuming and costly. Therefore, computational modeling for predicting lncRNA-disease associations (LDAs) has become an important alternative. To enhance the accuracy of LDAs prediction and alleviate the issue of node feature oversmoothing when exploring the potential features of nodes using graph neural networks, we introduce DPFELDA, a dual-path feature extraction network that leverages the integration of information from multiple sources to predict LDA. Initially, we establish a dual-view structure of lncRNAs and disease and a heterogeneous network of lncRNA-disease-microRNA (miRNA) interactions. Subsequently, features are extracted using a dual-path feature extraction network. In particular, we employ a combination of a graph convolutional network, a convolutional block attention module, and a node aggregation layer to perform multilayer topology feature extraction for the dual-view structure of lncRNAs and diseases. Additionally, we utilize a Transformer model to construct the node topology feature residual network for obtaining node-specific features in heterogeneous networks. Finally, XGBoost is employed for LDA prediction. The experimental results demonstrate that DPFELDA outperforms the benchmark model on various benchmark data sets. In the course of model exploration, it becomes evident that DPFELDA successfully alleviates the issue of node feature oversmoothing induced by graph-based learning. Ablation experiments confirm the effectiveness of the innovative module, and a case study substantiates the accuracy of DPFELDA model in predicting novel LDAs for characteristic diseases.
Collapse
Affiliation(s)
- Dengju Yao
- School
of Computer Science and Technology, Harbin
University of Science and Technology, Harbin 150080, China
| | - Binbin Zhang
- School
of Computer Science and Technology, Harbin
University of Science and Technology, Harbin 150080, China
| | - Xiaojuan Zhan
- School
of Computer Science and Technology, Harbin
University of Science and Technology, Harbin 150080, China
- College
of Computer Science and Technology, Heilongjiang
Institute of Technology, Harbin 150050, China
| | - Bo Zhang
- School
of Computer Science and Technology, Harbin
University of Science and Technology, Harbin 150080, China
| | - Xiang Kui Li
- School
of Computer Science and Technology, Harbin
University of Science and Technology, Harbin 150080, China
| |
Collapse
|
2
|
Peng L, Huang L, Su Q, Tian G, Chen M, Han G. LDA-VGHB: identifying potential lncRNA-disease associations with singular value decomposition, variational graph auto-encoder and heterogeneous Newton boosting machine. Brief Bioinform 2023; 25:bbad466. [PMID: 38127089 PMCID: PMC10734633 DOI: 10.1093/bib/bbad466] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) participate in various biological processes and have close linkages with diseases. In vivo and in vitro experiments have validated many associations between lncRNAs and diseases. However, biological experiments are time-consuming and expensive. Here, we introduce LDA-VGHB, an lncRNA-disease association (LDA) identification framework, by incorporating feature extraction based on singular value decomposition and variational graph autoencoder and LDA classification based on heterogeneous Newton boosting machine. LDA-VGHB was compared with four classical LDA prediction methods (i.e. SDLDA, LDNFSGB, IPCARF and LDASR) and four popular boosting models (XGBoost, AdaBoost, CatBoost and LightGBM) under 5-fold cross-validations on lncRNAs, diseases, lncRNA-disease pairs and independent lncRNAs and independent diseases, respectively. It greatly outperformed the other methods with its prominent performance under four different cross-validations on the lncRNADisease and MNDR databases. We further investigated potential lncRNAs for lung cancer, breast cancer, colorectal cancer and kidney neoplasms and inferred the top 20 lncRNAs associated with them among all their unobserved lncRNAs. The results showed that most of the predicted top 20 lncRNAs have been verified by biomedical experiments provided by the Lnc2Cancer 3.0, lncRNADisease v2.0 and RNADisease databases as well as publications. We found that HAR1A, KCNQ1DN, ZFAT-AS1 and HAR1B could associate with lung cancer, breast cancer, colorectal cancer and kidney neoplasms, respectively. The results need further biological experimental validation. We foresee that LDA-VGHB was capable of identifying possible lncRNAs for complex diseases. LDA-VGHB is publicly available at https://github.com/plhhnu/LDA-VGHB.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
- College of Life Sciences and Chemistry, Hunan University of Technology, 412007, Hunan, China
| | - Liangliang Huang
- School of Computer Science, Hunan University of Technology, 412007, Hunan, China
| | - Qiongli Su
- Department of Pharmacy, the Affiliated Zhuzhou Hospital Xiangya Medical College CSU, 412007, Hunan, China
| | - Geng Tian
- Geneis (Beijing) Co. Ltd, China, 100102, Beijing, China
| | - Min Chen
- School of Computer Science, Hunan Institute of Technology, 421002, No. 18 Henghua Road, Zhuhui District, Hengyang, Hunan, China
| | - Guosheng Han
- School of Mathematics and Computational Science, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
- Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, 411105, Yuhu District, Xiangtan, Hunan, China
| |
Collapse
|
3
|
Xie GB, Liu SG, Gu GS, Lin ZY, Yu JR, Chen RB, Xie WJ, Xu HJ. LUNCRW: Prediction of potential lncRNA-disease associations based on unbalanced neighborhood constraint random walk. Anal Biochem 2023; 679:115297. [PMID: 37619903 DOI: 10.1016/j.ab.2023.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are associated with various complex human diseases. They can serve as disease biomarkers and hold considerable promise for the prevention and treatment of various diseases. The traditional random walk algorithms generally exclude the effect of non-neighboring nodes on random walking. In order to overcome the issue, the neighborhood constraint (NC) approach is proposed in this study for regulating the direction of the random walk by computing the effects of both neighboring nodes and non-neighboring nodes. Then the association matrix is updated by matrix multiplication for minimizing the effect of the false negative data. The heterogeneous lncRNA-disease network is finally analyzed using an unbalanced random walk method for predicting the potential lncRNA-disease associations. The LUNCRW model is therefore developed for predicting potential lncRNA-disease associations. The area under the curve (AUC) values of the LUNCRW model in leave-one-out cross-validation and five-fold cross-validation were 0.951 and 0.9486 ± 0.0011, respectively. Data from published case studies on three diseases, including squamous cell carcinoma, hepatocellular carcinoma, and renal cell carcinoma, confirmed the predictive potential of the LUNCRW model. Altogether, the findings indicated that the performance of the LUNCRW method is superior to that of existing methods in predicting potential lncRNA-disease associations.
Collapse
Affiliation(s)
- Guo-Bo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Shi-Gang Liu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Guo-Sheng Gu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Zhi-Yi Lin
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Jun-Rui Yu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Rui-Bin Chen
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Wei-Jie Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Hao-Jie Xu
- School of Computer Science, Guangdong University of Technology, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Sheng N, Wang Y, Huang L, Gao L, Cao Y, Xie X, Fu Y. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases. Brief Bioinform 2023; 24:bbad276. [PMID: 37529914 DOI: 10.1093/bib/bbad276] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
MOTIVATION Identifying the relationships among long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is highly valuable for diagnosing, preventing, treating and prognosing diseases. The development of effective computational prediction methods can reduce experimental costs. While numerous methods have been proposed, they often to treat the prediction of lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs) and lncRNA-miRNA interactions (LMIs) as separate task. Models capable of predicting all three relationships simultaneously remain relatively scarce. Our aim is to perform multi-task predictions, which not only construct a unified framework, but also facilitate mutual complementarity of information among lncRNAs, miRNAs and diseases. RESULTS In this work, we propose a novel unsupervised embedding method called graph contrastive learning for multi-task prediction (GCLMTP). Our approach aims to predict LDAs, MDAs and LMIs by simultaneously extracting embedding representations of lncRNAs, miRNAs and diseases. To achieve this, we first construct a triple-layer lncRNA-miRNA-disease heterogeneous graph (LMDHG) that integrates the complex relationships between these entities based on their similarities and correlations. Next, we employ an unsupervised embedding model based on graph contrastive learning to extract potential topological feature of lncRNAs, miRNAs and diseases from the LMDHG. The graph contrastive learning leverages graph convolutional network architectures to maximize the mutual information between patch representations and corresponding high-level summaries of the LMDHG. Subsequently, for the three prediction tasks, multiple classifiers are explored to predict LDA, MDA and LMI scores. Comprehensive experiments are conducted on two datasets (from older and newer versions of the database, respectively). The results show that GCLMTP outperforms other state-of-the-art methods for the disease-related lncRNA and miRNA prediction tasks. Additionally, case studies on two datasets further demonstrate the ability of GCLMTP to accurately discover new associations. To ensure reproducibility of this work, we have made the datasets and source code publicly available at https://github.com/sheng-n/GCLMTP.
Collapse
Affiliation(s)
- Nan Sheng
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Yan Wang
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
- School of Artificial Intelligence, Jilin University, 130012 Changchun, China
| | - Lan Huang
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Ling Gao
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Yangkun Cao
- School of Artificial Intelligence, Jilin University, 130012 Changchun, China
| | - Xuping Xie
- Key laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China
| | - Yuan Fu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| |
Collapse
|
5
|
Sheng N, Huang L, Lu Y, Wang H, Yang L, Gao L, Xie X, Fu Y, Wang Y. Data resources and computational methods for lncRNA-disease association prediction. Comput Biol Med 2023; 153:106527. [PMID: 36610216 DOI: 10.1016/j.compbiomed.2022.106527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Increasing interest has been attracted in deciphering the potential disease pathogenesis through lncRNA-disease association (LDA) prediction, regarding to the diverse functional roles of lncRNAs in genome regulation. Whilst, computational models and algorithms benefit systematic biology research, even facilitate the classical biological experimental procedures. In this review, we introduce representative diseases associated with lncRNAs, such as cancers, cardiovascular diseases, and neurological diseases. Current publicly available resources related to lncRNAs and diseases have also been included. Furthermore, all of the 64 computational methods for LDA prediction have been divided into 5 groups, including machine learning-based methods, network propagation-based methods, matrix factorization- and completion-based methods, deep learning-based methods, and graph neural network-based methods. The common evaluation methods and metrics in LDA prediction have also been discussed. Finally, the challenges and future trends in LDA prediction have been discussed. Recent advances in LDA prediction approaches have been summarized in the GitHub repository at https://github.com/sheng-n/lncRNA-disease-methods.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.
| | - Yuting Lu
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Hao Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China; Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Ling Gao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Xuping Xie
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yuan Fu
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China; School of Artificial Intelligence, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Wu QW, Cao RF, Xia JF, Ni JC, Zheng CH, Su YS. Extra Trees Method for Predicting LncRNA-Disease Association Based On Multi-Layer Graph Embedding Aggregation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3171-3178. [PMID: 34529571 DOI: 10.1109/tcbb.2021.3113122] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lots of experimental studies have revealed the significant associations between lncRNAs and diseases. Identifying accurate associations will provide a new perspective for disease therapy. Calculation-based methods have been developed to solve these problems, but these methods have some limitations. In this paper, we proposed an accurate method, named MLGCNET, to discover potential lncRNA-disease associations. Firstly, we reconstructed similarity networks for both lncRNAs and diseases using top k similar information, and constructed a lncRNA-disease heterogeneous network (LDN). Then, we applied Multi-Layer Graph Convolutional Network on LDN to obtain latent feature representations of nodes. Finally, the Extra Trees was used to calculate the probability of association between disease and lncRNA. The results of extensive 5-fold cross-validation experiments show that MLGCNET has superior prediction performance compared to the state-of-the-art methods. Case studies confirm the performance of our model on specific diseases. All the experiment results prove the effectiveness and practicality of MLGCNET in predicting potential lncRNA-disease associations.
Collapse
|
7
|
Shi H, Zhang X, Tang L, Liu L. Heterogeneous graph neural network for lncRNA-disease association prediction. Sci Rep 2022; 12:17519. [PMID: 36266433 PMCID: PMC9585029 DOI: 10.1038/s41598-022-22447-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023] Open
Abstract
Identifying lncRNA-disease associations is conducive to the diagnosis, treatment and prevention of diseases. Due to the expensive and time-consuming methods verified by biological experiments, prediction methods based on computational models have gradually become an important means of lncRNA-disease associations discovery. However, existing methods still have challenges to make full use of network topology information to identify potential associations between lncRNA and disease in multi-source data. In this study, we propose a novel method called HGNNLDA for lncRNA-disease association prediction. First, HGNNLDA constructs a heterogeneous network composed of lncRNA similarity network, lncRNA-disease association network and lncRNA-miRNA association network; Then, on this heterogeneous network, various types of strong correlation neighbors with fixed size are sampled for each node by restart random walk; Next, the embedding information of lncRNA and disease in each lncRNA-disease association pair is obtained by the method of type-based neighbor aggregation and all types combination though heterogeneous graph neural network, in which attention mechanism is introduced considering that different types of neighbors will make different contributions to the prediction of lncRNA-disease association. As a result, the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPR) under fivefold cross-validation (5FCV) are 0.9786 and 0.8891, respectively. Compared with five state-of-art prediction models, HGNNLDA has better prediction performance. In addition, in two types of case studies, it is further verified that our method can effectively predict the potential lncRNA-disease associations, and have ability to predict new diseases without any known lncRNAs.
Collapse
Affiliation(s)
- Hong Shi
- School of Information, Yunan Normal University, Kunming, 650092 China
| | - Xiaomeng Zhang
- School of Information, Yunan Normal University, Kunming, 650092 China
| | - Lin Tang
- grid.410739.80000 0001 0723 6903Key Laboratory of Educational Informatization for Nationalities Ministry of Education, Yunnan Normal University, Kunming, 650092 China
| | - Lin Liu
- School of Information, Yunan Normal University, Kunming, 650092 China
| |
Collapse
|
8
|
Bang D, Gu J, Park J, Jeong D, Koo B, Yi J, Shin J, Jung I, Kim S, Lee S. A Survey on Computational Methods for Investigation on ncRNA-Disease Association through the Mode of Action Perspective. Int J Mol Sci 2022; 23:ijms231911498. [PMID: 36232792 PMCID: PMC9570358 DOI: 10.3390/ijms231911498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular and sequencing technologies have been successfully used in decoding biological mechanisms of various diseases. As revealed by many novel discoveries, the role of non-coding RNAs (ncRNAs) in understanding disease mechanisms is becoming increasingly important. Since ncRNAs primarily act as regulators of transcription, associating ncRNAs with diseases involves multiple inference steps. Leveraging the fast-accumulating high-throughput screening results, a number of computational models predicting ncRNA-disease associations have been developed. These tools suggest novel disease-related biomarkers or therapeutic targetable ncRNAs, contributing to the realization of precision medicine. In this survey, we first introduce the biological roles of different ncRNAs and summarize the databases containing ncRNA-disease associations. Then, we suggest a new trend in recent computational prediction of ncRNA-disease association, which is the mode of action (MoA) network perspective. This perspective includes integrating ncRNAs with mRNA, pathway and phenotype information. In the next section, we describe computational methodologies widely used in this research domain. Existing computational studies are then summarized in terms of their coverage of the MoA network. Lastly, we discuss the potential applications and future roles of the MoA network in terms of integrating biological mechanisms for ncRNA-disease associations.
Collapse
Affiliation(s)
- Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Jeonghyeon Gu
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
| | - Joonhyeong Park
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Dabin Jeong
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
| | - Jihye Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Inuk Jung
- Department of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea
- MOGAM Institute for Biomedical Research, Yongin-si 16924, Korea
| | - Sunho Lee
- AIGENDRUG Co., Ltd., Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
9
|
Xie G, Zhu Y, Lin Z, Sun Y, Gu G, Li J, Wang W. HBRWRLDA: predicting potential lncRNA-disease associations based on hypergraph bi-random walk with restart. Mol Genet Genomics 2022; 297:1215-1228. [PMID: 35752742 DOI: 10.1007/s00438-022-01909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/20/2022] [Indexed: 10/17/2022]
Abstract
Accumulating evidence indicates that the regulation of long non-coding RNAs (lncRNAs) is closely related to a variety of diseases. Identifying meaningful lncRNA-disease associations will help to contribute to the understanding of the molecular mechanisms underlying these diseases. However, only a limited number of associations between lncRNAs and diseases have been inferred from traditional biological experiments due to the high cost and highly specialized. Therefore, computational methods are increasingly used to reduce time of biological experiments and complement biological research. In this paper, a computational method called HBRWRLDA is proposed to predict lncRNA-disease associations. First, HBRWRLDA models the relationships between multiple nodes using hypergraphs, which allows HBRWRLDA to integrate the expression similarity of lncRNAs and the semantic similarity of diseases to construct hypergraphs. Then, a bi-random walk on hypergraphs is used to predict potential lncRNA-disease associations. HBRWRLDA achieves a higher area under the curve value of 0.9551 and [Formula: see text], respectively, compared with the other five advanced methods under the framework of one-leave cross validation (LOOCV) and five-fold cross-validation (5-fold CV). In addition, the prediction effect of HBRWRLDA was confirmed case studies of three diseases: renal cell carcinoma, gastric cancer, and hepatocellular carcinoma. Case studies demonstrates the capacity of HBRWRLDA to identify potentially disease-associated lncRNAs. Overall, HBRWRLDA is excellent at predicting potential lncRNA-disease associations and could be useful in conducting further biological experiments by helping researchers identify candidates of lncRNA-disease association.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Yinting Zhu
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Zhiyi Lin
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Yuping Sun
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guosheng Gu
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Jianming Li
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| | - Weiming Wang
- School of Computing, Guangdong University of Technology, Guangzhou, 510000, China
| |
Collapse
|
10
|
Liang Y, Zhang ZQ, Liu NN, Wu YN, Gu CL, Wang YL. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model. BMC Bioinformatics 2022; 23:189. [PMID: 35590258 PMCID: PMC9118755 DOI: 10.1186/s12859-022-04715-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Many long non-coding RNAs (lncRNAs) have key roles in different human biologic processes and are closely linked to numerous human diseases, according to cumulative evidence. Predicting potential lncRNA-disease associations can help to detect disease biomarkers and perform disease analysis and prevention. Establishing effective computational methods for lncRNA-disease association prediction is critical. RESULTS In this paper, we propose a novel model named MAGCNSE to predict underlying lncRNA-disease associations. We first obtain multiple feature matrices from the multi-view similarity graphs of lncRNAs and diseases utilizing graph convolutional network. Then, the weights are adaptively assigned to different feature matrices of lncRNAs and diseases using the attention mechanism. Next, the final representations of lncRNAs and diseases is acquired by further extracting features from the multi-channel feature matrices of lncRNAs and diseases using convolutional neural network. Finally, we employ a stacking ensemble classifier, consisting of multiple traditional machine learning classifiers, to make the final prediction. The results of ablation studies in both representation learning methods and classification methods demonstrate the validity of each module. Furthermore, we compare the overall performance of MAGCNSE with that of six other state-of-the-art models, the results show that it outperforms the other methods. Moreover, we verify the effectiveness of using multi-view data of lncRNAs and diseases. Case studies further reveal the outstanding ability of MAGCNSE in the identification of potential lncRNA-disease associations. CONCLUSIONS The experimental results indicate that MAGCNSE is a useful approach for predicting potential lncRNA-disease associations.
Collapse
Affiliation(s)
- Ying Liang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ze-Qun Zhang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Nian-Nian Liu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ya-Nan Wu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chang-Long Gu
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Ying-Long Wang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Zhang Y, Chen L, Li S. CIPHER-SC: Disease-Gene Association Inference Using Graph Convolution on a Context-Aware Network With Single-Cell Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:819-829. [PMID: 32809944 DOI: 10.1109/tcbb.2020.3017547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inference of disease-gene associations helps unravel the pathogenesis of diseases and contributes to the treatment. Although many machine learning-based methods have been developed to predict causative genes, accurate association inference remains challenging. One major reason is the inaccurate feature selection and accumulation of error brought by commonly used multi-stage training architecture. In addition, the existing methods do not incorporate cell-type-specific information, thus fail to study gene functions at a higher resolution. Therefore, we introduce single-cell transcriptome data and construct a context-aware network to unbiasedly integrate all data sources. Then we develop a graph convolution-based approach named CIPHER-SC to realize a complete end-to-end learning architecture. Our approach outperforms four state-of-the-art approaches in five-fold cross-validations on three distinct test sets with the best AUC of 0.9501, demonstrating its stable ability either to predict the novel genes or to predict with genetic basis. The ablation study shows that our complete end-to-end design and unbiased data integration boost the performance from 0.8727 to 0.9443 in AUC. The addition of single-cell data further improves the prediction accuracy and makes our results be enriched for cell-type-specific genes. These results confirm the ability of CIPHER-SC to discover reliable disease genes. Our implementation is available at http://github.com/YidingZhang117/CIPHER-SC.
Collapse
|
12
|
Wang L, Shang M, Dai Q, He PA. Prediction of lncRNA-disease association based on a Laplace normalized random walk with restart algorithm on heterogeneous networks. BMC Bioinformatics 2022; 23:5. [PMID: 34983367 PMCID: PMC8729064 DOI: 10.1186/s12859-021-04538-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND More and more evidence showed that long non-coding RNAs (lncRNAs) play important roles in the development and progression of human sophisticated diseases. Therefore, predicting human lncRNA-disease associations is a challenging and urgently task in bioinformatics to research of human sophisticated diseases. RESULTS In the work, a global network-based computational framework called as LRWRHLDA were proposed which is a universal network-based method. Firstly, four isomorphic networks include lncRNA similarity network, disease similarity network, gene similarity network and miRNA similarity network were constructed. And then, six heterogeneous networks include known lncRNA-disease, lncRNA-gene, lncRNA-miRNA, disease-gene, disease-miRNA, and gene-miRNA associations network were applied to design a multi-layer network. Finally, the Laplace normalized random walk with restart algorithm in this global network is suggested to predict the relationship between lncRNAs and diseases. CONCLUSIONS The ten-fold cross validation is used to evaluate the performance of LRWRHLDA. As a result, LRWRHLDA achieves an AUC of 0.98402, which is higher than other compared methods. Furthermore, LRWRHLDA can predict isolated disease-related lnRNA (isolated lnRNA related disease). The results for colorectal cancer, lung adenocarcinoma, stomach cancer and breast cancer have been verified by other researches. The case studies indicated that our method is effective.
Collapse
Affiliation(s)
- Liugen Wang
- School of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Min Shang
- School of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qi Dai
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ping-An He
- School of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
13
|
Duan T, Kuang Z, Wang J, Ma Z. GBDTLRL2D Predicts LncRNA-Disease Associations Using MetaGraph2Vec and K-Means Based on Heterogeneous Network. Front Cell Dev Biol 2021; 9:753027. [PMID: 34977011 PMCID: PMC8718797 DOI: 10.3389/fcell.2021.753027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the long noncoding RNA (lncRNA) has been shown to be involved in many disease processes. The prediction of the lncRNA-disease association is helpful to clarify the mechanism of disease occurrence and bring some new methods of disease prevention and treatment. The current methods for predicting the potential lncRNA-disease association seldom consider the heterogeneous networks with complex node paths, and these methods have the problem of unbalanced positive and negative samples. To solve this problem, a method based on the Gradient Boosting Decision Tree (GBDT) and logistic regression (LR) to predict the lncRNA-disease association (GBDTLRL2D) is proposed in this paper. MetaGraph2Vec is used for feature learning, and negative sample sets are selected by using K-means clustering. The innovation of the GBDTLRL2D is that the clustering algorithm is used to select a representative negative sample set, and the use of MetaGraph2Vec can better retain the semantic and structural features in heterogeneous networks. The average area under the receiver operating characteristic curve (AUC) values of GBDTLRL2D obtained on the three datasets are 0.98, 0.98, and 0.96 in 10-fold cross-validation.
Collapse
Affiliation(s)
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | | | | |
Collapse
|
14
|
SVDNVLDA: predicting lncRNA-disease associations by Singular Value Decomposition and node2vec. BMC Bioinformatics 2021; 22:538. [PMID: 34727886 PMCID: PMC8561941 DOI: 10.1186/s12859-021-04457-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Numerous studies on discovering the roles of long non-coding RNAs (lncRNAs) in the occurrence, development and prognosis progresses of various human diseases have drawn substantial attentions. Since only a tiny portion of lncRNA-disease associations have been properly annotated, an increasing number of computational methods have been proposed for predicting potential lncRNA-disease associations. However, traditional predicting models lack the ability to precisely extract features of biomolecules, it is urgent to find a model which can identify potential lncRNA-disease associations with both efficiency and accuracy. Results In this study, we proposed a novel model, SVDNVLDA, which gained the linear and non-linear features of lncRNAs and diseases with Singular Value Decomposition (SVD) and node2vec methods respectively. The integrated features were constructed from connecting the linear and non-linear features of each entity, which could effectively enhance the semantics contained in ultimate representations. And an XGBoost classifier was employed for identifying potential lncRNA-disease associations eventually. Conclusions We propose a novel model to predict lncRNA-disease associations. This model is expected to identify potential relationships between lncRNAs and diseases and further explore the disease mechanisms at the lncRNA molecular level. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04457-1.
Collapse
|
15
|
Tan K, Huang W, Liu X, Hu J, Dong S. A Hierarchical Graph Convolution Network for Representation Learning of Gene Expression Data. IEEE J Biomed Health Inform 2021; 25:3219-3229. [PMID: 33449889 DOI: 10.1109/jbhi.2021.3052008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The curse of dimensionality, which is caused by high-dimensionality and low-sample-size, is a major challenge in gene expression data analysis. However, the real situation is even worse: labelling data is laborious and time-consuming, so only a small part of the limited samples will be labelled. Having such few labelled samples further increases the difficulty of training deep learning models. Interpretability is an important requirement in biomedicine. Many existing deep learning methods are trying to provide interpretability, but rarely apply to gene expression data. Recent semi-supervised graph convolution network methods try to address these problems by smoothing the label information over a graph. However, to the best of our knowledge, these methods only utilize graphs in either the feature space or sample space, which restrict their performance. We propose a transductive semi-supervised representation learning method called a hierarchical graph convolution network (HiGCN) to aggregate the information of gene expression data in both feature and sample spaces. HiGCN first utilizes external knowledge to construct a feature graph and a similarity kernel to construct a sample graph. Then, two spatial-based GCNs are used to aggregate information on these graphs. To validate the model's performance, synthetic and real datasets are provided to lend empirical support. Compared with two recent models and three traditional models, HiGCN learns better representations of gene expression data, and these representations improve the performance of downstream tasks, especially when the model is trained on a few labelled samples. Important features can be extracted from our model to provide reliable interpretability.
Collapse
|
16
|
Gao M, Guo Y, Xiao Y, Shang X. Comprehensive analyses of correlation and survival reveal informative lncRNA prognostic signatures in colon cancer. World J Surg Oncol 2021; 19:104. [PMID: 33836755 PMCID: PMC8035745 DOI: 10.1186/s12957-021-02196-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colon cancer is a commonly worldwide cancer with high morbidity and mortality. Long non-coding RNAs (lncRNAs) are involved in many biological processes and are closely related to the occurrence of colon cancer. Identification of the prognostic signatures of lncRNAs in colon cancer has great significance for its treatment. METHODS We first identified the colon cancer-related mRNAs and lncRNAs according to the differential analysis methods using the expression data in TCGA. Then, we performed correlation analysis between the identified mRNAs and lncRNAs by integrating their expression values and secondary structure information to estimate the co-regulatory relationships between the cancer-related mRNAs and lncRNAs. Besides, the competing endogenous RNA regulation network based on co-regulatory relationships was constructed to reveal cancer-related regulatory patterns. Meanwhile, we used traditional regression analysis (univariate Cox analysis, random survival forest analysis, and lasso regression analysis) to screen the cancer-related lncRNAs. Finally, by combining the identified colon cancer-related lncRNAs according to the above analyses, we constructed a risk prognosis model for colon cancer through multivariate Cox analysis and also validated the model in the colon cancer dataset in TCGA cohorts. RESULTS Six lncRNAs were found highly correlated with the overall survival of colon cancer patients, and a risk prognosis model based on them was constructed to predict the overall survival of colon cancer patients. In particular, EVX1-AS, ZNF667-AS1, CTC-428G20.6, and CTC-297N7.9 were first reported to be related to colon cancer by using our model, among which EVX1-AS and ZNF667-AS1 have been predicted to be related to colon cancer in LncRNADisease database. CONCLUSIONS This study identified the potential regulatory relationships between lncRNAs and mRNAs by integrating their expression values and secondary structure information and presented a significant 6-lncRNA risk prognosis model to predict the overall survival of colon cancer patients.
Collapse
Affiliation(s)
- Meihong Gao
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yang Guo
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yifu Xiao
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Xuequn Shang
- School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, People's Republic of China.
| |
Collapse
|