1
|
Yang X, Wang J, Huang X, Wang Y, Xiao X. Forced Oscillation Detection via a Hybrid Network of a Spiking Recurrent Neural Network and LSTM. SENSORS (BASEL, SWITZERLAND) 2025; 25:2607. [PMID: 40285296 PMCID: PMC12031014 DOI: 10.3390/s25082607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The detection of forced oscillations, especially distinguishing them from natural oscillations, has emerged as a major concern in power system stability monitoring. Deep learning (DL) holds significant potential for detecting forced oscillations correctly. However, existing artificial neural networks (ANNs) face challenges when employed in edge devices for timely detection due to their inherent complex computations and high power consumption. This paper proposes a novel hybrid network that integrates a spiking recurrent neural network (SRNN) with long short-term memory (LSTM). The SRNN achieves computational and energy efficiency, while the integration with LSTM is conducive to effectively capturing temporal dependencies in time-series oscillation data. The proposed hybrid network is trained using the backpropagation-through-time (BPTT) optimization algorithm, with adjustments made to address the discontinuous gradient in the SRNN. We evaluate our proposed model on both simulated and real-world oscillation datasets. Overall, the experimental results demonstrate that the proposed model can achieve higher accuracy and superior performance in distinguishing forced oscillations from natural oscillations, even in the presence of strong noise, compared to pure LSTM and other SRNN-related models.
Collapse
Affiliation(s)
| | | | | | | | - Xianyong Xiao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (X.Y.); (J.W.); (X.H.); (Y.W.)
| |
Collapse
|
2
|
Lee JW, Park SO, Yun SY, Kim Y, Myung H, Choi S, Choi YK. Decoupling Strategy to Separate Training and Inference with Three-Dimensional Neuromorphic Hardware Composed of Neurons and Hybrid Synapses. ACS NANO 2025; 19:13063-13072. [PMID: 40139830 DOI: 10.1021/acsnano.4c18145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Monolithic 3D integration of neuron and synapse devices is considered a promising solution for energy-efficient and compact neuromorphic hardware. However, achieving optimal performance in both training and inference remains challenging as these processes require different synapse devices with reliable endurance and long retention. Here, we introduce a decoupling strategy to separate training and inference using monolithically integrated neuromorphic hardware with layer-by-layer fabrication. This 3D neuromorphic hardware includes neurons consisting of a single transistor (1T-neuron) in the first layer, long-term operational synapses composed of a single thin-film transistor with a SONOS structure (1TFT-synapses) in the second layer for inference, and durable synapses composed of a memristor (1M-synapses) in the third layer for training. A 1TFT-synapse, utilizing a charge-trap layer, exhibits long retention properties favorable for inference tasks. In contrast, a 1M-synapse, leveraging anion movement at the interface, demonstrates robust endurance for repetitive weight updates during training. With the proposed hybrid synapse architecture, frequent training can be performed using the 1M-synapses with robust endurance, while intermittent inference can be managed using the 1TFT-synapses with long-term retention. This decoupling of synaptic functions is advantageous for achieving a reliable spiking neural network (SNN) in neuromorphic computing.
Collapse
Affiliation(s)
- Jung-Woo Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
- SK Hynix Inc., Icheon 17336, Korea
| | - See-On Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Seong-Yun Yun
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Yeeun Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Hyun Myung
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Shinhyun Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| | - Yang-Kyu Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, Yuseong-gu 34141, Republic of Korea
| |
Collapse
|
3
|
Saranirad V, Dora S, McGinnity TM, Coyle D. CDNA-SNN: A New Spiking Neural Network for Pattern Classification Using Neuronal Assemblies. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:2274-2287. [PMID: 38329858 DOI: 10.1109/tnnls.2024.3353571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Spiking neural networks (SNNs) mimic their biological counterparts more closely than their predecessors and are considered the third generation of artificial neural networks. It has been proven that networks of spiking neurons have a higher computational capacity and lower power requirements than sigmoidal neural networks. This article introduces a new type of SNN that draws inspiration and incorporates concepts from neuronal assemblies in the human brain. The proposed network, termed as class-dependent neuronal activation-based SNN (CDNA-SNN), assigns each neuron learnable values known as CDNAs which indicate the neuron's average relative spiking activity in response to samples from different classes. A new learning algorithm that categorizes the neurons into different class assemblies based on their CDNAs is also presented. These neuronal assemblies are trained via a novel training method based on spike-timing-dependent plasticity (STDP) to have high activity for their associated class and low firing rate for other classes. Also, using CDNAs, a new type of STDP that controls the amount of plasticity based on the assemblies of pre- and postsynaptic neurons is proposed. The performance of CDNA-SNN is evaluated on five datasets from the University of California, Irvine (UCI) machine learning repository, as well as Modified National Institute of Standards and Technology (MNIST) and Fashion MNIST, using nested cross-validation (N-CV) for hyperparameter optimization. Our results show that CDNA-SNN significantly outperforms synaptic weight association training (SWAT) ( ) and SpikeProp ( ) on 3/5 and self-regulating evolving spiking neural (SRESN) ( ) on 2/5 UCI datasets while using the significantly lower number of trainable parameters. Furthermore, compared to other supervised, fully connected SNNs, the proposed SNN reaches the best performance for Fashion MNIST and comparable performance for MNIST and neuromorphic-MNIST (N-MNIST), also utilizing much less (1%-35%) parameters.
Collapse
|
4
|
Zou C, Cui X, Feng S, Chen G, Zhong Y, Dai Z, Wang Y. An all integer-based spiking neural network with dynamic threshold adaptation. Front Neurosci 2024; 18:1449020. [PMID: 39741532 PMCID: PMC11685137 DOI: 10.3389/fnins.2024.1449020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Spiking Neural Networks (SNNs) are typically regards as the third generation of neural networks due to their inherent event-driven computing capabilities and remarkable energy efficiency. However, training an SNN that possesses fast inference speed and comparable accuracy to modern artificial neural networks (ANNs) remains a considerable challenge. In this article, a sophisticated SNN modeling algorithm incorporating a novel dynamic threshold adaptation mechanism is proposed. It aims to eliminate the spiking synchronization error commonly occurred in many traditional ANN2SNN conversion works. Additionally, all variables in the proposed SNNs, including the membrane potential, threshold and synaptic weights, are quantized to integers, making them highly compatible with hardware implementation. Experimental results indicate that the proposed spiking LeNet and VGG-Net achieve accuracies exceeding 99.45% and 93.15% on the MNIST and CIFAR-10 datasets, respectively, with only 4 and 8 time steps required for simulating one sample. Due to this all integer-based quantization process, the required computational operations are significantly reduced, potentially providing a substantial energy efficiency advantage for numerous edge computing applications.
Collapse
Affiliation(s)
- Chenglong Zou
- Peking University Chongqing Research Institute of Big Data, Chongqing, China
- School of Mathematical Science, Peking University, Beijing, China
| | - Xiaoxin Cui
- School of Integrated Circuits, Peking University, Beijing, China
| | - Shuo Feng
- School of Integrated Circuits, Peking University, Beijing, China
| | - Guang Chen
- School of Integrated Circuits, Peking University, Beijing, China
| | - Yi Zhong
- School of Integrated Circuits, Peking University, Beijing, China
| | - Zhenhui Dai
- School of Integrated Circuits, Peking University, Beijing, China
| | - Yuan Wang
- School of Integrated Circuits, Peking University, Beijing, China
| |
Collapse
|
5
|
Goupy G, Tirilly P, Bilasco IM. Paired competing neurons improving STDP supervised local learning in Spiking Neural Networks. Front Neurosci 2024; 18:1401690. [PMID: 39119458 PMCID: PMC11307446 DOI: 10.3389/fnins.2024.1401690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Direct training of Spiking Neural Networks (SNNs) on neuromorphic hardware has the potential to significantly reduce the energy consumption of artificial neural network training. SNNs trained with Spike Timing-Dependent Plasticity (STDP) benefit from gradient-free and unsupervised local learning, which can be easily implemented on ultra-low-power neuromorphic hardware. However, classification tasks cannot be performed solely with unsupervised STDP. In this paper, we propose Stabilized Supervised STDP (S2-STDP), a supervised STDP learning rule to train the classification layer of an SNN equipped with unsupervised STDP for feature extraction. S2-STDP integrates error-modulated weight updates that align neuron spikes with desired timestamps derived from the average firing time within the layer. Then, we introduce a training architecture called Paired Competing Neurons (PCN) to further enhance the learning capabilities of our classification layer trained with S2-STDP. PCN associates each class with paired neurons and encourages neuron specialization toward target or non-target samples through intra-class competition. We evaluate our methods on image recognition datasets, including MNIST, Fashion-MNIST, and CIFAR-10. Results show that our methods outperform state-of-the-art supervised STDP learning rules, for comparable architectures and numbers of neurons. Further analysis demonstrates that the use of PCN enhances the performance of S2-STDP, regardless of the hyperparameter set and without introducing any additional hyperparameters.
Collapse
|
6
|
Hore A, Bandyopadhyay S, Chakrabarti S. Persistent spiking activity in neuromorphic circuits incorporating post-inhibitory rebound excitation. J Neural Eng 2024; 21:036048. [PMID: 38861961 DOI: 10.1088/1741-2552/ad56c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective. This study introduces a novel approach for integrating the post-inhibitory rebound excitation (PIRE) phenomenon into a neuronal circuit. Excitatory and inhibitory synapses are designed to establish a connection between two hardware neurons, effectively forming a network. The model demonstrates the occurrence of PIRE under strong inhibitory input. Emphasizing the significance of incorporating PIRE in neuromorphic circuits, the study showcases generation of persistent activity within cyclic and recurrent spiking neuronal networks.Approach. The neuronal and synaptic circuits are designed and simulated in Cadence Virtuoso using TSMC 180 nm technology. The operating mechanism of the PIRE phenomenon integrated into a hardware neuron is discussed. The proposed circuit encompasses several parameters for effectively controlling multiple electrophysiological features of a neuron.Main results. The neuronal circuit has been tuned to match the response of a biological neuron. The efficiency of this circuit is evaluated by computing the average power dissipation and energy consumption per spike through simulation. The sustained firing of neural spikes is observed till 1.7 s using the two neuronal networks.Significance. Persistent activity has significant implications for various cognitive functions such as working memory, decision-making, and attention. Therefore, hardware implementation of these functions will require our PIRE-integrated model. Energy-efficient neuromorphic systems are useful in many artificial intelligence applications, including human-machine interaction, IoT devices, autonomous systems, and brain-computer interfaces.
Collapse
|
7
|
Lutes N, Nadendla VSS, Krishnamurthy K. Convolutional spiking neural networks for intent detection based on anticipatory brain potentials using electroencephalogram. Sci Rep 2024; 14:8850. [PMID: 38632436 PMCID: PMC11024189 DOI: 10.1038/s41598-024-59469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Spiking neural networks (SNNs) are receiving increased attention because they mimic synaptic connections in biological systems and produce spike trains, which can be approximated by binary values for computational efficiency. Recently, the addition of convolutional layers to combine the feature extraction power of convolutional networks with the computational efficiency of SNNs has been introduced. This paper studies the feasibility of using a convolutional spiking neural network (CSNN) to detect anticipatory slow cortical potentials (SCPs) related to braking intention in human participants using an electroencephalogram (EEG). Data was collected during an experiment wherein participants operated a remote-controlled vehicle on a testbed designed to simulate an urban environment. Participants were alerted to an incoming braking event via an audio countdown to elicit anticipatory potentials that were measured using an EEG. The CSNN's performance was compared to a standard CNN, EEGNet and three graph neural networks via 10-fold cross-validation. The CSNN outperformed all the other neural networks, and had a predictive accuracy of 99.06% with a true positive rate of 98.50%, a true negative rate of 99.20% and an F1-score of 0.98. Performance of the CSNN was comparable to the CNN in an ablation study using a subset of EEG channels that localized SCPs. Classification performance of the CSNN degraded only slightly when the floating-point EEG data were converted into spike trains via delta modulation to mimic synaptic connections.
Collapse
Affiliation(s)
- Nathan Lutes
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | | | - K Krishnamurthy
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
8
|
Shen J, Zhao Y, Liu JK, Wang Y. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5841-5855. [PMID: 34890341 DOI: 10.1109/tnnls.2021.3131356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spiking neural networks (SNNs), inspired by the neuronal network in the brain, provide biologically relevant and low-power consuming models for information processing. Existing studies either mimic the learning mechanism of brain neural networks as closely as possible, for example, the temporally local learning rule of spike-timing-dependent plasticity (STDP), or apply the gradient descent rule to optimize a multilayer SNN with fixed structure. However, the learning rule used in the former is local and how the real brain might do the global-scale credit assignment is still not clear, which means that those shallow SNNs are robust but deep SNNs are difficult to be trained globally and could not work so well. For the latter, the nondifferentiable problem caused by the discrete spike trains leads to inaccuracy in gradient computing and difficulties in effective deep SNNs. Hence, a hybrid solution is interesting to combine shallow SNNs with an appropriate machine learning (ML) technique not requiring the gradient computing, which is able to provide both energy-saving and high-performance advantages. In this article, we propose a HybridSNN, a deep and strong SNN composed of multiple simple SNNs, in which data-driven greedy optimization is used to build powerful classifiers, avoiding the derivative problem in gradient descent. During the training process, the output features (spikes) of selected weak classifiers are fed back to the pool for the subsequent weak SNN training and selection. This guarantees HybridSNN not only represents the linear combination of simple SNNs, as what regular AdaBoost algorithm generates, but also contains neuron connection information, thus closely resembling the neural networks of a brain. HybridSNN has the benefits of both low power consumption in weak units and overall data-driven optimizing strength. The network structure in HybridSNN is learned from training samples, which is more flexible and effective compared with existing fixed multilayer SNNs. Moreover, the topological tree of HybridSNN resembles the neural system in the brain, where pyramidal neurons receive thousands of synaptic input signals through their dendrites. Experimental results show that the proposed HybridSNN is highly competitive among the state-of-the-art SNNs.
Collapse
|
9
|
Xu M, Chen X, Sun A, Zhang X, Chen X. A Novel Event-Driven Spiking Convolutional Neural Network for Electromyography Pattern Recognition. IEEE Trans Biomed Eng 2023; 70:2604-2615. [PMID: 37030849 DOI: 10.1109/tbme.2023.3258606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Electromyography (EMG) pattern recognition is an important technology for prosthesis control and human-computer interaction etc. However, the practical application of EMG pattern recognition is hampered by poor accuracy and robustness due to electrode shift caused by repeated wearing of the signal acquisition device. Moreover, the user's acceptability is low due to the heavy training burden, which is caused by the need for a large amount of training data by traditional methods. In order to explore the advantage of spiking neural network (SNN) in solving the poor robustness and heavy training burden problems in EMG pattern recognition, a spiking convolutional neural network (SCNN) composed of cyclic convolutional neural network (CNN) and fully connected modules is proposed and implemented in this study. High density surface electromyography (HD-sEMG) signals collected from 6 gestures of 10 subjects at 6 electrode positions are taken as the research object. Compared to CNN with the same structure, CNN-Long Short Term Memory (CNN-LSTM), linear kernel linear discriminant analysis classifier (LDA) and spiking multilayer perceptron (Spiking MLP), the accuracy of SCNN is 50.69%, 33.92%, 32.94% and 9.41% higher in the small sample training experiment, 6.50%, 4.23%, 28.73%, and 2.57% higher in the electrode shifts experiment respectively. In addition, the power consumption of SCNN is about 1/93 of CNN. The advantages of the proposed framework in alleviating user training burden, mitigating the adverse effect of electrode shifts and reducing power consumption make it very meaningful for promoting the development of user-friendly real-time myoelectric control system.
Collapse
|
10
|
Zhang Y, Xiang S, Han Y, Guo X, Zhang W, Tan Q, Han G, Hao Y. BP-based supervised learning algorithm for multilayer photonic spiking neural network and hardware implementation. OPTICS EXPRESS 2023; 31:16549-16559. [PMID: 37157731 DOI: 10.1364/oe.487047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We introduce a supervised learning algorithm for photonic spiking neural network (SNN) based on back propagation. For the supervised learning algorithm, the information is encoded into spike trains with different strength, and the SNN is trained according to different patterns composed of different spike numbers of the output neurons. Furthermore, the classification task is performed numerically and experimentally based on the supervised learning algorithm in the SNN. The SNN is composed of photonic spiking neuron based on vertical-cavity surface-emitting laser which is functionally similar to leaky-integrate and fire neuron. The results prove the demonstration of the algorithm implementation on hardware. To seek ultra-low power consumption and ultra-low delay, it is great significance to design and implement a hardware-friendly learning algorithm of photonic neural networks and realize hardware-algorithm collaborative computing.
Collapse
|
11
|
Lin X, Zhang Z, Zheng D. Supervised Learning Algorithm Based on Spike Train Inner Product for Deep Spiking Neural Networks. Brain Sci 2023; 13:brainsci13020168. [PMID: 36831711 PMCID: PMC9954578 DOI: 10.3390/brainsci13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
By mimicking the hierarchical structure of human brain, deep spiking neural networks (DSNNs) can extract features from a lower level to a higher level gradually, and improve the performance for the processing of spatio-temporal information. Due to the complex hierarchical structure and implicit nonlinear mechanism, the formulation of spike train level supervised learning methods for DSNNs remains an important problem in this research area. Based on the definition of kernel function and spike trains inner product (STIP) as well as the idea of error backpropagation (BP), this paper firstly proposes a deep supervised learning algorithm for DSNNs named BP-STIP. Furthermore, in order to alleviate the intrinsic weight transport problem of the BP mechanism, feedback alignment (FA) and broadcast alignment (BA) mechanisms are utilized to optimize the error feedback mode of BP-STIP, and two deep supervised learning algorithms named FA-STIP and BA-STIP are also proposed. In the experiments, the effectiveness of the proposed three DSNN algorithms is verified on the MNIST digital image benchmark dataset, and the influence of different kernel functions on the learning performance of DSNNs with different network scales is analyzed. Experimental results show that the FA-STIP and BP-STIP algorithms can achieve 94.73% and 95.65% classification accuracy, which apparently possess better learning performance and stability compared with the benchmark algorithm BP-STIP.
Collapse
|
12
|
Zhao J, Yang J, Wang J, Wu W. Spiking Neural Network Regularization With Fixed and Adaptive Drop-Keep Probabilities. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4096-4109. [PMID: 33571100 DOI: 10.1109/tnnls.2021.3055825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dropout and DropConnect are two techniques to facilitate the regularization of neural network models, having achieved the state-of-the-art results in several benchmarks. In this paper, to improve the generalization capability of spiking neural networks (SNNs), the two drop techniques are first applied to the state-of-the-art SpikeProp learning algorithm resulting in two improved learning algorithms called SPDO (SpikeProp with Dropout) and SPDC (SpikeProp with DropConnect). In view that a higher membrane potential of a biological neuron implies a higher probability of neural activation, three adaptive drop algorithms, SpikeProp with Adaptive Dropout (SPADO), SpikeProp with Adaptive DropConnect (SPADC), and SpikeProp with Group Adaptive Drop (SPGAD), are proposed by adaptively adjusting the keep probability for training SNNs. A convergence theorem for SPDC is proven under the assumptions of the bounded norm of connection weights and a finite number of equilibria. In addition, the five proposed algorithms are carried out in a collaborative neurodynamic optimization framework to improve the learning performance of SNNs. The experimental results on the four benchmark data sets demonstrate that the three adaptive algorithms converge faster than SpikeProp, SPDO, and SPDC, and the generalization errors of the five proposed algorithms are significantly smaller than that of SpikeProp. Furthermore, the experimental results also show that the five algorithms based on collaborative neurodynamic optimization can be improved in terms of several measures.
Collapse
|
13
|
A Spike Neural Network Model for Lateral Suppression of Spike-Timing-Dependent Plasticity with Adaptive Threshold. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aiming at the practical constraints of high resource occupancy and complex calculations in the existing Spike Neural Network (SNN) image classification model, in order to seek a more lightweight and efficient machine vision solution, this paper proposes an adaptive threshold Spike Neural Network (SNN) model of lateral inhibition of Spike-Timing-Dependent Plasticity (STDP). The conversion from grayscale image to pulse sequence is completed by convolution normalization and first pulse time coding. The network self-classification is realized by combining the classical Spike-Timing-Dependent Plasticity algorithm (STDP) and lateral suppression algorithm. The occurrence of overfitting is effectively suppressed by introducing an adaptive threshold. The experimental results on the MNIST data set show that compared with the traditional SNN classification model, the complexity of the weight update algorithm is reduced from O(n2) to O(1), and the accuracy rate can still remain stable at about 96%. The provided model is conducive to the migration of software algorithms to the bottom layer of the hardware platform, and can provide a reference for the realization of edge computing solutions for small intelligent hardware terminals with high efficiency and low power consumption.
Collapse
|
14
|
Kim D, Chakraborty B, She X, Lee E, Kang B, Mukhopadhyay S. MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning. Front Neurosci 2022; 16:775457. [PMID: 35478844 PMCID: PMC9037635 DOI: 10.3389/fnins.2022.775457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
We present a processing-in-memory (PIM)-based hardware platform, referred to as MONETA, for on-chip acceleration of inference and learning in hybrid convolutional spiking neural network. MONETAuses 8T static random-access memory (SRAM)-based PIM cores for vector matrix multiplication (VMM) augmented with spike-time-dependent-plasticity (STDP) based weight update. The spiking neural network (SNN)-focused data flow is presented to minimize data movement in MONETAwhile ensuring learning accuracy. MONETAsupports on-line and on-chip training on PIM architecture. The STDP-trained convolutional neural network within SNN (ConvSNN) with the proposed data flow, 4-bit input precision, and 8-bit weight precision shows only 1.63% lower accuracy in CIFAR-10 compared to the STDP accuracy implemented by the software. Further, the proposed architecture is used to accelerate a hybrid SNN architecture that couples off-chip supervised (back propagation through time) and on-chip unsupervised (STDP) training. We also evaluate the hybrid network architecture with the proposed data flow. The accuracy of this hybrid network is 10.84% higher than STDP trained accuracy result and 1.4% higher compared to the backpropagated training-based ConvSNN result with the CIFAR-10 dataset. Physical design of MONETAin 65 nm complementary metal-oxide-semiconductor (CMOS) shows 18.69 tera operation per second (TOPS)/W, 7.25 TOPS/W and 10.41 TOPS/W power efficiencies for the inference mode, learning mode, and hybrid learning mode, respectively.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Biswadeep Chakraborty
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xueyuan She
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Edward Lee
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Beomseok Kang
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Saibal Mukhopadhyay
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
15
|
Yu Q, Ma C, Song S, Zhang G, Dang J, Tan KC. Constructing Accurate and Efficient Deep Spiking Neural Networks With Double-Threshold and Augmented Schemes. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:1714-1726. [PMID: 33471769 DOI: 10.1109/tnnls.2020.3043415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spiking neural networks (SNNs) are considered as a potential candidate to overcome current challenges, such as the high-power consumption encountered by artificial neural networks (ANNs); however, there is still a gap between them with respect to the recognition accuracy on various tasks. A conversion strategy was, thus, introduced recently to bridge this gap by mapping a trained ANN to an SNN. However, it is still unclear that to what extent this obtained SNN can benefit both the accuracy advantage from ANN and high efficiency from the spike-based paradigm of computation. In this article, we propose two new conversion methods, namely TerMapping and AugMapping. The TerMapping is a straightforward extension of a typical threshold-balancing method with a double-threshold scheme, while the AugMapping additionally incorporates a new scheme of augmented spike that employs a spike coefficient to carry the number of typical all-or-nothing spikes occurring at a time step. We examine the performance of our methods based on the MNIST, Fashion-MNIST, and CIFAR10 data sets. The results show that the proposed double-threshold scheme can effectively improve the accuracies of the converted SNNs. More importantly, the proposed AugMapping is more advantageous for constructing accurate, fast, and efficient deep SNNs compared with other state-of-the-art approaches. Our study, therefore, provides new approaches for further integration of advanced techniques in ANNs to improve the performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic computing.
Collapse
|
16
|
Astrocytes mediate analogous memory in a multi-layer neuron–astrocyte network. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-06936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractModeling the neuronal processes underlying short-term working memory remains the focus of many theoretical studies in neuroscience. In this paper, we propose a mathematical model of a spiking neural network (SNN) which simulates the way a fragment of information is maintained as a robust activity pattern for several seconds and the way it completely disappears if no other stimuli are fed to the system. Such short-term memory traces are preserved due to the activation of astrocytes accompanying the SNN. The astrocytes exhibit calcium transients at a time scale of seconds. These transients further modulate the efficiency of synaptic transmission and, hence, the firing rate of neighboring neurons at diverse timescales through gliotransmitter release. We demonstrate how such transients continuously encode frequencies of neuronal discharges and provide robust short-term storage of analogous information. This kind of short-term memory can store relevant information for seconds and then completely forget it to avoid overlapping with forthcoming patterns. The SNN is inter-connected with the astrocytic layer by local inter-cellular diffusive connections. The astrocytes are activated only when the neighboring neurons fire synchronously, e.g., when an information pattern is loaded. For illustration, we took grayscale photographs of people’s faces where the shades of gray correspond to the level of applied current which stimulates the neurons. The astrocyte feedback modulates (facilitates) synaptic transmission by varying the frequency of neuronal firing. We show how arbitrary patterns can be loaded, then stored for a certain interval of time, and retrieved if the appropriate clue pattern is applied to the input.
Collapse
|
17
|
Deng B, Fan Y, Wang J, Yang S. Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1320-1331. [PMID: 34699367 DOI: 10.1109/tbcas.2021.3122549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper presents a field-programmable gate array (FPGA) implementation of an auditory system, which is biologically inspired and has the advantages of robustness and anti-noise ability. We propose an FPGA implementation of an eleven-channel hierarchical spiking neuron network (SNN) model, which has a sparsely connected architecture with low power consumption. According to the mechanism of the auditory pathway in human brain, spiking trains generated by the cochlea are analyzed in the hierarchical SNN, and the specific word can be identified by a Bayesian classifier. Modified leaky integrate-and-fire (LIF) model is used to realize the hierarchical SNN, which achieves both high efficiency and low hardware consumption. The hierarchical SNN implemented on FPGA enables the auditory system to be operated at high speed and can be interfaced and applied with external machines and sensors. A set of speech from different speakers mixed with noise are used as input to test the performance our system, and the experimental results show that the system can classify words in a biologically plausible way with the presence of noise. The method of our system is flexible and the system can be modified into desirable scale. These confirm that the proposed biologically plausible auditory system provides a better method for on-chip speech recognition. Compare to the state-of-the-art, our auditory system achieves a higher speed with a maximum frequency of 65.03 MHz and a lower energy consumption of 276.83 μJ for a single operation. It can be applied in the field of brain-computer interface and intelligent robots.
Collapse
|
18
|
Srinivasan G, Roy K. BlocTrain: Block-Wise Conditional Training and Inference for Efficient Spike-Based Deep Learning. Front Neurosci 2021; 15:603433. [PMID: 34776834 PMCID: PMC8586528 DOI: 10.3389/fnins.2021.603433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 07/23/2021] [Indexed: 12/04/2022] Open
Abstract
Spiking neural networks (SNNs), with their inherent capability to learn sparse spike-based input representations over time, offer a promising solution for enabling the next generation of intelligent autonomous systems. Nevertheless, end-to-end training of deep SNNs is both compute- and memory-intensive because of the need to backpropagate error gradients through time. We propose BlocTrain, which is a scalable and complexity-aware incremental algorithm for memory-efficient training of deep SNNs. We divide a deep SNN into blocks, where each block consists of few convolutional layers followed by a classifier. We train the blocks sequentially using local errors from the classifier. Once a given block is trained, our algorithm dynamically figures out easy vs. hard classes using the class-wise accuracy, and trains the deeper block only on the hard class inputs. In addition, we also incorporate a hard class detector (HCD) per block that is used during inference to exit early for the easy class inputs and activate the deeper blocks only for the hard class inputs. We trained ResNet-9 SNN divided into three blocks, using BlocTrain, on CIFAR-10 and obtained 86.4% accuracy, which is achieved with up to 2.95× lower memory requirement during the course of training, and 1.89× compute efficiency per inference (due to early exit strategy) with 1.45× memory overhead (primarily due to classifier weights) compared to end-to-end network. We also trained ResNet-11, divided into four blocks, on CIFAR-100 and obtained 58.21% accuracy, which is one of the first reported accuracy for SNN trained entirely with spike-based backpropagation on CIFAR-100.
Collapse
Affiliation(s)
- Gopalakrishnan Srinivasan
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Kaushik Roy
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
19
|
Spiking Neural Networks for Computational Intelligence: An Overview. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc5040067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Deep neural networks with rate-based neurons have exhibited tremendous progress in the last decade. However, the same level of progress has not been observed in research on spiking neural networks (SNN), despite their capability to handle temporal data, energy-efficiency and low latency. This could be because the benchmarking techniques for SNNs are based on the methods used for evaluating deep neural networks, which do not provide a clear evaluation of the capabilities of SNNs. Particularly, the benchmarking of SNN approaches with regards to energy efficiency and latency requires realization in suitable hardware, which imposes additional temporal and resource constraints upon ongoing projects. This review aims to provide an overview of the current real-world applications of SNNs and identifies steps to accelerate research involving SNNs in the future.
Collapse
|
20
|
Chakraborty B, Mukhopadhyay S. Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks. Front Neurosci 2021; 15:695357. [PMID: 34776837 PMCID: PMC8589121 DOI: 10.3389/fnins.2021.695357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
A Spiking Neural Network (SNN) is trained with Spike Timing Dependent Plasticity (STDP), which is a neuro-inspired unsupervised learning method for various machine learning applications. This paper studies the generalizability properties of the STDP learning processes using the Hausdorff dimension of the trajectories of the learning algorithm. The paper analyzes the effects of STDP learning models and associated hyper-parameters on the generalizability properties of an SNN. The analysis is used to develop a Bayesian optimization approach to optimize the hyper-parameters for an STDP model for improving the generalizability properties of an SNN.
Collapse
Affiliation(s)
- Biswadeep Chakraborty
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | | |
Collapse
|
21
|
Verma G, Bindal N, Nisar A, Dhull S, Kaushik BK. Advances in Neuromorphic Spin-Based Spiking Neural Networks: A review. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3098219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps. SENSORS 2021; 21:s21186006. [PMID: 34577214 PMCID: PMC8471769 DOI: 10.3390/s21186006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
Neuromorphic hardware systems have been gaining ever-increasing focus in many embedded applications as they use a brain-inspired, energy-efficient spiking neural network (SNN) model that closely mimics the human cortex mechanism by communicating and processing sensory information via spatiotemporally sparse spikes. In this paper, we fully leverage the characteristics of spiking convolution neural network (SCNN), and propose a scalable, cost-efficient, and high-speed VLSI architecture to accelerate deep SCNN inference for real-time low-cost embedded scenarios. We leverage the snapshot of binary spike maps at each time-step, to decompose the SCNN operations into a series of regular and simple time-step CNN-like processing to reduce hardware resource consumption. Moreover, our hardware architecture achieves high throughput by employing a pixel stream processing mechanism and fine-grained data pipelines. Our Zynq-7045 FPGA prototype reached a high processing speed of 1250 frames/s and high recognition accuracies on the MNIST and Fashion-MNIST image datasets, demonstrating the plausibility of our SCNN hardware architecture for many embedded applications.
Collapse
|
23
|
Lv E, Cheng Y, Wang X, Chen CLP. Deep Convolutional Network Based on Interleaved Fusion Group. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2974322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Wang Z, Yao X, Huang Z, Liu L. Deep Echo State Network With Multiple Adaptive Reservoirs for Time Series Prediction. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3062177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Ben Abdallah A, Dang KN. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System. Front Neurosci 2021; 15:690208. [PMID: 34248491 PMCID: PMC8267251 DOI: 10.3389/fnins.2021.690208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
Spiking Neuromorphic systems have been introduced as promising platforms for energy-efficient spiking neural network (SNNs) execution. SNNs incorporate neuronal and synaptic states in addition to the variant time scale into their computational model. Since each neuron in these networks is connected to many others, high bandwidth is required. Moreover, since the spike times are used to encode information in SNN, a precise communication latency is also needed, although SNN is tolerant to the spike delay variation in some limits when it is seen as a whole. The two-dimensional packet-switched network-on-chip was proposed as a solution to provide a scalable interconnect fabric in large-scale spike-based neural networks. The 3D-ICs have also attracted a lot of attention as a potential solution to resolve the interconnect bottleneck. Combining these two emerging technologies provides a new horizon for IC design to satisfy the high requirements of low power and small footprint in emerging AI applications. Moreover, although fault-tolerance is a natural feature of biological systems, integrating many computation and memory units into neuromorphic chips confronts the reliability issue, where a defective part can affect the overall system's performance. This paper presents the design and simulation of R-NASH-a reliable three-dimensional digital neuromorphic system geared explicitly toward the 3D-ICs biological brain's three-dimensional structure, where information in the network is represented by sparse patterns of spike timing and learning is based on the local spike-timing-dependent-plasticity rule. Our platform enables high integration density and small spike delay of spiking networks and features a scalable design. R-NASH is a design based on the Through-Silicon-Via technology, facilitating spiking neural network implementation on clustered neurons based on Network-on-Chip. We provide a memory interface with the host CPU, allowing for online training and inference of spiking neural networks. Moreover, R-NASH supports fault recovery with graceful performance degradation.
Collapse
Affiliation(s)
- Abderazek Ben Abdallah
- Adaptive Systems Laboratory, Graduate School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Japan
| | - Khanh N Dang
- Adaptive Systems Laboratory, Graduate School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu, Japan.,VNU Key Laboratory for Smart Integrated Systems (SISLAB), VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
26
|
Guo W, Fouda ME, Eltawil AM, Salama KN. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems. Front Neurosci 2021; 15:638474. [PMID: 33746705 PMCID: PMC7970006 DOI: 10.3389/fnins.2021.638474] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Various hypotheses of information representation in brain, referred to as neural codes, have been proposed to explain the information transmission between neurons. Neural coding plays an essential role in enabling the brain-inspired spiking neural networks (SNNs) to perform different tasks. To search for the best coding scheme, we performed an extensive comparative study on the impact and performance of four important neural coding schemes, namely, rate coding, time-to-first spike (TTFS) coding, phase coding, and burst coding. The comparative study was carried out using a biological 2-layer SNN trained with an unsupervised spike-timing-dependent plasticity (STDP) algorithm. Various aspects of network performance were considered, including classification accuracy, processing latency, synaptic operations (SOPs), hardware implementation, network compression efficacy, input and synaptic noise resilience, and synaptic fault tolerance. The classification tasks on Modified National Institute of Standards and Technology (MNIST) and Fashion-MNIST datasets were applied in our study. For hardware implementation, area and power consumption were estimated for these coding schemes, and the network compression efficacy was analyzed using pruning and quantization techniques. Different types of input noise and noise variations in the datasets were considered and applied. Furthermore, the robustness of each coding scheme to the non-ideality-induced synaptic noise and fault in analog neuromorphic systems was studied and compared. Our results show that TTFS coding is the best choice in achieving the highest computational performance with very low hardware implementation overhead. TTFS coding requires 4x/7.5x lower processing latency and 3.5x/6.5x fewer SOPs than rate coding during the training/inference process. Phase coding is the most resilient scheme to input noise. Burst coding offers the highest network compression efficacy and the best overall robustness to hardware non-idealities for both training and inference processes. The study presented in this paper reveals the design space created by the choice of each coding scheme, allowing designers to frame each scheme in terms of its strength and weakness given a designs' constraints and considerations in neuromorphic systems.
Collapse
Affiliation(s)
- Wenzhe Guo
- Sensors Laboratory, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Communication and Computing Systems Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammed E Fouda
- Communication and Computing Systems Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Ahmed M Eltawil
- Communication and Computing Systems Laboratory, Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Khaled Nabil Salama
- Sensors Laboratory, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
27
|
Yu A, Yang H, Nguyen KK, Zhang J, Cheriet M. Burst Traffic Scheduling for Hybrid E/O Switching DCN: An Error Feedback Spiking Neural Network Approach. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2021. [DOI: 10.1109/tnsm.2020.3040907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Panda P, Aketi SA, Roy K. Toward Scalable, Efficient, and Accurate Deep Spiking Neural Networks With Backward Residual Connections, Stochastic Softmax, and Hybridization. Front Neurosci 2020; 14:653. [PMID: 32694977 PMCID: PMC7339963 DOI: 10.3389/fnins.2020.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
Spiking Neural Networks (SNNs) may offer an energy-efficient alternative for implementing deep learning applications. In recent years, there have been several proposals focused on supervised (conversion, spike-based gradient descent) and unsupervised (spike timing dependent plasticity) training methods to improve the accuracy of SNNs on large-scale tasks. However, each of these methods suffer from scalability, latency, and accuracy limitations. In this paper, we propose novel algorithmic techniques of modifying the SNN configuration with backward residual connections, stochastic softmax, and hybrid artificial-and-spiking neuronal activations to improve the learning ability of the training methodologies to yield competitive accuracy, while, yielding large efficiency gains over their artificial counterparts. Note, artificial counterparts refer to conventional deep learning/artificial neural networks. Our techniques apply to VGG/Residual architectures, and are compatible with all forms of training methodologies. Our analysis reveals that the proposed solutions yield near state-of-the-art accuracy with significant energy-efficiency and reduced parameter overhead translating to hardware improvements on complex visual recognition tasks, such as, CIFAR10, Imagenet datatsets.
Collapse
Affiliation(s)
- Priyadarshini Panda
- Department of Electrical Engineering, Yale University, New Haven, CT, United States
| | - Sai Aparna Aketi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Kaushik Roy
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
29
|
Lee C, Sarwar SS, Panda P, Srinivasan G, Roy K. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures. Front Neurosci 2020; 14:119. [PMID: 32180697 PMCID: PMC7059737 DOI: 10.3389/fnins.2020.00119] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/30/2020] [Indexed: 12/24/2022] Open
Abstract
Spiking Neural Networks (SNNs) have recently emerged as a prominent neural computing paradigm. However, the typical shallow SNN architectures have limited capacity for expressing complex representations while training deep SNNs using input spikes has not been successful so far. Diverse methods have been proposed to get around this issue such as converting off-the-shelf trained deep Artificial Neural Networks (ANNs) to SNNs. However, the ANN-SNN conversion scheme fails to capture the temporal dynamics of a spiking system. On the other hand, it is still a difficult problem to directly train deep SNNs using input spike events due to the discontinuous, non-differentiable nature of the spike generation function. To overcome this problem, we propose an approximate derivative method that accounts for the leaky behavior of LIF neurons. This method enables training deep convolutional SNNs directly (with input spike events) using spike-based backpropagation. Our experiments show the effectiveness of the proposed spike-based learning on deep networks (VGG and Residual architectures) by achieving the best classification accuracies in MNIST, SVHN, and CIFAR-10 datasets compared to other SNNs trained with a spike-based learning. Moreover, we analyze sparse event-based computations to demonstrate the efficacy of the proposed SNN training method for inference operation in the spiking domain.
Collapse
|
30
|
Efficient and hardware-friendly methods to implement competitive learning for spiking neural networks. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-04755-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Illing B, Gerstner W, Brea J. Biologically plausible deep learning - But how far can we go with shallow networks? Neural Netw 2019; 118:90-101. [PMID: 31254771 DOI: 10.1016/j.neunet.2019.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 11/17/2022]
Abstract
Training deep neural networks with the error backpropagation algorithm is considered implausible from a biological perspective. Numerous recent publications suggest elaborate models for biologically plausible variants of deep learning, typically defining success as reaching around 98% test accuracy on the MNIST data set. Here, we investigate how far we can go on digit (MNIST) and object (CIFAR10) classification with biologically plausible, local learning rules in a network with one hidden layer and a single readout layer. The hidden layer weights are either fixed (random or random Gabor filters) or trained with unsupervised methods (Principal/Independent Component Analysis or Sparse Coding) that can be implemented by local learning rules. The readout layer is trained with a supervised, local learning rule. We first implement these models with rate neurons. This comparison reveals, first, that unsupervised learning does not lead to better performance than fixed random projections or Gabor filters for large hidden layers. Second, networks with localized receptive fields perform significantly better than networks with all-to-all connectivity and can reach backpropagation performance on MNIST. We then implement two of the networks - fixed, localized, random & random Gabor filters in the hidden layer - with spiking leaky integrate-and-fire neurons and spike timing dependent plasticity to train the readout layer. These spiking models achieve >98.2% test accuracy on MNIST, which is close to the performance of rate networks with one hidden layer trained with backpropagation. The performance of our shallow network models is comparable to most current biologically plausible models of deep learning. Furthermore, our results with a shallow spiking network provide an important reference and suggest the use of data sets other than MNIST for testing the performance of future models of biologically plausible deep learning.
Collapse
Affiliation(s)
- Bernd Illing
- School of Computer and Communication Science & School of Life Science, EPFL, 1015 Lausanne, Switzerland.
| | - Wulfram Gerstner
- School of Computer and Communication Science & School of Life Science, EPFL, 1015 Lausanne, Switzerland
| | - Johanni Brea
- School of Computer and Communication Science & School of Life Science, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Srinivasan G, Roy K. ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing. Front Neurosci 2019; 13:189. [PMID: 30941003 PMCID: PMC6434391 DOI: 10.3389/fnins.2019.00189] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
In this work, we propose ReStoCNet, a residual stochastic multilayer convolutional Spiking Neural Network (SNN) composed of binary kernels, to reduce the synaptic memory footprint and enhance the computational efficiency of SNNs for complex pattern recognition tasks. ReStoCNet consists of an input layer followed by stacked convolutional layers for hierarchical input feature extraction, pooling layers for dimensionality reduction, and fully-connected layer for inference. In addition, we introduce residual connections between the stacked convolutional layers to improve the hierarchical feature learning capability of deep SNNs. We propose Spike Timing Dependent Plasticity (STDP) based probabilistic learning algorithm, referred to as Hybrid-STDP (HB-STDP), incorporating Hebbian and anti-Hebbian learning mechanisms, to train the binary kernels forming ReStoCNet in a layer-wise unsupervised manner. We demonstrate the efficacy of ReStoCNet and the presented HB-STDP based unsupervised training methodology on the MNIST and CIFAR-10 datasets. We show that residual connections enable the deeper convolutional layers to self-learn useful high-level input features and mitigate the accuracy loss observed in deep SNNs devoid of residual connections. The proposed ReStoCNet offers >20 × kernel memory compression compared to full-precision (32-bit) SNN while yielding high enough classification accuracy on the chosen pattern recognition tasks.
Collapse
|
33
|
Abstract
Neuromorphic computing systems are promising alternatives in the fields of pattern recognition, image processing, etc. especially when conventional von Neumann architectures face several bottlenecks. Memristors play vital roles in neuromorphic computing systems and are usually used as synaptic devices. Memristive spiking neural networks (MSNNs) are considered to be more efficient and biologically plausible than other systems due to their spike-based working mechanism. In contrast to previous SNNs with complex architectures, we propose a hardware-friendly architecture and an unsupervised spike-timing dependent plasticity (STDP) learning method for MSNNs in this paper. The architecture, which is friendly to hardware implementation, includes an input layer, a feature learning layer and a voting circuit. To reduce hardware complexity, some constraints are enforced: the proposed architecture has no lateral inhibition and is purely feedforward; it uses the voting circuit as a classifier and does not use additional classifiers; all neurons can generate at most one spike and do not need to consider firing rates and refractory periods; all neurons have the same fixed threshold voltage for classification. The presented unsupervised STDP learning method is time-dependent and uses no homeostatic mechanism. The MNIST dataset is used to demonstrate our proposed architecture and learning method. Simulation results show that our proposed architecture with the learning method achieves a classification accuracy of 94.6%, which outperforms other unsupervised SNNs that use time-based encoding schemes.
Collapse
|
34
|
Pfeiffer M, Pfeil T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Front Neurosci 2018; 12:774. [PMID: 30410432 PMCID: PMC6209684 DOI: 10.3389/fnins.2018.00774] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Spiking neural networks (SNNs) are inspired by information processing in biology, where sparse and asynchronous binary signals are communicated and processed in a massively parallel fashion. SNNs on neuromorphic hardware exhibit favorable properties such as low power consumption, fast inference, and event-driven information processing. This makes them interesting candidates for the efficient implementation of deep neural networks, the method of choice for many machine learning tasks. In this review, we address the opportunities that deep spiking networks offer and investigate in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware. A wide range of training methods for SNNs is presented, ranging from the conversion of conventional deep networks into SNNs, constrained training before conversion, spiking variants of backpropagation, and biologically motivated variants of STDP. The goal of our review is to define a categorization of SNN training methods, and summarize their advantages and drawbacks. We further discuss relationships between SNNs and binary networks, which are becoming popular for efficient digital hardware implementation. Neuromorphic hardware platforms have great potential to enable deep spiking networks in real-world applications. We compare the suitability of various neuromorphic systems that have been developed over the past years, and investigate potential use cases. Neuromorphic approaches and conventional machine learning should not be considered simply two solutions to the same classes of problems, instead it is possible to identify and exploit their task-specific advantages. Deep SNNs offer great opportunities to work with new types of event-based sensors, exploit temporal codes and local on-chip learning, and we have so far just scratched the surface of realizing these advantages in practical applications.
Collapse
Affiliation(s)
- Michael Pfeiffer
- Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Renningen, Germany
| | | |
Collapse
|
35
|
Srinivasan G, Panda P, Roy K. SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition. Front Neurosci 2018; 12:524. [PMID: 30190670 PMCID: PMC6116788 DOI: 10.3389/fnins.2018.00524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/12/2018] [Indexed: 11/30/2022] Open
Abstract
In this work, we propose a Spiking Neural Network (SNN) consisting of input neurons sparsely connected by plastic synapses to a randomly interlinked liquid, referred to as Liquid-SNN, for unsupervised speech and image recognition. We adapt the strength of the synapses interconnecting the input and liquid using Spike Timing Dependent Plasticity (STDP), which enables the neurons to self-learn a general representation of unique classes of input patterns. The presented unsupervised learning methodology makes it possible to infer the class of a test input directly using the liquid neuronal spiking activity. This is in contrast to standard Liquid State Machines (LSMs) that have fixed synaptic connections between the input and liquid followed by a readout layer (trained in a supervised manner) to extract the liquid states and infer the class of the input patterns. Moreover, the utility of LSMs has primarily been demonstrated for speech recognition. We find that training such LSMs is challenging for complex pattern recognition tasks because of the information loss incurred by using fixed input to liquid synaptic connections. We show that our Liquid-SNN is capable of efficiently recognizing both speech and image patterns by learning the rich temporal information contained in the respective input patterns. However, the need to enlarge the liquid for improving the accuracy introduces scalability challenges and training inefficiencies. We propose SpiLinC that is composed of an ensemble of multiple liquids operating in parallel. We use a “divide and learn” strategy for SpiLinC, where each liquid is trained on a unique segment of the input patterns that causes the neurons to self-learn distinctive input features. SpiLinC effectively recognizes a test pattern by combining the spiking activity of the constituent liquids, each of which identifies characteristic input features. As a result, SpiLinC offers competitive classification accuracy compared to the Liquid-SNN with added sparsity in synaptic connectivity and faster training convergence, both of which lead to improved energy efficiency in neuromorphic hardware implementations. We validate the efficacy of the proposed Liquid-SNN and SpiLinC on the entire digit subset of the TI46 speech corpus and handwritten digits from the MNIST dataset.
Collapse
Affiliation(s)
| | | | - Kaushik Roy
- Department of ECE, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
36
|
Lee C, Panda P, Srinivasan G, Roy K. Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning. Front Neurosci 2018; 12:435. [PMID: 30123103 PMCID: PMC6085488 DOI: 10.3389/fnins.2018.00435] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/11/2018] [Indexed: 12/02/2022] Open
Abstract
Spiking Neural Networks (SNNs) are fast becoming a promising candidate for brain-inspired neuromorphic computing because of their inherent power efficiency and impressive inference accuracy across several cognitive tasks such as image classification and speech recognition. The recent efforts in SNNs have been focused on implementing deeper networks with multiple hidden layers to incorporate exponentially more difficult functional representations. In this paper, we propose a pre-training scheme using biologically plausible unsupervised learning, namely Spike-Timing-Dependent-Plasticity (STDP), in order to better initialize the parameters in multi-layer systems prior to supervised optimization. The multi-layer SNN is comprised of alternating convolutional and pooling layers followed by fully-connected layers, which are populated with leaky integrate-and-fire spiking neurons. We train the deep SNNs in two phases wherein, first, convolutional kernels are pre-trained in a layer-wise manner with unsupervised learning followed by fine-tuning the synaptic weights with spike-based supervised gradient descent backpropagation. Our experiments on digit recognition demonstrate that the STDP-based pre-training with gradient-based optimization provides improved robustness, faster (~2.5 ×) training time and better generalization compared with purely gradient-based training without pre-training.
Collapse
Affiliation(s)
- Chankyu Lee
- Nanoelectronics Research Laboratory, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | | | | | | |
Collapse
|