1
|
Yuan H, Hong C, Tran NTA, Xu X, Liu N. Leveraging anatomical constraints with uncertainty for pneumothorax segmentation. HEALTH CARE SCIENCE 2024; 3:456-474. [PMID: 39735285 PMCID: PMC11671217 DOI: 10.1002/hcs2.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 12/31/2024]
Abstract
Background Pneumothorax is a medical emergency caused by the abnormal accumulation of air in the pleural space-the potential space between the lungs and chest wall. On 2D chest radiographs, pneumothorax occurs within the thoracic cavity and outside of the mediastinum, and we refer to this area as "lung + space." While deep learning (DL) has increasingly been utilized to segment pneumothorax lesions in chest radiographs, many existing DL models employ an end-to-end approach. These models directly map chest radiographs to clinician-annotated lesion areas, often neglecting the vital domain knowledge that pneumothorax is inherently location-sensitive. Methods We propose a novel approach that incorporates the lung + space as a constraint during DL model training for pneumothorax segmentation on 2D chest radiographs. To circumvent the need for additional annotations and to prevent potential label leakage on the target task, our method utilizes external datasets and an auxiliary task of lung segmentation. This approach generates a specific constraint of lung + space for each chest radiograph. Furthermore, we have incorporated a discriminator to eliminate unreliable constraints caused by the domain shift between the auxiliary and target datasets. Results Our results demonstrated considerable improvements, with average performance gains of 4.6%, 3.6%, and 3.3% regarding intersection over union, dice similarity coefficient, and Hausdorff distance. These results were consistent across six baseline models built on three architectures (U-Net, LinkNet, or PSPNet) and two backbones (VGG-11 or MobileOne-S0). We further conducted an ablation study to evaluate the contribution of each component in the proposed method and undertook several robustness studies on hyper-parameter selection to validate the stability of our method. Conclusions The integration of domain knowledge in DL models for medical applications has often been underemphasized. Our research underscores the significance of incorporating medical domain knowledge about the location-specific nature of pneumothorax to enhance DL-based lesion segmentation and further bolster clinicians' trust in DL tools. Beyond pneumothorax, our approach is promising for other thoracic conditions that possess location-relevant characteristics.
Collapse
Affiliation(s)
- Han Yuan
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
| | - Chuan Hong
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| | | | - Xinxing Xu
- Institute of High Performance Computing, Agency for Science, Technology and ResearchSingapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke‐NUS Medical SchoolSingapore
- Programme in Health Services and Systems Research, Duke‐NUS Medical SchoolSingapore
- Institute of Data ScienceNational University of SingaporeSingapore
| |
Collapse
|
2
|
Stueckle CA, Haage P. The radiologist as a physician - artificial intelligence as a way to overcome tension between the patient, technology, and referring physicians - a narrative review. ROFO-FORTSCHR RONTG 2024; 196:1115-1124. [PMID: 38569517 DOI: 10.1055/a-2271-0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Large volumes of data increasing over time lead to a shortage of radiologists' time. The use of systems based on artificial intelligence (AI) offers opportunities to relieve the burden on radiologists. The AI systems are usually optimized for a radiological area. Radiologists must understand the basic features of its technical function in order to be able to assess the weaknesses and possible errors of the system and use the strengths of the system. This "explainability" creates trust in an AI system and shows its limits. METHOD Based on an expanded Medline search for the key words "radiology, artificial intelligence, referring physician interaction, patient interaction, job satisfaction, communication of findings, expectations", subjective additional relevant articles were considered for this narrative review. RESULTS The use of AI is well advanced, especially in radiology. The programmer should provide the radiologist with clear explanations as to how the system works. All systems on the market have strengths and weaknesses. Some of the optimizations are unintentionally specific, as they are often adapted too precisely to a certain environment that often does not exist in practice - this is known as "overfitting". It should also be noted that there are specific weak points in the systems, so-called "adversarial examples", which lead to fatal misdiagnoses by the AI even though these cannot be visually distinguished from an unremarkable finding by the radiologist. The user must know which diseases the system is trained for, which organ systems are recognized and taken into account by the AI, and, accordingly, which are not properly assessed. This means that the user can and must critically review the results and adjust the findings if necessary. Correctly applied AI can result in a time savings for the radiologist. If he knows how the system works, he only has to spend a short amount of time checking the results. The time saved can be used for communication with patients and referring physicians and thus contribute to higher job satisfaction. CONCLUSION Radiology is a constantly evolving specialty with enormous responsibility, as radiologists often make the diagnosis to be treated. AI-supported systems should be used consistently to provide relief and support. Radiologists need to know the strengths, weaknesses, and areas of application of these AI systems in order to save time. The time gained can be used for communication with patients and referring physicians. KEY POINTS · Explainable AI systems help to improve workflow and to save time.. · The physician must critically review AI results, under consideration of the limitations of the AI.. · The AI system will only provide useful results if it has been adapted to the data type and data origin.. · The communicating radiologist interested in the patient is important for the visibility of the discipline.. CITATION FORMAT · Stueckle CA, Haage P. The radiologist as a physician - artificial intelligence as a way to overcome tension between the patient, technology, and referring physicians - a narrative review. Fortschr Röntgenstr 2024; 196: 1115 - 1123.
Collapse
Affiliation(s)
| | - Patrick Haage
- Diagnostic and Interventional Radiology, HELIOS Universitätsklinikum Wuppertal, Germany
| |
Collapse
|
3
|
Sun J, Hou P, Li K, Wei L, Zhao R, Wu Z. Automated estimation of thoracic rotation in chest X-ray radiographs: a deep learning approach for enhanced technical assessment. Br J Radiol 2024; 97:1690-1695. [PMID: 39141433 PMCID: PMC11417390 DOI: 10.1093/bjr/tqae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVES This study aims to develop an automated approach for estimating the vertical rotation of the thorax, which can be used to assess the technical adequacy of chest X-ray radiographs (CXRs). METHODS Total 800 chest radiographs were used to train and establish segmentation networks for outlining the lungs and spine regions in chest X-ray images. By measuring the widths of the left and right lungs between the central line of segmented spine and the lateral sides of the segmented lungs, the quantification of thoracic vertical rotation was achieved. Additionally, a life-size, full body anthropomorphic phantom was employed to collect chest radiographic images under various specified rotation angles for assessing the accuracy of the proposed approach. RESULTS The deep learning networks effectively segmented the anatomical structures of the lungs and spine. The proposed approach demonstrated a mean estimation error of less than 2° for thoracic rotation, surpassing existing techniques and indicating its superiority. CONCLUSIONS The proposed approach offers a robust assessment of thoracic rotation and presents new possibilities for automated image quality control in chest X-ray examinations. ADVANCES IN KNOWLEDGE This study presents a novel deep-learning-based approach for the automated estimation of vertical thoracic rotation in chest X-ray radiographs. The proposed method enables a quantitative assessment of the technical adequacy of CXR examinations and opens up new possibilities for automated screening and quality control of radiographs.
Collapse
Affiliation(s)
- Jiuai Sun
- School of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Pengfei Hou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ling Wei
- School of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Ruifeng Zhao
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhonghang Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
4
|
Yuan H, Hong C, Jiang PT, Zhao G, Tran NTA, Xu X, Yan YY, Liu N. Clinical domain knowledge-derived template improves post hoc AI explanations in pneumothorax classification. J Biomed Inform 2024; 156:104673. [PMID: 38862083 DOI: 10.1016/j.jbi.2024.104673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Pneumothorax is an acute thoracic disease caused by abnormal air collection between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning (DL), has been increasingly employed for automating the diagnostic process of pneumothorax. To address the opaqueness often associated with DL models, explainable artificial intelligence (XAI) methods have been introduced to outline regions related to pneumothorax. However, these explanations sometimes diverge from actual lesion areas, highlighting the need for further improvement. METHOD We propose a template-guided approach to incorporate the clinical knowledge of pneumothorax into model explanations generated by XAI methods, thereby enhancing the quality of the explanations. Utilizing one lesion delineation created by radiologists, our approach first generates a template that represents potential areas of pneumothorax occurrence. This template is then superimposed on model explanations to filter out extraneous explanations that fall outside the template's boundaries. To validate its efficacy, we carried out a comparative analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two real-world datasets (SIIM-ACR and ChestX-Det). RESULTS The proposed approach consistently improved baseline XAI methods across twelve benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average incremental percentages, calculated by the performance improvements over the baseline performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We further visualized baseline and template-guided model explanations on radiographs to showcase the performance of our approach. CONCLUSIONS In the context of pneumothorax diagnoses, we proposed a template-guided approach for improving model explanations. Our approach not only aligns model explanations more closely with clinical insights but also exhibits extensibility to other thoracic diseases. We anticipate that our template guidance will forge a novel approach to elucidating AI models by integrating clinical domain expertise.
Collapse
Affiliation(s)
- Han Yuan
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Chuan Hong
- Department of Biostatistics and Bioinformatics, Duke University, USA
| | | | - Gangming Zhao
- Faculty of Engineering, The University of Hong Kong, China
| | | | - Xinxing Xu
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
| | - Yet Yen Yan
- Department of Radiology, Changi General Hospital, Singapore
| | - Nan Liu
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore; Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore; Institute of Data Science, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Katzman BD, Alabousi M, Islam N, Zha N, Patlas MN. Deep Learning for Pneumothorax Detection on Chest Radiograph: A Diagnostic Test Accuracy Systematic Review and Meta Analysis. Can Assoc Radiol J 2024; 75:525-533. [PMID: 38189265 DOI: 10.1177/08465371231220885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Pneumothorax is a common acute presentation in healthcare settings. A chest radiograph (CXR) is often necessary to make the diagnosis, and minimizing the time between presentation and diagnosis is critical to deliver optimal treatment. Deep learning (DL) algorithms have been developed to rapidly identify pathologic findings on various imaging modalities. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the overall performance of studies utilizing DL algorithms to detect pneumothorax on CXR. METHODS A study protocol was created and registered a priori (PROSPERO CRD42023391375). The search strategy included studies published up until January 10, 2023. Inclusion criteria were studies that used adult patients, utilized computer-aided detection of pneumothorax on CXR, dataset was evaluated by a qualified physician, and sufficient data was present to create a 2 × 2 contingency table. Risk of bias was assessed using the QUADAS-2 tool. Bivariate random effects meta-analyses and meta-regression modeling were performed. RESULTS Twenty-three studies were selected, including 34 011 patients and 34 075 CXRs. The pooled sensitivity and specificity were 87% (95% confidence interval, 81%, 92%) and 95% (95% confidence interval, 92%, 97%), respectively. The study design, use of an institutional/public data set and risk of bias had no significant effect on the sensitivity and specificity of pneumothorax detection. CONCLUSIONS The relatively high sensitivity and specificity of pneumothorax detection by deep-learning showcases the vast potential for implementation in clinical settings to both augment the workflow of radiologists and assist in more rapid diagnoses and subsequent patient treatment.
Collapse
Affiliation(s)
- Benjamin D Katzman
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mostafa Alabousi
- Department of Medical Imaging, McMaster University, Hamilton, ON, Canada
| | - Nabil Islam
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nanxi Zha
- Department of Medical Imaging, McMaster University, Hamilton, ON, Canada
| | - Michael N Patlas
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Sugibayashi T, Walston SL, Matsumoto T, Mitsuyama Y, Miki Y, Ueda D. Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:32/168/220259. [PMID: 37286217 DOI: 10.1183/16000617.0259-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Deep learning (DL), a subset of artificial intelligence (AI), has been applied to pneumothorax diagnosis to aid physician diagnosis, but no meta-analysis has been performed. METHODS A search of multiple electronic databases through September 2022 was performed to identify studies that applied DL for pneumothorax diagnosis using imaging. Meta-analysis via a hierarchical model to calculate the summary area under the curve (AUC) and pooled sensitivity and specificity for both DL and physicians was performed. Risk of bias was assessed using a modified Prediction Model Study Risk of Bias Assessment Tool. RESULTS In 56 of the 63 primary studies, pneumothorax was identified from chest radiography. The total AUC was 0.97 (95% CI 0.96-0.98) for both DL and physicians. The total pooled sensitivity was 84% (95% CI 79-89%) for DL and 85% (95% CI 73-92%) for physicians and the pooled specificity was 96% (95% CI 94-98%) for DL and 98% (95% CI 95-99%) for physicians. More than half of the original studies (57%) had a high risk of bias. CONCLUSIONS Our review found the diagnostic performance of DL models was similar to that of physicians, although the majority of studies had a high risk of bias. Further pneumothorax AI research is needed.
Collapse
Affiliation(s)
- Takahiro Sugibayashi
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shannon L Walston
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toshimasa Matsumoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan
| | - Yasuhito Mitsuyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Smart Life Science Lab, Center for Health Science Innovation, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
7
|
Irmici G, Cè M, Caloro E, Khenkina N, Della Pepa G, Ascenti V, Martinenghi C, Papa S, Oliva G, Cellina M. Chest X-ray in Emergency Radiology: What Artificial Intelligence Applications Are Available? Diagnostics (Basel) 2023; 13:diagnostics13020216. [PMID: 36673027 PMCID: PMC9858224 DOI: 10.3390/diagnostics13020216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Due to its widespread availability, low cost, feasibility at the patient's bedside and accessibility even in low-resource settings, chest X-ray is one of the most requested examinations in radiology departments. Whilst it provides essential information on thoracic pathology, it can be difficult to interpret and is prone to diagnostic errors, particularly in the emergency setting. The increasing availability of large chest X-ray datasets has allowed the development of reliable Artificial Intelligence (AI) tools to help radiologists in everyday clinical practice. AI integration into the diagnostic workflow would benefit patients, radiologists, and healthcare systems in terms of improved and standardized reporting accuracy, quicker diagnosis, more efficient management, and appropriateness of the therapy. This review article aims to provide an overview of the applications of AI for chest X-rays in the emergency setting, emphasizing the detection and evaluation of pneumothorax, pneumonia, heart failure, and pleural effusion.
Collapse
Affiliation(s)
- Giovanni Irmici
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Elena Caloro
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Natallia Khenkina
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Gianmarco Della Pepa
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Velio Ascenti
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Carlo Martinenghi
- Radiology Department, San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy
| | - Sergio Papa
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milan, Italy
| | - Giancarlo Oliva
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121 Milan, Italy
| |
Collapse
|
8
|
Tian Y, Wang J, Yang W, Wang J, Qian D. Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images. Med Phys 2021; 49:231-243. [PMID: 34802144 DOI: 10.1002/mp.15328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Pneumothorax is a life-threatening emergency that requires immediate treatment. Frontal-view chest X-ray images are typically used for pneumothorax detection in clinical practice. However, manual review of radiographs is time-consuming, labor-intensive, and highly dependent on the experience of radiologists, which may lead to misdiagnosis. Here, we aim to develop a reliable automatic classification method to assist radiologists in rapidly and accurately diagnosing pneumothorax in frontal chest radiographs. METHODS A novel residual neural network (ResNet)-based two-stage deep-learning strategy is proposed for pneumothorax identification: local feature learning (LFL) followed by global multi-instance learning (GMIL). Most of the nonlesion regions in the images are removed for learning discriminative features. Two datasets are used for large-scale validation: a private dataset (27 955 frontal-view chest X-ray images) and a public dataset (the National Institutes of Health [NIH] ChestX-ray14; 112 120 frontal-view X-ray images). The model performance of the identification was evaluated using the accuracy, precision, recall, specificity, F1-score, receiver operating characteristic (ROC), and area under ROC curve (AUC). Fivefold cross-validation is conducted on the datasets, and then the mean and standard deviation of the above-mentioned metrics are calculated to assess the overall performance of the model. RESULTS The experimental results demonstrate that the proposed learning strategy can achieve state-of-the-art performance on the NIH dataset with an accuracy, AUC, precision, recall, specificity, and F1-score of 94.4% ± 0.7%, 97.3% ± 0.5%, 94.2% ± 0.3%, 94.6% ± 1.5%, 94.2% ± 0.4%, and 94.4% ± 0.7%, respectively. CONCLUSIONS The experimental results demonstrate that our proposed CAD system is an efficient assistive tool in the identification of pneumothorax.
Collapse
Affiliation(s)
- Yuchi Tian
- Academy of Engineering and Technology, Fudan University, Shanghai, China
| | - Jiawei Wang
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dahong Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
|
10
|
Lazo JF, Marzullo A, Moccia S, Catellani M, Rosa B, de Mathelin M, De Momi E. Using spatial-temporal ensembles of convolutional neural networks for lumen segmentation in ureteroscopy. Int J Comput Assist Radiol Surg 2021; 16:915-922. [PMID: 33909264 PMCID: PMC8166718 DOI: 10.1007/s11548-021-02376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/09/2021] [Indexed: 11/05/2022]
Abstract
Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m_1$$\end{document}m1) and Mask-RCNN (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m_2$$\end{document}m2), which are fed with single still-frames I(t). The other two models (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_1$$\end{document}M1, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_2$$\end{document}M2) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_1$$\end{document}M1, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_2$$\end{document}M2 are fed with triplets of frames (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I(t-1)$$\end{document}I(t-1), I(t), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I(t+1)$$\end{document}I(t+1)) to produce the segmentation for I(t). Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections. Supplementary Information The online version supplementary material available at 10.1007/s11548-021-02376-3.
Collapse
Affiliation(s)
- Jorge F Lazo
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy. .,ICube, UMR 7357, CNRS-Université de Strasbourg, Strasbourg, France.
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende, CS, Italy
| | - Sara Moccia
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Benoit Rosa
- ICube, UMR 7357, CNRS-Université de Strasbourg, Strasbourg, France
| | | | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|